2020年启东市中考第二次适应性调研测试数学试题含答案

合集下载

2020年启东中学中考模拟考试(十二)初中数学

2020年启东中学中考模拟考试(十二)初中数学

2020年启东中学中考模拟考试(十二)初中数学数学试卷本试卷分第I 卷〔选择题〕和第二卷两部分第I 卷〔选择题,共32分〕一、选择题〔此题共10小题;第1~8题每题3分,第9~10题每题4分,共32分〕 以下各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的。

1.4的算术平方根为A .2B .-2C .±2D .162.以下运算正确的选项是A .228=-B .14931227=-=-C .3)52)(52(-=+-D .23226=-3.英寸是电视机常用规格之一,1英寸约为拇指上面一节的长,如图1所示,那么7英寸长相当于A .课本的宽度B .课桌的宽度C .黑板的高度D .粉笔的长度4.解分式方032222=+---x x x x 时,设y x x=-22,那么原方程变形为A .0132=++y y B .0132=-+y y C .0132=+-y yD .0132=--y y5.小颖从家动身,直走了20min ,到一个离家1000m 的图书室,看了40min 的书后,用15min 返回到家,图2中表示小颖离家时刻与距离之间的关系的是6.如图3所示,路灯距地面8m ,身高1.6m 的小明从距离灯的底部〔点O 〕20m 的点A 处,沿OA 所在的直线行走14m 到点B 时,人影的长度A .增大1.5mB .减小1.5mC .增大3.5mD .减小3.5m7.如图4所示,在△MBN 中,BM=6,点A 、C 、D 分不在MB 、NB 、MN 上,四边形ABCD 为平行四边形,∠NDC=∠MDA ,那么□ABCD 的周长是A .24B .18C .16D .128.小敏在某次投篮中,球的运动线路是抛物线5.3512+-=x y 的一部分,如图5所示,假设命中篮圈中心,那么他与篮底的距离x 是A .3.5mB .4mC .4.5mD .4.6m9.如图6所示,正方形OABC 、ADEF 的顶点A 、D 、C 在坐标轴上,点F 在AB 上,点B 、E 在函数)0(1>=x xy 的图像上,那么点E 的坐标是 A .)215,215(-+B .)253,253(-+ C .)215,215(+-D .)253,253(+- 10.在平面直角坐标系中,1),3A(,O 〔0,0〕,0),3C(三点,AE 平分∠OAC ,交OC 于E ,那么直线AE 对应的函数表达式是A .332-=x y B .23-=x yC .13-=x yD .2-=x y第二卷〔共118分〕二、填空题〔本大题共8小题,每题3分,共24分,把答案填写在题中的横线上。

2020年中考数学二模试卷 (含答案解析)(解析版)

2020年中考数学二模试卷 (含答案解析)(解析版)

