测控电路的起源和发展

合集下载

整套课件:测控电路

整套课件:测控电路

➢典型测量放大电路 同相放大电路
R2
Kf
uo ui
1 R2 R1
Zi
KZ
' i
1 R2 /
R1
R3
注意:R3 R1 // R2
R1
-∞ +
uo
+ N1
R3 ui
常用芯片:MAX4074,MAX4075,OPA2682,OPA3682
2021/10/20
44
2021/10/20
45
2021/10/20
2021/10/20
18
1.5 测控电路的发展趋势
➢优质化 ➢集成化 ➢数字化 ➢通用化、模块化 ➢测控一体化 ➢自动化与智能化
2021/10/20
19
1.6 课程的性质、内容与学习方法
目的:应用电子技术来解决测量与控制中的问题 基础:《电路》、《模拟电子技术》、《数字电路》等等 方法: 多分析、多思考 理论推导 仿真验证(再分析、思考)
合适的输入与输出阻抗
动态性能好
响应快 (实时动态测量) 动态失真小
2021/10/20
6
转ቤተ መጻሕፍቲ ባይዱ灵活
模数与数模转换 电量参数转换 量程转换 信号选取 信号运算
可靠性
经济性
2021/10/20
7
影响因素:
噪声与干扰★ 失调与漂移,主要是温漂★ 线性度与保真度 输入与输出阻抗的影响
2021/10/20
ud
u1 u2 , uc
u1 u2 2
ud 100V ,uc 0V
uo Adud Acuc 100Ad
2021/10/20
56
ud 100V ,uc 10000V

测控技术与仪器的发展及特点分析

测控技术与仪器的发展及特点分析

测控技术与仪器的发展及特点分析测控技术是一门现代高科技技术,随着物联网、人工智能和大数据技术的发展和普及,其应用领域不断扩大。

测控技术可应用于各领域的自动化、智能化和信息化,实现全过程的监测、控制、检测、调节和反馈,为工业制造、医疗保健、航空航天、环境监测、军事防卫等领域提供全方位支持。

测控技术的发展经历了几个阶段。

最初的测量技术主要是机械式的、手工式的,如手工测量仪器、游标卡尺、千分尺等。

20世纪60年代,电子技术的发展,仪器和测控系统开始电气化。

数字技术和微处理器技术的应用,使得仪器和测量系统变得更加智能化和高效化,例如:智能测距仪、数字多用表。

21世纪,物联网技术的出现,为测控技术带来了新的发展机遇。

现在,测控技术已经可以融合多种技术,如传感器技术、无线通信技术和云计算技术,形成新的智能传感测控系统。

测控技术的特点有以下几个方面:一、自动化特点。

随着自动化水平的不断提高,测控技术已经可以实现自动化控制、自动化调节、自动化检测和自动化反馈。

通过智能化传感器、智能化测量仪器和智能化监测系统,可以实现工业生产的自动化管理和控制。

二、多功能特点。

现代测控技术已经可以实现多种功能,不仅可以进行测量、监测、调节,同时还能实现多种检测方法和数据分析技术,如模糊控制技术、神经网络技术和图像处理技术等,可应对复杂的工艺、环境和设备状态要求。

三、高精度特点。

随着技术的不断进步,测控技术的精度和准确性不断提高,现代测量设备的测量精度已经可以达到亚微米级别。

高精度仪器的出现和使用,为实现高质量和高可靠性的生产提供了坚实的保障,且在新材料、生物医学等领域有重要应用。

四、信息化特点。

现代测控技术可以与计算机网络相连接,实现信息共享和远程监测,通过各种传感器对物体环境进行采集和处理,生成海量数据,利用大数据技术进行分析和研究,在科学研究、资源管理、环保监测等方面具有重要作用。

总之,测控技术的发展和应用为工业制造、医疗保健、环境监测、国土安全、军事防卫等领域带来了新的机遇和挑战,同时推动着精确度、稳定性、多样性、高效性和智能化的综合提升,加速了技术创新和产业升级的进程。

测控电路

测控电路

测控电路介绍测控系统主要由传感器、测量控制电路(简称测控电路)和执行机构三部分组成。

在测控系统中电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。

测控系统乃至整个机器和生成系统的性能在很大程度上取决于测控电路。

测控电路主要包括信号放大电路、信号调制解调电路、信号分离电路、信号运算电路、信号转换电路、信号细分与辨向电路、电量测量电路、连续信号控制电路、逻辑与数字控制电路等。