2020年中考数学二模试卷一.选择题(共10小题)1.的平方根是()A.B.﹣C.±D.±2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)24.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣85.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3 6.下列图形中,主视图为图①的是()A.B.C.D.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=1968.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个二.填空题(共4小题)11.一组数据15,20,25,30,20,这组数据的中位数为.12.分解因式:9x﹣x3=.13.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y =(x<0)的图象上,则tan∠BAO的值为.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是.三.解答题(共9小题)15.计算:16.先化简,再求值:,其中,a=﹣1.17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.18.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.参考答案与试题解析一.选择题(共10小题)1.的平方根是()A.B.﹣C.±D.±【分析】先化简,再根据平方根的定义即可求解.【解答】解:=,的平方根是±.故选:D.2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、不是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:B.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)2【分析】直接利用提取公因式法以及公式法分解因式进而判断即可.【解答】解:A、3ax2﹣6ax=3ax(x﹣2),故此选项错误;B、x2+y2,无法分解因式,故此选项错误;C、a2+2ab﹣4b2,无法分解因式,故此选项错误;D、﹣ax2+2ax﹣a=﹣a(x﹣1)2,正确.故选:D.4.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000001=1×10﹣7,故选:C.5.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3【分析】先解不等式组求得﹣2<x≤4+a,根据不等式组恰有两个整数解知不等式组的整数解为﹣1、0,据此得0≤4+a<1,解之即可.【解答】解:解不等式1+5x>3(x﹣1),得:x>﹣2,解不等式≤8﹣+2a,得:x≤4+a,则不等式组的解集为﹣2<x≤4+a,∵不等式组恰有两个整数解,∴不等式组的整数解为﹣1、0,则0≤4+a<1,解得﹣4≤a<﹣3,故选:B.6.下列图形中,主视图为图①的是()A.B.C.D.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.【解答】解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=196【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选:C.8.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.【分析】令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【解答】解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选:C.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r【分析】首先求得围成的圆锥的母线长,然后利用勾股定理求得其高即可.【解答】解:∵圆的半径为r,扇形的弧长等于底面圆的周长得出2πr.设圆锥的母线长为R,则=2πr,解得:R=3r.根据勾股定理得圆锥的高为2r,故选:B.10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD =OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC﹣(CD﹣DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【解答】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE﹣AH=BC﹣CD,∴BC﹣CF=BC﹣(CD﹣DF)=BC﹣(CD﹣HE)=(BC﹣CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C.二.填空题(共4小题)11.一组数据15,20,25,30,20,这组数据的中位数为20.【分析】根据中位数的定义求解可得.【解答】解:将数据重新排列为15、20、20、25、30,所以这组数据的中位数为20,故答案为:20.12.分解因式:9x﹣x3=x(3+x)(3﹣x).【分析】首先提取公因式x,金进而利用平方差公式分解因式得出答案.【解答】解:原式=x(9﹣x2)=x(3﹣x)(3+x).故答案为:x(3﹣x)(3+x).13.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y =(x<0)的图象上,则tan∠BAO的值为.【分析】过A作AC⊥x轴,过B作BD⊥x轴于D,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S△BDO=,S△AOC=,根据相似三角形的性质得到=()2==5,求得=,根据三角函数的定义即可得到结论.【解答】解:过A作AC⊥x轴,过B作BD⊥x轴于D,则∠BDO=∠ACO=90°,∵顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,∴S△BDO=,S△AOC=,∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC,∴△BDO∽△OCA,∴=()2==5,∴=,∴tan∠BAO==,故答案为:.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是(﹣2,3)或(2,﹣3).【分析】根据位似图形的概念得到矩形OA'B'C'∽矩形OABC,根据相似多边形的性质求出相似比,根据位似图形与坐标的关系计算,得到答案.【解答】解:∵矩形OA'B'C'与矩形OABC关于点O位似,∴矩形OA'B'C'∽矩形OABC,∵矩形OA'B'C'的面积等于矩形OABC面积的,∴矩形OA'B'C'与矩形OABC的相似比为,∵点B的坐标为(﹣4,6),∴点B'的坐标为(﹣4×,6×)或(4×,﹣6×),即(﹣2,3)或(2,﹣3),故答案为:(﹣2,3)或(2,﹣3).三.解答题(共9小题)15.计算:【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:=1+﹣2+(﹣1)﹣×3=﹣216.先化简,再求值:,其中,a=﹣1.【分析】先化简分式,然后将a=﹣1代入求值.【解答】解:原式=,当时,原式=.17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.【分析】根据勾股定理以及正切值对应边关系得出答案即可.【解答】解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..18.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)【分析】(1)根据三角形的外角的性质计算;(2)作BE∥AC交CD于E,求出CE=AB=2,根据正弦的定义求出DE,计算即可.【解答】解:(1)由题意得,∠CBD=90°﹣22.5°=67.5°,∠CAD=45°,∴∠ACB=∠CBD﹣∠CAD=22.5°;(2)作BE∥AC交CD于E,则∠EBD=∠CAD=45°,∴DB=DE,∵DA=DC,∴CE=AB=2,∵∠ACD=45°,∠ACB=22.5°,∴∠BCD=22.5°,∴∠CBE=∠BED﹣∠BCD=22.5°,∴∠CBE=∠BCE,∴BE=CE=2,∴DE=BE=,∴CD+DE+CE=2+,答:船C离海岸线l的距离为(2+)km.20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.【分析】(1)①证明DO∥AB,即可求解;②证明CDE∽△CAD,即可求解;(2)证明△OFD、△OF A是等边三角形,S阴影=S扇形DFO,即可求解.【解答】解:(1)①连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,则∠DAB=∠ODA,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∴BC是⊙O的切线;②连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴CD2=CE•CA;(2)连接DE、OD、DF、OF,设圆的半径为R,∵点F是劣弧AD的中点,∴是OF是DA中垂线,∴DF=AF,∴∠FDA=∠F AD,∵DO∥AB,∴∠ODA=∠DAF,∴∠ADO=∠DAO=∠FDA=∠F AD,∴AF=DF=OA=OD,∴△OFD、△OF A是等边三角形,则DF∥AC,故S阴影=S扇形DFO,∴∠C=30°,∴OD=OC=(OE+EC),而OE=OD,∴CE=OE=R=3,S阴影=S扇形DFO=×π×32=.21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了200名学生;(2)m=52;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.【分析】(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树形图方法,利用概率公式即可求解.【解答】解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是=.22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.【分析】(1)根据利润=(单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值,然后分别求出A、B方案的最大利润,然后进行比较.【解答】解:(1)由题意得,销售量=150﹣10(x﹣30)=﹣10x+450,则w=(x﹣25)(﹣10x+450)=﹣10x2+700x﹣11250;(2)w=﹣10x2+700x﹣11250=﹣10(x﹣35)2+1000,∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=1000元,故当单价为35元时,该计算器每天的利润最大;(3)B方案利润高.理由如下:A方案中:∵25×24%=6,此时w A=6×(150﹣10)=840元,B方案中:每天的销售量为120件,单价为33元,∴最大利润是120×(33﹣25)=960元,此时w B=960元,∵w B>w A,∴B方案利润更高.23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.【分析】(1)如图1中,作CH⊥AB于H.解直角三角形求出CH,证明△CHB是等腰直角三角形即可解决问题.(2)①利用直角三角形斜边中线定理,证明△MEF是等腰直角三角形即可解决问题.②如图2中,由①可知△MEF是等腰直角三角形,当ME的值最小时,△MEF的面积最小,因为ME=BD,推出当BD⊥AC时,ME的值最小,此时BD=.【解答】解:(1)如图1中,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=,tan A==3,∴AH=1,CH=3,∵∠CBH=45°,∠CHB=90°,∴∠HCB=∠CBH=45°,∴CH=BH=3,∴BC=CH=3.(2)①结论:∠EMF=90°不变.理由:如图2中,∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∵DM=MB,∴ME=BD,MF=BD,∴ME=MF=BM,∴∠MBE=∠MEB,∠MBF=∠MFB,∵∠DME=∠MEB+∠MBE,∠DMF=∠MFB+∠MBF,∴∠EMF=∠DME+∠DMF=2(∠MBE+∠MBF)=90°,②如图2中,作CH⊥AB于H,由①可知△MEF是等腰直角三角形,∴当ME的值最小时,△MEF的面积最小,∵ME=BD,∴当BD⊥AC时,ME的值最小,此时BD===,∴EM的最小值=,∴△MEF的面积的最小值=××=.故答案为.。

2020届南通市启东市中考数学模拟试卷(有答案)

2020届南通市启东市中考数学模拟试卷(有答案)

江苏省南通市启东市中考数学模拟试卷(解析版)一.选择题1.中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果收入120元记作+120元,那么﹣100元表示()A. 支出20元B. 收入20元C. 支出100元D. 收入100元2.下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()A. 正方体B. 圆柱CC. 圆椎D. 球3.截至5月21日,全县完成工业开票销售337.53亿元,337.53亿元用科学记数法表示为()元.A. 33.753×109B. 3.3753×1010C. 0.33753×1011D. 0.033753×10124.下面的四幅简笔画是从文化活动中抽象出来的,其中是轴对称图形的是()A. B. C. D.5.如图所示,直线AB,CD相交于点O,且∠AOD+∠BOC=100°,则∠AOC是()A. 150°B. 130°C. 100°D. 90°6.一个不透明的口袋中有6个白球和12个黑球,“任意摸出n个球,其中至少有一个白球”是必然事件,n 等于()A. 6B. 7C. 13D. 187.如图,在⊙O中,= ,∠AOB=40°,则∠ADC的度数是()A. 40°B. 30°C. 20°D. 15°8.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A. a=bB. 2a﹣b=1C. 2a+b=﹣1D. 2a+b=19.如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3 ),反比例函数y= 的图象与菱形对角线AO交D点,连接BD,当DB⊥x轴时,k的值是()A. 6B. ﹣6C. 12D. ﹣1210.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,点M为边AB上的一动点,点N为边AC上的一动点,且∠MDN=90°,则cos∠DMN为()A. B. C. D.二.填空题11.计算:=________.12.分解因式:x2﹣4x+4=________.13.正八边形的每个外角的度数为________.14.已知3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是________.15.关于x的不等式组的解集为1<x<4,则a的值为________.16.已知二次函数y=ax2+bx+c的部分图象如图所示,则关于x的方程ax2+bx+c=0的两个根的和为________.17.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为________.18.已知点P的坐标为(m﹣1,m2﹣2m﹣3),则点P到直线y=﹣5的最小值为________.三.解答题19.计算题3tan30°﹣|﹣2|+ +(﹣1)2017;(1)计算:3tan30°﹣|﹣2|+ +(﹣1)2017;(2)解方程:= ﹣2.20.体育课上,老师为了解女学生定点投篮的情况,随机抽取8名女生进行每人4次定点投篮的测试,进球数的统计如图所示.(1)求女生进球数的平均数、中位数;(2)投球4次,进球3个以上(含3个)为优秀,全校有女生1200人,估计为“优秀”等级的女生约为多少人?21.在2017年“KFC”乒乓球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛.(1)列表或画树状图表示乙队所有比赛结果的可能性;(2)求乙队获胜的概率.22.如图,某中学有一块三角形状的花圃ABC,现可直接测量到∠B=45°,∠C=30°,AC=8米.请你求出BC的长.(结果可保留根号)23.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y= (m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.24.甲、乙两车从A地将一批物品匀速运往B地,已知甲出发0.5h后乙开始出发,如图,线段OP、MN分别表示甲、乙两车离A地的距离S(km)与时间t(h)的关系,请结合图中的信息解决如下问题:(1)计算甲、乙两车的速度及a的值;(2)乙车到达B地后以原速立即返回.①在图中画出乙车在返回过程中离A地的距离S(km)与时间t(h)的函数图象;②请问甲车在离B地多远处与返程中的乙车相遇?25.将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG,(1)试判断四边形DHBG为何种特殊的四边形,并说明理由;(2)若AB=8,AD=4,求四边形DHBG的面积.26.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并直接写出当x取何值时,商场获利润不少于2160元.27.在平面直角坐标系xOy中,⊙C的半径为r(r>1),P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:若直线CP与⊙C交于点A,B,满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图为⊙C及其“完美点”P的示意图.(1)当⊙O的半径为2时,①点M(,0)________⊙O的“完美点”,点N(0,1)________⊙O的“完美点”,点T(﹣,﹣)________⊙O的“完美点”(填“是”或者“不是”);②若⊙O的“完美点”P在直线y= x上,求PO的长及点P的坐标;________(2)⊙C的圆心在直线y= x+1上,半径为2,若y轴上存在⊙C的“完美点”,求圆心C的纵坐标t的取值范围.28.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,与y轴交于点C,对称轴与x轴交于点E,点D为顶点,连接BD、CD、BC.(1)求二次函数解析式及顶点坐标;(2)点P为线段BD上一点,若S△BCP= ,求点P的坐标;(3)点M为抛物线上一点,作MN⊥CD,交直线CD于点N,若∠CMN=∠BDE,请直接写出所有符合条件的点M的坐标.答案解析部分一.<b >选择题</b>1.【答案】C【考点】正数和负数【解析】【解答】解:如果收入120元记作+120元,那么﹣100元表示支出100元,故答案为:C.【分析】正数和负数就是用来表示具有相反意义的量,收入为正,那么负就表示支出故﹣100元表示支出100元。

2020年初中毕业班学业水平适应性测试 数学(参考答案)

2020年初中毕业班学业水平适应性测试 数学(参考答案)