实际上,测控电路是模拟电子技术和数字电子技术的进一步延伸与扩展,主要讨论一些典型常见的电路。

因此学好模电和数电是基础,其中运算放大器是测控电路的一个核心部件。

网址:从50年代的“尺寸自动检测仪器”,到80年代的“精密仪器电路”,再到今天的“测控电路”,“测控电路”课程经历了半个世纪的发展历程。

测控技术是现代生产和高科技中的一项必不可少的基础技术。

“测控电路”课程主要介绍工业生产和科学研究中常用的测量与控制电路。

包括测控电路的功用和对它的主要要求、测控电路的类型与组成、信号放大电路、信号调制解调电路、信号分离电路、信号运算电路、信号转换电路、信号细分与辨向电路、逻辑控制与连续信号控制电路、测控电路中的抗干扰技术,最后通过若干典型测控电路对电路进行分析。

本课程不是一般意义上电子技术课程的深化与提高,而要着重讲清如何在电子技术与测量、控制之间架起一座桥梁,使学员熟悉怎样运用电子技术来解决测量与控制中的任务,实现测控的总体思想,围绕精、快、灵和测控任务的其它要求来选用和设计电路。

本课程选用的教材是由天津大学精仪学院张国雄教授主编的《测控电路》。

该书是根据1996年10月全国高等学校仪器仪表类教学指导委员会第一次会议的决定,作为测控技术及仪器专业的规划教材,并根据随后拟定的教学大纲编写的。

该教材可供测控技术及仪器专业各专业方向和机械工程类其它专业选用。

2002年,该书获全国优秀教材二等奖,并被列为国家“十五”规划教材。

第1章 绪论-《测控电路(第4版)》张国雄

第1章 绪论-《测控电路(第4版)》张国雄

1.2 对测控电路的主要要求
要掌握设计、选用电路的要领,必须了解对测控电路的要求
一、精度高
二、响应快
三、转换灵活
四、可靠性与经济性
测控电路
2013-8-19
6
1.2 对测控电路的主要要求
(一)精度高 离开精度,测控就失去意义 生产、科研、国防、高科技都离不开精度 产品的质量在很大程度上取决于测控精度 仪器仪表的测控精度决定了武器系统的打 击精度
1.6 课程的性质、内容与学习方法


宽基础 重点放在基本功能块 创造性 怎样运用电路解决工程技术问题
1.6 课程的性质、内容与学习方法

主要介绍工业生产和科学研究中常用的测量与 控制电路的各种功能块和总体连接,使学生熟 悉怎样运用电子技术来解决测量与控制中的任 务。它不是一般意义上电子技术课的深化与提 高,而要着重讲清,如何在电子技术与测量、 控制间架起一座桥梁,实现二者之间的沟通, 学会如何在测量和控制中运用电子技术,并与 光、机、计算机紧密配合,实现测控的总体思 想,围绕精、快、灵、可靠和测控任务的其它 要求来选用电路、设计电路。
1.2 对测控电路的主要要求


精度----测控永恒主题 长度:纳米(单一尺寸到坐标测量,分 子测量机-亚原子测量机) 时间:飞秒 引力波对光速影响10-17 光钟10-19(3000亿年差1秒) 单个电子电量(1.59×10-19C)
1.2 对测控电路的主要要求
影响测控电路精度的主要因素有哪些?其 中那几个因素是最基本的?
测控电路
2013-8-19
28
1.4 测控电路的类型与组成
扰动
给定 机构
设定 电路
比较 电路