2020年初中毕业班学业水平适应性测试评分标准数 学一、选择题:(本大题考查基本知识和基本运算.共10小题,每小题3分,共30分)题号1 2 3 4 5 6 7 8 9 10 答案C A B C C B B C A B二、填空题:(本大题查基本知识和基本运算,体现选择性.共6小题,每小题3分,共18分) 11.︒128 12.()223y x − 13. 12≠−≥x x 且 14.665 15.5 16.①③④ 三、解答题:(本大题共9小题,满分102分.解答须写出文字说明、证明过程和演算步骤.)17.(本题满分9分)解不等式组:⎩⎨⎧+≤<+5641x x x解:①得: 3<x ……………………………………………………………3分解②得:15556−≥≤−≤−x x x x ……………………………………………………………6分不等式①,不等式②的解集在数轴上表示,如图………………………………………………………………8分∴原不等式组的解集为31<≤−x ………………………………………9分18.(本题满分9分)① ②证明:∵C 是AB 中点∴CB AC =………………………………………………………2分.又∵CD ∥BE∴ CBE ∠=∠ACD ………………………………………………4分在△ACD 和△CBE 中…⎪⎩⎪⎨⎧=∠=∠=BE CD BE ,ACD C CB AC∴ )(S S BE C △ ≌D C A △A ……………7分∴CE AD =…………………………………9分19.(本题满分10分)解(1)()()b a b a b a a b T −−−=()b a ab a b a ab b −−−=22)(………………………………………………2分()()()b a ab a b a b −−+=………………………………………………4分 ()()()b a ab b a a b −−+−= ab b a +−=………………………………………………………………………6分 (2)∵03=+−b ab a∴ab b a 3=+………………………………7分3=+ab b a …………………………………9分∴3−=+−=abb a T ………………………………………10分20.(本题满分10分)解:设原计划每天加工这种零件x 个,则根据题意可得:………………………1分 ()5%5012400024000++=x x ……………………………………………………………………5分解得:1600=x …………………………………………………………………7分经检验1600=x 是原方程的解且符合题意…………………………………………………………………9分 答:该工厂原计划每天加工这种零件1600个.…………………………………………………………………10分21.(本题满分12分)解:(1)共抽取学生 __40__ 人, 扇形图中C 等级所占扇形圆心角为__36_度;……………………2分(2)如图所示, ……………………4分(3)画树状图如下:开始男生1 男生2 男生3 女生男生2 男生3 女生 男生1男生3 女生 男生1男生2 女生 男生1男生2男生3…………………………………………9分由树状图可知,所有等可能的结果为12种(此处省略,需列明),其中两人恰好都为男生的有6种,分别为男生1男生2、男生1男生3、男生2男生1、男生2男生3、男生3男生1、男生3男生2、…………………………………………………………………………………………10分概率为:21126==p …………………………………………12分22.(本题满分12分)解:(1)作图所示,……………………………………………3分(2)∵点C 为弧AB 点∴弧AC 等于弧BC∴BC AC = …………………………………………5分又∵AB 为直径∴︒=∠90ACB …………………………………………6分延长BE 、AC 交于点F由(1)作图知:CAE BAE ∠=∠,︒=∠90AEB∴AE 垂直平分BF ………………………8分∴ 42==BE BF …………………………………………9分又∵BC AC BCF ACD FBC DAC ==∠=∠=∠︒,90,∴ ACD BCF SAS ∆∆≌()…………………………………………11分 ∴4==BF AD …………………………………………12分23. (本题满分12分) 解:(1)把点()2,1A 代入x k y 22= 得:122k =,∴22=k ,x y 22=…………………………………………1分把()1,m B 代入x y 22=得: 12=m ,∴2=m …………………………………………2分把点()2,1A ,()1,2B 代入b x k y +=11得:∴⎩⎨⎧=+=+12211b k b k …………………………………………3分解得:⎩⎨⎧=−=311b k …………………………………………4分∴直线AB 的解析式为31+−=x y ……………………………………5分(2)当0<x 或21<<x 时, x k b x k 21>+,……………………………………7分(3)如图,由(1)知31+−=x y ,知311==OE OD∴︒=∠4511E OD将直线AB 向下平移n 个单位长度,n OE ODE −==∠︒3,45 ∴)3(2n DE −= ………………………………9分过点P 作DE PM ⊥于点M ,过点D 作11E D DN ⊥于点N∵11E D ∥DE ∴n DN PM 22==………………………………10分 ∴()122322121=•−⨯=••=∆n n PM DE S DEF即0232=+−n n ,解得:1,221==n n∵30<<n∴ 21=n 或12=n ………………………………12分24.(本题满分14分)解: ∵二次函数的最高点坐标为(1,2)−∴顶点坐标为(1,2)−,对称轴为1x =−,设二次函数解析式为2(1)2y a x =++(0)a <又∵OB =1 ∴B (1,0)将B (1,0)代入2(1)2y a x =++,得:420a +=,解得12a =− ∴22113(1)2222y x x x =−++=−−+………………………………………2分 ∵对称轴为1x =−,B (1,0)∴)0,3(−A ∴4=AB又∵5ABD S ∆= ∴1252D D AB y y ⨯⨯==,得52D y =− 代入抛物线解析式得:215(1)222x −++=−,解得12x =,24x =−, ∴54,2D ⎛⎫−− ⎪⎝⎭…………………………………………………………………………3分 将5(1,0),(4,)2B D −−代入y kx b =+得: ∴5420k b k b ⎧−+=−⎪⎨⎪+=⎩,解得:1212k b ⎧=⎪⎪⎨⎪=−⎪⎩, ∴直线AD 的解析式为1122y x =−.……………………4分 (2)如图,过点E 作BD EN ⊥于N ,y EM ⊥轴交BD 于M∵∠EMN =∠OCB ∴25sin sin 5EMN OCB ∠=∠= ∴25sin 5EN EM EMN EM =∠=…………………5分设213,22E a a a ⎛⎫−−+ ⎪⎝⎭,则11,22M a a ⎛⎫− ⎪⎝⎭, ∴22131113()2222222EM a a a a a =−−+−−=−−+21325228a ⎛⎫=−++ ⎪⎝⎭ 2255355()5524EN EM a ==−++…………………………………………………………7分 当32a =−时,21315(1)2228y =−−++= ∴当32a =−时,EN 有最大值,最大值是554,此时E 点坐标为315,28⎛⎫− ⎪⎝⎭.……………9分(3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH BE ⊥于点H ,交x 轴于点P ,此时点P 即为最小值的位置……………10分 ∵315,28E ⎛⎫− ⎪⎝⎭,1OB =, ∴35122BG =+=,158EG =,∴5421538BG EG ==, ∵90BGE BHP ∠=∠=o , ∴3sin 5PH EG EBG BP BE ∠===,∴35PH BP =, ∵E 、F 关于x 轴对称,∴PE PF =, ∴FH HP PE BP PE BP PE 5)(5)53(535=+=+=+…………………12分 ∵1515284EF =⨯=,BEG HEF ∠=∠, ∴4sin sin 5BG FH BEG HEF BE EF ∠=∠===,4152==EG EF ∴415354FH =⨯=. ∴PB PE 35+的最小值是15.…………………………………………14分25.(本题满分14分)(1)∵COP CDP ∠∠与是CP 所对的圆周角∴=COP CDP ∠∠又∵四边形OABC 是矩形,(8,6)B∴90OCB ∠=︒,8BC =,6OC = ∴4tan 3BC COB CO ∠== ∴tan CDP ∠4tan 3COB =∠=………………………………………3分 (2)如图2,连接AP ,∵四边形OABC 是矩形∴OB 与AC 互相平分;又∵点P 是OB 的中点时∴A C P 、、三点共线又∵四边形CODP 是圆内接四边形∴ 180=∠+∠COD CPD∴ 90=∠=∠COD CPD∴PD 垂直平分AC∴CD AD =,CDP ADP ∠=∠∴PED ∆沿PD 翻折后,点F 落在线段AD 上设OD x =,则8=AD CD x =−,在Rt COD ∆中,222CD CO OD =+得到222(8)6x x −=+,解得74x = 又∵OD BC ∥ ∴DOE CBE ∆∆∽ ∴7D 74=CE BC 832E OD == ∴739DE CD =,22227256()44CD CO OD =+=+= ∴7725725112(1)439443939OF OD DF OD DE =+=+=+⨯=⨯+= ∴112(,0)39F ………………………………………………………………8分(3)过点D 作DM OB ⊥于M设OD t =,63sin sin 105AB MOD BOA OB ∠=∠===, 84cos cos 105OA MOD BOA OB ∠=∠=== 在Rt OMD ∆中,3sin 5MD OD BOA t =∠=…………………………………………9分知识像烛光,能照亮一个人,也能照亮无数的人。