电路发展历程

电路发展历程

电路发展历程电路发展的历程可以追溯到古代,人们开始认识和探索电的基本概念。

然而,电路的发展真正取得突破是在18世纪末和19世纪初,当时科学家们做出了许多重要的发现。

在18世纪末,意大利科学家亚历山德罗·伏打(Alessandro Volta)发现了第一个可控制电流的装置,称为伏打电池。

这一发现标志着电路技术的起点,人们开始研究电流的性质和如何利用它进行各种应用。

随着伏打电池的问世,人们开始研究电流的导体和绝缘体特性。

英国物理学家迈克尔·法拉第(Michael Faraday)在19世纪初提出了电磁感应的概念,发现当磁场变化时,会在导线周围产生电流。

这一发现推动了电动机的发展,并为后来的电路技术打下了重要基础。

随着电力的应用越来越广泛,人们开始研究如何在远距离传输电力。

美国发明家托马斯·爱迪生(Thomas Edison)在19世纪末发明了直流发电机和电灯,为电力输送和照明铺平了道路。

然而,直流电力的传输距离有限,无法很好地满足远距离输电的需求。

为了解决这一问题,人们开始研究交流电的传输。

在19世纪末和20世纪初,尼古拉·特斯拉(Nikola Tesla)和乔治·韦斯汀豪斯(George Westinghouse)等工程师和科学家做出了重要贡献,发明了交流发电机和变压器,解决了电力传输中的许多挑战。