初三启东数学二模试卷答案

初三启东数学二模试卷答案

一、选择题(每题3分,共30分)1. 已知实数a、b满足a+b=2,则a^2+b^2的最小值为()A. 1B. 2C. 3D. 4答案:A解析:由柯西不等式得(a+b)^2 ≤ 2(a^2+b^2),即4 ≤ 2(a^2+b^2),所以a^2+b^2 ≥ 2,当且仅当a=b=1时取等号,所以最小值为2。

2. 下列函数中,在定义域内是单调递增函数的是()A. y=x^2B. y=x^3C. y=2^xD. y=3^x答案:B解析:对于A,函数y=x^2在定义域内不是单调递增;对于B,函数y=x^3在定义域内是单调递增;对于C和D,函数y=2^x和y=3^x在定义域内是单调递增,但题目要求在定义域内是单调递增,故选B。

3. 已知函数f(x)=ax^2+bx+c,若f(1)=3,f(2)=7,f(3)=11,则a+b+c=()A. 4B. 5C. 6D. 7答案:B解析:由题意得以下方程组:a+b+c=34a+2b+c=79a+3b+c=11解得a=1,b=1,c=1,所以a+b+c=3+1+1=5。

4. 在等腰三角形ABC中,AB=AC,BC=8,底边BC上的高AD=6,则腰长AB=()A. 4B. 5C. 6D. 10答案:B解析:作辅助线,连接AD,BD,CD,得到一个直角三角形ABD。

由勾股定理得AB^2=AD^2+BD^2,即AB^2=6^2+4^2=52,所以AB=√52=2√13。

5. 已知等差数列{an}的前n项和为Sn,若a1=1,S10=55,则S20=()A. 100B. 110C. 120D. 130答案:C解析:由等差数列的性质得S10=(a1+a10)×10/2=55,即a1+a10=11。

因为{an}是等差数列,所以a1+a20=2a10=22。

所以S20=(a1+a20)×20/2=110。

二、填空题(每题3分,共30分)1. 若x^2-3x+2=0,则x+1的值为__________。

2020-2021学年江苏省启东市中考数学第二次调研测试及答案解析

2020-2021学年江苏省启东市中考数学第二次调研测试及答案解析

A启东市最新第二次中考适应性调研测试数学试题答卷时间:120分钟 满分:150分注意事项:1.本试卷的选择题和非选择题都在答题纸上作答,不能..答在试卷上. 2.答卷前,考生务必将自己的学校、姓名、考试号用0.5毫米黑水笔填写在答题纸对应位置上. 3.选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.4.非选择题必须在指定的区域内,用0.5毫米黑色字迹的签字笔作答,不能超出指定区域 或在非指定区域作答,否则答案无效.一、选择题(本题共10小题,每小题3分,共30分)在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题纸上.1.如图,如果数轴上A ,B 两点表示的数互为相反数,那么点B 表示的数为( ★ )A B3A .2B .-2C .3D .-32.已知∠1=40°,则∠1的余角的度数是( ★ )A .40°B .50°C .140°D .150° 3.已知a -b =1,则代数式2a -2b -3的值是( ★ )A .-1B .1C .-5D .54.如图,△ABC 中,∠C =90°,BC =2,AB =3A .35sin =A B .32cos =AC .32sin =AD .25tan =A 5.小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支中性笔和2盒笔芯,用了56元;小丽买了2支中性笔和3盒笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y 元,根据题意所列方程组正确的是( ★ )A .22056,2328x y x y +=⎧⎨+=⎩B .20256,2328x y x y +=⎧⎨+=⎩C .20228,2356x y x y +=⎧⎨+=⎩D .2228,20356x y x y +=⎧⎨+=⎩6.抛物线y =-12x 2的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为(★)圆矩形平行四边形直角三角形A.(0,-2)B.(0,2)C.(-2,0)D.(2,0)7.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为( ★ )A.12B.14C.34D.18.如图,四边形ABCD 的顶点都在坐标轴上,若AB ∥CD ,△ABD 与△ACD 的面积分别为10和20,若双曲线y =k x恰好经过BC 的中点E ,则k 的值(★)A .103B .-103C .5D .-59.如图,边长为2的正方形EFGH 在边长为6的正方形ABCD 所在平面上移动,始终保持EF ∥AB .线段CF 的中点为M ,DH 的中点为N ,则线段MN 的长为( ★ )A .10B .172 C .17D .410310.如图①是钢丝制作的一个几何探究工具,其中△ABC 内接于⊙G ,AB 是⊙G 的直径,AB =6,AC =2.现将制作的几何工具放在平面直角坐标系中(如图②),然后点A 在射线Ox 上由点O 开始向右滑动,点B 在射线Oy 上也随之向点O 滑动(如图③),当 点B 滑动至与点O 重合时运动结束,在整个运动过程中,点C 运动的路径是( ★ ) A .4 B .6 C .2-24 D .24-10二、填空题(本题共8小题,每小题3分,共24分)不需写出解答过程,把最后结果填在答题纸对应的位置上.11.人体内某种细胞的形状可近似看作球形,它的直径约为0.000000156m ,则这个数用科学记数法可表示为★____m .12.说明命题“4x >-,则216x >”是假命题的一个反例可以是x =★. 13.如图,将平行四边形ABCD 的一边BC 延长至E ,若∠A =110°,则∠1=___★____.14.已知一组数据:2, 1,-1,0, 3,则这组数据的中位数是★.15.如图,将Rt△ABC 绕直角顶点A 顺时针旋转90°,得到△AB ′C ′,连结BB ′,若∠1=20°,则∠C 的度数是★.16. 已知m 、n 是关于x 的一元二次方程x 2-2ax +a 2+a -2=0的两实根,那么m +n 的最大值是★.17.如图,直线33+-=x y 分别与x 轴、y 轴交于A x3()0<x 的图像上一点,PH ⊥x 轴于H ,当以P 为圆心,PH 为半径的圆与直线AB 相切时, OH 的长为★.18.如图,平面直角坐标系中,分别以点A (﹣2,3),B (3,4)为圆心,以1、2为半径作⊙A 、⊙B , M 、N 分别是⊙A 、⊙B 上的动点,P 为x 轴上的动点,则PM +PN 的最小值等于★.三、解答题(本题共10小题,共96分)解答时应写出文字说明、证明过程或演算步骤.请在答题纸对应的位置和区域内解答. 19.(本小题满分10分)B'C'ACBEDCBA(1)解不等式组212(3)33x x x +≥⎧⎨+->⎩,,(2)化简:1-a -2a ÷a 2-4a 2+a.20.(本小题满分8分)如图,AB AD ⊥,AE AC ⊥,E C ∠=∠,DE BC =. 求证:AD AB =.21.(本小题满分8分)随着市民环保意识的增强,烟花爆竹销售量逐年下降.某销售点2013年销售烟花爆竹2000箱,2015年销售烟花爆竹为1280箱.求2013年到2015年烟花爆竹销售量的年平均下降率.22.(本小题满分8分)“校园手机”现象越来越受到社会的关注.某校小记者随机调查了某地区若干名学生和家长对学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①; (2)求图②中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的家长大约有多少名?23.(本小题满分8分)如图,已知∠MON =25°,矩形ABCD 的边BC 在OM 上, 对角线AC ⊥ON .当AC =5时,求AD 的长. (参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果精确到0.1)24.(本小题满分10分)40 140 140 210 70 30 80 30 图① 赞成 反对 家长对中学生带手机的态度统计图 图②A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间x (小时)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)当它们行驶了725.(本小题满分8分)如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率; (2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少 (用树状图或列表法求解)?26.(本小题满分8分)如图,已知扇形AOB 中,∠AOB =120°,弦AB =23,点M 是弧AB 上任意一点(与端点A 、B 不重合),ME ⊥AB 于点E ,以点M 为圆心、ME 长为半径作⊙M , 分别过点A 、B 作⊙M的切线,两切线相交于点C . (1)求弧AB 的长;(2)试判断∠ACB 的大小是否随点M 的运动而改变,若不变,请求出∠ACB 的大小; 若改变,请说明理由.27.(本小题满分13分)操作:将一把三角尺放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,A321直角的一边始终经过点B,另一边与射线DC相交于点Q,设A、P两点间的距离为x.探究:(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察到的结论;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应x的值;如果不可能,试说明理由.(备用图)(备用图)28.(本小题满分15分)如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P 是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;(3)点M、N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M、N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.①连接AN,当△AMN的面积最大时,求t的值;②线段PQ能否垂直平分线段MN?如果能,请求出此时直线PQ的函数关系式;如果不能请说明你的理由.EDCBA最新第二次中考适应性调研测试 数学试题参考答案与评分标准一、选择题(本题共10小题,每小题3分,共30分)1.D 2.B 3.A 4.C5.B 6.D 7.C8.A 9.C10.D二、填空题(本题共8小题,每小题3分,共24分) 11.1.56×10-712.