随着电力输送和使用的不断完善,电路技术也得到了进一步发展。

20世纪初,真空管的发明使得电子器件的制造和使用变得更加可行。

随后,晶体管的发明进一步推动了电路技术的进步,并带来了计算机和通信技术的革命。

随着时间的推移,集成电路的发明使得电路变得更小、更强大。

现代社会中,电路无处不在,从家庭电器到通信设备,从工业控制系统到医疗设备,都离不开电路的支持。

总之,电路发展的历程是一个不断探索和创新的过程,从最早的电池到集成电路的发明,电路技术在现代科技中扮演着至关重要的角色。

测控技术导论报告

测控技术导论报告

测控技术导论报告测控技术导论报告一、引言测控技术,顾名思义,是测量与控制的结合。

它涵盖了广泛的领域,包括工业自动化、航空航天、医疗诊断、环境监控等。

随着科技的飞速发展,测控技术已成为现代社会的重要支柱之一。

本报告将介绍测控技术的发展历程、基本概念、主要应用和发展趋势。

二、测控技术的发展历程自工业革命以来,随着生产力的提高和科技的进步,测控技术得到了迅速发展。

早期的测控技术主要依赖于人工观测和记录,精度低、效率慢。

随着电子技术、计算机技术和通信技术的发展,现代测控技术应运而生。

20世纪中叶,随着模拟电路和数字电路的发明,测控技术得到了极大的推动。

集成电路和微型计算机的发明更是推动了测控技术的进步。

进入21世纪,随着互联网和物联网技术的发展,测控技术进入了全新的时代。

三、测控的基本概念测控技术主要包括测量和控制两个方面。

测量是指通过传感器等设备获取被控对象的各种参数,如温度、压力、位移等。

控制则是根据测量结果,通过执行器等设备对被控对象进行调节,使其达到预设的目标。

四、测控的主要应用1.工业自动化:在工业生产中,测控技术广泛应用于各种设备上。

例如,温度控制器可以监测熔炼金属的温度,一旦超过预设范围,就会自动调整火力。

压力传感器可以监测容器的压力,防止因压力过高导致容器破裂。

2.航空航天:在航空航天领域,测控技术对飞行器的控制至关重要。

通过GPS等设备,可以精确地测量飞行器的位置和速度。

通过惯性导航系统,可以监测飞行器的姿态和方向。

这些信息被用来控制飞行器的轨迹和速度。

3.医疗诊断:在医疗领域,测控技术也发挥了重要作用。

例如,心电图机可以监测心脏的电活动,血糖仪可以测量血糖水平。

这些设备将测量数据传输给医生进行分析,以便进行诊断和治疗。

4.环境监控:在环境保护方面,测控技术也发挥了重要作用。

例如,气象站可以监测气温、湿度、风速等环境参数。

通过这些数据,可以预测天气变化和空气质量。

这些数据被用来控制污染源和优化环境管理。

测控电路

测控电路

2.常用的调制方法:传感器调制和电路调制。传感器调制包括1交流供电2机械或光学方法。电路调制包括 乘法器调制,开关电路调制,信号相加调制。常用的解调方法:用非线性原件(二极管或者晶体三极 管);用低通滤波器。 3.相敏检波电路和包络检波的区别在于:相敏检波电路具有鉴别相位的能力,具有选频的功能,还必须有参 考信号。(乘法器,开关式,相加式) 4.将调制信号乘以幅值为1的余弦信号就可以得到双边带调幅信号,将双边带调幅信号再乘以载波信号,经 低通滤波后就可以得到原先的调制信号。 5.相敏检波电路具有抑制各种高次谐波的能力,这就是他的选频功能。相敏检波电路的鉴相特性指:当输入 信号和参考信号同频率时,输出信号随相位差的余弦而变化。 第四章 信号分离电路 1.滤波器是具有频率选择作用的电路或运算处理系统,可以从频率域中实现对噪声的抑制,提取所需的测量 信号。工作原理是当信号与噪声分布在不同频域带中时,利用滤波器对不同频率信号具有不同的衰减作用 的特点从频域实现信号分离。 2.几个特征频率:转折频率fc,固有频率(谐振频率或中心频率)f0; *群时延函数:t=df(w)/dw,用来评价相位失真程度。越接近常数,相位失真越小。 3.滤波器按照电路组成可以分为:1.LC无源滤波器,2.RC无源滤波器,3.RC有源滤波器 4.由特殊元件构成 的无源滤波器。 4.压控电压源型滤波器:闭环增益(1+R0/R)增益过大容易导致自己振荡,这是因为电路中存在正反馈。 高通低通和带通 *5.无源元件参数计算。 第五章 加法减法运算电路(设计) 第六章 常用的模拟开关元件包括二极管开关.,双极型晶体管开关,结型场效应管开关,MOS型场效应管开关等。
测控电路
第一章 1.测控系统主要由传感器(测量装置),测量控制电路(测控电路)和执行机构三部分组成。传感器的输出 信号一般都很微弱,还可能伴随着各种噪声,还需要测控电路将它放大,剔除噪声,选取有用信号。在测 控系统中,电路是最灵活的部分,它具有便于放大,便于变换,便于传输,适应于各种使用要求的特点。 *2.测控电路的特点:精度高;响应快;转换灵活。 *3.影响测控电路的主要因素: 1噪声与干扰;2失调与漂移,主要是温漂;3线性度与保真度;4输入与输出阻抗的影响。其中噪声与干 扰,失调与漂移(含温漂)是最主要的,需要特别注意。 4.测控电路的输入信号和输出信号: 模拟:1非调制信号2已调制信号(调制信号,载波信号,调幅信号) 数字:增量码信号;绝对码信号;开关信号 第二章 信号放大电路 1.信号放大电路是为了将微弱的传感器信号放大到足以进行的各种转换处理或驱动指示器,记录器以及各种 控制机构。 2.输入失调电压(实际中的差分放大器不一定完全对称,必须在输入端加上某一直流电压后才能使输出为 零,这一电压便成为输入失调电压);这种失调电压随时间和温度而变化,称为零点漂移; 3.为了减小零点漂移可以采取以下几个措施:1.引入直流负反馈2.引入温度补偿电路3.差分放大电路的自稳零 和采用调制的方法把直流变交流。 4.相位补偿 5.噪声分为白噪声和色噪声两种。电子电路中的固有噪声有热噪声,低频噪声和散弹噪声三种。 6.测量放大电路是指在测量控制系统中用来放大传感器输出的微弱电压电流或者电荷信号的电路。在结构原 理上可以分为1.差动直接耦合式(单端输入,电桥放大,电荷放大),2调制式(斩波稳零)3自动稳定式 (自动调零放大电路)。测量放大电路的基本要求是:1其输入阻抗要与传感器的输出阻抗相匹配2稳定的 放大倍数3低噪声4低的输入失调电压和输入失调电流以及低漂移,5足够的带宽和转换速率6高共模输入范 围和高共模抑制比7可调的闭环增益8线性好精度高9成本低。 7.反向放大器的闭环增益为-R2/R1;优点:性能稳定,缺点是输入阻抗低容易对传感器新城敷在作用。 同相放大器的闭环增益是1+(R2/R1);优点输入阻抗高,输出阻抗几乎为零,缺点容易受干扰99。 差动放大电路有益于抑制共模干扰(提高电路的共模抑制比)和减小温漂。 *8.三运放高共模抑制比放大电路 9.自动调零放大电路 10.高输入阻抗集成运放的屏蔽将高输入阻抗的输入端周围用导体围住,并将屏蔽层接到低输入阻抗处。 11.自举式高输入阻抗放大电路利用反馈使输入阻抗两端电位近似相等,减少想输入阻抗索取电流从而提高 输入阻抗。 12.差动输入电桥放大电路 *13.隔离放大电路的输入输出和电源的电路之间没有直接的电路耦合,即信号在传输过程中没有公共的接地 端。由输入放大器和输出放大器,隔离器和隔离电源等几部分组成。常用的隔离方法:光电隔离,变压器 隔离和电容隔离。 14.调制信号---->调制器——>放大器——》解调器——》低通滤波 振荡器 第三章 信号调制解调电路 1.在信号调制中,通常以高频的正弦信号做载波信号。调幅,调频和调相。调制就是利用调制信号去控制另 一个作为载体的信号(载波信号),让载波信号的(幅值,频率,相位和脉冲宽度)按照调制信号的值变 化。 可以克服干扰,便于放大和远距离传输。