-2(答案不唯一)13.70°14.1 15.65° 16.417.2315-18.74—3 三、解答题(本题共10小题,共96分)19.(1)解:由x +2≥1得x ≥-1,……………………………………………1分由2x +6-3x 得x <3,……………………………………………2分∴不等式组的解集为-1≤x <3.……………………………………………5分 (2)解:原式=1-a -2a ·a (a +1)(a +2)( a -2)……………………………………………6分 =1-a +1a +2……………………………………………………………8分=1a +2.………………………………………………………………10分 20.证明:∵AB AD ⊥,AE AC ⊥,∴90,EAC DAB ∠=∠=︒……………………………………………1分 即EAD DAC CAB DAC ∠+∠=∠+∠.∴∠EAD =∠CAB .……………………………………3分在△ADE 和△ABC 中,E C EAD CAB DE BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△ADE ≌△ABC .………………………………………6分 ∴AD = AB .…………………………………………8分21.解:设2013年到2015年烟花爆竹销售量的年平均下降率为x .……………1分 依题意可得:()2200011280x -=…………………………………………………5分解得0.2x =……………………………………………………………………7分 答:2013年到2015年烟花爆竹销售量的年平均下降率为20%.…………………8分 22.(1)图中家长反对280人……………………………………1分家长总人数400 ……………………………………2分 补全图略……………………………………4分(2)36° ……………………………………6分(3)4550名 ……………………………………8分23.解:延长AC 交ON 于点E ,∵AC ⊥ON ,∴∠OEC =90°, ……………………………………2分 在Rt △OEC 中,∵∠O =25°,∴∠OCE =65°,∴∠ACB =∠OCE =65° ………………………………4分 ∵四边形ABCD 是矩形,∴∠ABC =90°,AD =BC , ………………………………5分 在Rt △ABC 中,BC =AC ·sin25°=5×0.42=2.1, …………………………………7分 ∴AD =BC =2.1 ………………………………………………………8分24.(1)①当0≤x ≤6时,x y 100=……………………………………2分②当6<x ≤14时,……………………………………………………………………3分 设b kx y +=,∵图象过(6,600),(14,0)两点, ∴⎩⎨⎧=+=+.014,6006b k b k 解得⎩⎨⎧=-=.1050,75b k …………………………………………………4分∴105075+-=x y .…………………………………………………5分 ∴⎩⎨⎧≤<+-≤≤=).146(105075)60(100x x x x y ……………………………………………6分(2)当7=x 时,5251050775=+⨯-=y ,……………………………………8分757525==乙v (千米/小时).……………………………………10分25.解:(1)P (小鸟落在草坪上)=69=23.……………………………………3分 (2)用树状图或表格列出所有可能的结果: “树状图”开始1 2 32 3 1 3 1 2……………………………………6分 列表:1 2 3 1 (1,2) (1,3) 2 (2,1) (2,3) 3(3,1)(3,2)……………………………………6分所以编号为1,2,的2个小方格空地种植草坪的概率=2163=.………………………8分26.解:(1)过点O 作OH ⊥AB 于H , 则AH =21AB =3……………………………………1分 得AO =2, …………………………………2分 ∴弧AB 的长=341802120ππ=⋅……………………………………3分 (2)连接AM 、BM∵ME ⊥AB ,∴AB 是⊙M 的切线, ……………………………………4分 ∵AC 、BC 是⊙M 的切线,∴⊙M 是△ABC 的内切圆∴AM 、BM 是∠CAB 、∠ABC 的平分线 …………………………………5分 ∴∠ACB =90°+21∠AMB , …………………………………………………6分 得∠AMB =120°, …………………………………………………………7分∴∠ACB =60°,即∠ACB 的大小不变,为60°.………………………8分27.(1)证明:过点P 作MN ∥BC ,分别交AB 、CD 于点M 、N ,则四边形AMND 和四边形BCNM 都是矩形,△AMP 和△CNP 都是等腰三角形(如图1),……………………1分 ∴NP =NC =MB .∵∠BPQ =90°∴∠QPN +∠BPM =90°,而∠BPM +∠PBM =90°∴∠QPN =∠PBM . ……………………………………2分 又∵∠QNP =∠PMB =90°∴△QNP ≌△PMB (ASA ), ∴PQ =PB .……………………………………3分 (2)由(1)知△QNP ≌△PMB ,得NQ =MP . 设AP =x ,∴AM =MP =NQ =DN =22x ,BM =PN =CN =1-22x ,………………… 4分 ∴CQ =CD -DQ =1-2×22x =1-2x ……………………………………5分 ∴S △PBC =1 2BC •BM =12×1×(1-22x )=12-24x ,S △PCQ =12CQ •PN =12×(1-2x )(1-22x )=12-324x +12x 2, ………………………………6分 ∴S 四边形PBCQ =S △PBC +S △PCQ =12x 2-2x +1, …………………………… 7分即y =12x 2-2x +1(0≤x <22). …………………………… 8分(3)△PCQ 可能成为等腰三角形. ……………………………………9分 ①当点Q 在边DC 上,由PQ 2=CQ 2得:(1-22x )2+(22x ) 2=(1-2x ) 2 解得x 1=0,x 2=2(舍去); ……………………………………10分 ②当点Q 在边DC 的延长线上(如图2),由PC =CQ 得:2-x =2x -1,解得x =1. …………………………………11分 ③当点Q 与C 点重合,△PCQ 不存在. …………………………………12分 综上所述,x =0或1时,△PCQ 为等腰三角形.……………………………………13分28.(1)抛物线的解析式为:y =x 2+4x +3 ……………………………………………2分(图1)(图2)(2)证明:当x =-4时,y =3,∴P (-4,3).∵C (0,3),∴PC =4且PC ∥x 轴. ………………………………………………3分 ∵一次函数y =kx -4k (k ≠0)的图象交x 轴于点Q ,当y =0时,x =4,∴Q (4,0),即OQ =4.∴PC =OQ , ………………………………………………4分 又∵PC ∥x 轴, ∴四边形POQC 是平行四边形 …………………………………………5分 ∴∠OPC =∠AQC . ………………………………………………………………………6分(3)①过点N 作ND ⊥x 轴于点D ,则ND ∥y 轴.∴△QND ∽△QCO ∴ND CO =NQ CQ, 在Rt △OCQ 中,CQ =CO 2+OQ 2=32+42=5,∴ND 3=5-t 5, ∴ND =35(5-t ) ………………………………………………7分 ∴S △AMN =12AM ·ND =12·3t ·35(5-t )=-910 (t -52)2+485………………………………8分 ∵0≤t ≤73∴当t =73时,△AMN 的面积最大 ……………………………………………9分 ②能.……………………………………………10分假设PQ 垂直平分线段MN ,则QM =NQ ,∴7-3t =5-t , ∴t =1.此时AM =3,即点M 与点O 重合, QM =NQ =4.即线段PQ 能垂直平分线段MN ……………………………………11分 如图,∵ND ∥y 轴 ∴△QND ∽△QCO∴ND CO =NQ CQ,又∵CO =3,CQ =5, ∴ND =125,DQ =165∴MD =MQ —DQ =45, ……………………………………………12分 设PQ 交y 轴于点E ,∵∠MND =90°-∠NMD =∠MQE ,∴Rt △MND ∽Rt △EQM ,∴ND MD =MQ ME . ∴ME =43. ∴E (0,43), ……………………………………………13分∵Q (4,0),∴直线QE 为y =-13x +43. ………………………………………………14分 即直线PQ 为y =-13x +43. ………………………………………………15分。