测控技术与仪器的发展及特点分析

测控技术与仪器的发展及特点分析

测控技术与仪器的发展及特点分析一、测控技术的发展历程随着科学技术的不断进步,测量和控制技术在各个领域中发挥着越来越重要的作用,成为推动社会进步和经济发展的重要力量。

测控技术是指利用各种仪器和设备进行数据采集、信号处理、控制和监测的技术手段。

它在工业生产、环境监测、航空航天、军事应用等领域中起着至关重要的作用。

在测控技术的发展历程中,可以分为以下几个阶段:1. 传统测控技术时期:在早期,测控技术主要依靠手工操作和简单的机械仪器进行数据采集和控制。

人们通过手工编制数据表格、绘制曲线图表等方式进行数据处理和分析。

这个时期的测控技术主要应用于工业生产领域,主要用于产品质量控制和生产过程监测。

2. 电子测控技术时期:20世纪初,随着电子技术的发展,出现了各种电子仪器和设备,如示波器、频率计、数字万用表等。

这些设备的出现使得数据采集和处理更加方便和准确,提高了测控技术的精度和效率。

电子测控技术开始逐渐应用于航空航天、军事和科研领域,推动了这些领域的快速发展。

3. 计算机测控技术时期:20世纪60年代,计算机技术的发展使得测控技术迈上了一个新的台阶。

计算机以其强大的数据处理和控制能力,使得测控技术的应用范围得到了大幅度扩展,同时也提高了测控系统的智能化和自动化水平。

计算机测控技术的出现为工业控制、环境监测、医疗诊断等领域带来了革命性的变化。

4. 智能化测控技术时期:近年来,随着人工智能、大数据和云计算等新技术的兴起,测控技术正朝着智能化、网络化和集成化方向发展。

通过引入先进的传感器、智能控制算法和互联网技术,实现了测控系统的智能化和自适应控制,为各行各业的发展注入了新的动力。

二、测控仪器的发展变化测控仪器是测控技术的核心载体,是实现测控功能的重要工具。

随着测控技术的不断发展,测控仪器也经历了从传统仪器到现代智能化仪器的演变。

1. 传统测控仪器时期:在早期,测控仪器主要是一些简单的机械测量仪器,如卡尺、千分尺、游标卡尺等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测控电路的起源和发展
门捷列夫说过,没有测量就没有科学。

自从电子电工学诞生那天起,它就成为测量与控制方面应用的主要领域。

当今信息时代,计算机的广泛应用使得测控技术更上一层楼。

回顾测控电路的发展和预测其未来是一件让所有从事测控工作和学习测控技术的人们都异常兴奋的事情。

1.测控电路的起源
1.1晶体管的诞生
1947年,美国贝尔实验室发明了半导体点接触式晶体管,从而开创了人类的硅文明时代。

晶体管诞生之后,便被广泛地应用于工农业生产、国防建设以及人们日常生活中。

1953年,首批电池式的晶体管收音机一投放市场,就受到人们的热烈欢迎,人们争相购买这种收音机。

由于硅晶体管适合高温工作,可以抵抗大气影响,在电子工业领域是最受欢迎的产品之一。

人们用硅晶体管制造红外探测器。

晶体管这种小型简便的半导体元件还为缝纫机、电钻和荧光灯开拓了电子控制的途径。

从1950年至1960年的十年间,世界主要工业国家投入了巨额资金,用于研究、开发与生产晶体管和半导体器件。

真正引起半导体工业的变革的是在20世纪60年代中期发明的互补MOS(CMOS)器件。

CMOS技术以其无可比拟的优势迅速占领了数字市场,紧接着CMOS技术又应用于模拟电路的设计中。

较低的制造成本和在同一芯片上同时包含模拟和数字电路,以改善整体性能和降低封装成本使得CMOS技术极具吸引力。

在短短十余年的时间里,新兴的晶体管工业以不可战胜的雄心和年轻人那样无所顾忌的气势,迅速取代了电子管工业通过多年奋斗才取得的地位,一跃成为电子技术领域的排头兵。

1.2运算放大器
在模拟测控电路技术中,运放的应用举足轻重,是IC设计中应用最广泛的元件。

1960年代晚期,仙童半导体(Fairchild Semiconductor)推出了第一个被广泛使用的集成电路运算放大器,型号为μA709,设计者则是鲍伯·韦勒(Bob Widlar)。

但是709很快地被随后而来的新产品μA741取代,741有着更好的性能,更为稳定,也更容易使用。

741运算放大器成了微电子工业发展历史上一个独一无二的象征,历经了数十年的演进仍然没有被取代,很多集成电路的制造商至今仍然在生产741。

直到今天μA741我们上测控电路课仍然学习μA741。

集成运放的发展大概可分为四个阶段。

第一阶段基本上是按分立元件电路的设计思想制造的,但在改善输入电阻、开环增益、失调电压及温漂等项指标方面都有所提高);第二阶段的产品特点主要是普遍采用了有源负载,而且与第一阶段产品相比,其产品的开环增益有所提高,又由于电路比较简单、性能指标比较符合要求,这一类产品得到了广泛的应用(如F007、BG305);第三阶段的产品主要特点是采用了超口管作为输入级,并在版图设计中考虑热效应的影响,所以其失调电压、失调电流、开环增益、共模抑制比和温漂等方面都有所改善(如AD508);第四阶段
产品的主要特点是电路中包含了斩波自动稳零放大电路,并开始在大规模线性集成电路中投产。

前三阶段运放通称为参数补偿式运放,而第四阶段则称为斩波稳零式运放。

它们的工作原理不一样,但具体使用却没有多大的区别。

1.3电路板印刷
制电路板是随着电子工业的发展而发展.随着装配技术的进步而进步,反过来印制电路板技术的发展和进步,又支撑了测控电路的发展。

印制电路板的发明者是奥地利人保罗·爱斯勒(PaulEisler),他于1936年在一个收音机装置内采用了印刷电路板。

1943年,美国人将该技术大量使用于军用收音机内。

1948年,美国正式认可这个发明用于商业用途。

自20世纪50年代中期起,印刷电路版技术才开始被广泛采用。

在印制电路板出现之前,电子元器件之间的互连都是依靠电线直接连接实现的。

而现在,电路面板只是作为有效的实验工具而存在;印刷电路板在电子工业中已经占据了绝对统治的地位。

2.测控电路的发展方向
1.1让人兴奋的摩尔定律
摩尔定律是由英特尔(Intel)创始人之一戈登·摩尔(Gordon Moore)提出来的。

其内容为:集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍,当价格不变时;或者说,每一美元所能买到的电脑性能,将每隔18个月翻两倍以上。

这一定律揭示了信息技术进步的速度。

在测控电路方面,摩尔定律同样起着惊人的作用。

这主要表现在测控电路的复杂化,集成化和多功能智能化上。

1.2更高,更快,更强
从上世纪60年代中期以来,集成电路技术得到了极大发展。

随着测量控制理论的完善和工艺的提高,测控电路种类更加繁多,性能更加强大,精度更高,应用更智能。

其主要的发展趋势有:
优质化:各种指标的提升与成本的降低。

微型化和集成化:测控电路更微小,功耗更低。

数字化:与计算机连接,共同完成测量与控制任务。

智能化:自学习,自适应的新型测控电路。

有自我学习,自我调整,在无人工干预下完成测量控制任务的测控器。

相关文档
最新文档