2020年中考二模数学试卷(含答案)

2020年中考二模数学试卷(含答案)

2020年中考数学二模试卷一.选择题(共12小题)1.2020的相反数是()A.2020B.﹣2020C.D.2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10113.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.4.下列运算正确的是()A.a5+a5=a10B.﹣3(a﹣b)=﹣3a﹣3bC.(mn)﹣3=mn﹣3D.a6÷a2=a45.若点A(m﹣4,1﹣2m)在第三象限,那么m的值满足()A.<m<4B.m>C.m<4D.m>46.下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件7.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°8.如图,从圆O外一点P引圆O的两条切线P A,PB,切点分别为A,B.如果∠APB=60°,P A=8,那么弦AB的长是()A.4B.8C.D.9.如图,某风景区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得C处的俯角为30°,两山峰的底部BD相距900米,则缆车线路AC的长为()A.B.C.D.1800米10.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6B.8C.14D.1611.已知M,N两点关于y轴对称,且点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,设点M的坐标为(a,b),则二次函数y=abx2+(a+b)x()A.有最小值,且最小值是B.有最大值,且最大值是﹣C.有最大值,且最大值是D.有最小值,且最小值是﹣12.如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.二.填空题(共6小题)13.使分式有意义的x的取值范围.14.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为.15.若△ABC∽△DEF,且相似比为3:1,△ABC的面积为54,则△DEF的面积为.16.如图,AB为圆O的直径,弦CD⊥AB,垂足为E,若∠BCD=22.5°,AB=2cm,则圆O的半径为.17.如图,直线y=kx与双曲线y=交于A、B两点,BC⊥y轴于点C,则△ABC的面积为.18.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△A1B1C1,当C,B1,C1三点共线时,旋转角为α,连接BB1,交于AC于点D,下面结论:①△AC1C为等腰三角形;②CA=CB1;③α=135°;④△AB1D∽△ACB1;⑤=中,正确的结论的序号为.三.解答题(共8小题)19.计算:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°20.先化简再求值:(3x+2y)(3x﹣2y)﹣5x(x﹣y)﹣(2x﹣y)2,其中x=﹣,y=﹣1.21.为响应“书香学校,书香班级”的建设号召,平顶山市某中学积极行动,学校图书角的新书、好书不断增加.下面是随机抽查该校若干名同学捐书情况统计图:请根据下列统计图中的信息,解答下列问题(1)此次随机调查同学所捐图书数的中位数是,众数是;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度?(3)若该校有在校生1600名学生,估计该校捐4本书的学生约有多少名?22.如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.23.湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?24.如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE(1)求证:∠C=∠BED;(2)若∠C=50°,AB=2,则的长为(结果保留π)25.对某一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k(b﹣a),则称此函数为“k型闭函数”.例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3型闭函数”.(1)①已知一次函数y=2x﹣1(1≤x≤5)为“k型闭函数”,则k的值为;②若一次函数y=ax﹣1(1≤x≤5)为“1型闭函数”,则a的值为;(2)反比例函数y=(k>0,.a≤x≤b且0<a<b)是“k型闭函数”,且a+b=,请求a2+b2的值;(3)已知二次函数y=﹣3x2+6ax+a2+2a,当﹣1≤x≤1时,y是“k型闭函数”,求k的取值范围.26.如图,抛物线y=ax2+bx+c(a<0,a、b、c为常数)与x轴交于A、C两点,与y轴交于B点,A(﹣6,0),C(1,0),B(0,).(1)求该抛物线的函数关系式与直线AB的函数关系式;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l,分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰妤是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标:若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.参考答案与试题解析一.选择题(共12小题)1.2020的相反数是()A.2020B.﹣2020C.D.【分析】直接利用相反数的定义得出答案.【解答】解:2020的相反数是:﹣2020.故选:B.2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×1011【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm=100×10﹣9m=1×10﹣7m.故选:C.3.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层是两个小正方形,第二层是三个小正方形,故选:D.4.下列运算正确的是()A.a5+a5=a10B.﹣3(a﹣b)=﹣3a﹣3bC.(mn)﹣3=mn﹣3D.a6÷a2=a4【分析】根据合并同类项的法则,积的乘方,同底数幂的除法即可作出判断.【解答】解:A、a5+a5=2a5,故选项错误;B、﹣3(a﹣b)=﹣3a+3b,故选项错误;C、(mn)﹣3=m﹣3n﹣3,则选项错误;D、正确.故选:D.5.若点A(m﹣4,1﹣2m)在第三象限,那么m的值满足()A.<m<4B.m>C.m<4D.m>4【分析】根据第三象限内点的横坐标与纵坐标都是负数列出不等式组,然后求解即可.【解答】解:∵点A(m﹣4,l﹣2m)在第三象限,∴,解不等式①得,m<4,解不等式②得,m>,所以,m的取值范围是<m<4.故选:A.6.下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件【分析】根据普查和抽样调查的意义可判断出A的正误;根据概率的意义可判断出B、C、的正误;根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定D的正误.【解答】解:A、对载人航天器零部件的检查,应采用全面调查的方式,故错误;B、某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的可能降水,故错误;C、抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故正确;D、掷一枚骰子,点数3朝上是随机事件,故错误;故选:C.7.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°【分析】根据平行线的性质对各选项分析判断利用排除法求解.【解答】解:A、∵OC与OD不平行,∴∠1=∠3不成立,故本选项错误;B、∵OC与OD不平行,∴∠2+∠3=180°不成立,故本选项错误;C、∵AB∥CD,∴∠2+∠4=180°,故本选项错误;D、∵AB∥CD,∴∠3+∠5=180°,故本选项正确.故选:D.8.如图,从圆O外一点P引圆O的两条切线P A,PB,切点分别为A,B.如果∠APB=60°,P A=8,那么弦AB的长是()A.4B.8C.D.【分析】根据切线长定理知P A=PB,而∠P=60°,所以△P AB是等边三角形,由此求得弦AB的长.【解答】解:∵P A、PB都是⊙O的切线,∴P A=PB,又∵∠P=60°,∴△P AB是等边三角形,即AB=P A=8,故选:B.9.如图,某风景区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得C处的俯角为30°,两山峰的底部BD相距900米,则缆车线路AC的长为()A.B.C.D.1800米【分析】此题可利用俯角的余弦函数求得缆车线路AC的长,AC=.【解答】解:由于A处测得C处的俯角为30°,两山峰的底部BD相距900米,则AC==600(米).故选:B.10.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6B.8C.14D.16【分析】由根与系数的关系即可求出答案.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣5=0的两根,∴x1+x2=2,x1x2=﹣5∴原式=(x1+x2)2﹣2x1x2=4+10=14故选:C.11.已知M,N两点关于y轴对称,且点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,设点M的坐标为(a,b),则二次函数y=abx2+(a+b)x()A.有最小值,且最小值是B.有最大值,且最大值是﹣C.有最大值,且最大值是D.有最小值,且最小值是﹣【分析】先用待定系数法求出二次函数的解析式,再根据二次函数图象上点的坐标特点求出其最值即可.【解答】解:因为M,N两点关于y轴对称,所以设点M的坐标为(a,b),则N点的坐标为(﹣a,b),又因为点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,所以,整理得,故二次函数y=abx2+(a+b)x为y=x2+3x,所以二次项系数为>0,故函数有最小值,最小值为y==﹣.故选:D.12.如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.【分析】找到函数图象与x轴、y轴的交点,得出k=8,即可得出答案.【解答】解:抛物线y=﹣x2+3,当y=0时,x=±;当x=0时,y=3,则抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)为(﹣2,1),(﹣1,1),(﹣1,2),(0,1),(0,2),(1,1),(1,2),(2,1);共有8个,∴k=8;故选:C.二.填空题(共6小题)13.使分式有意义的x的取值范围x≠3.【分析】根据分母不为零分式有意义,可得答案.【解答】解:根据题意,得x﹣3≠0,解得x≠3,故答案为:x≠3.14.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:由于共有8个球,其中蓝球有5个,则从袋子中随机摸出一个球,摸出蓝球的概率是,故答案为:.15.若△ABC∽△DEF,且相似比为3:1,△ABC的面积为54,则△DEF的面积为6.【分析】根据相似三角形的面积比等于相似比的平方计算,得到答案.【解答】解:∵△ABC∽△DEF,相似比为3:1,∴=32,即=9,解得,△DEF的面积=6,故答案为:6.16.如图,AB为圆O的直径,弦CD⊥AB,垂足为E,若∠BCD=22.5°,AB=2cm,则圆O的半径为.【分析】连接OB,根据垂径定理以及勾股定理即可求出OB的长度.【解答】解:连接OB,∵OC=OB,∠BCD=22.5°,∴∠EOB=45°,∵CD⊥AB,CD是直径,∴由垂径定理可知:EB=AB=1,∴OE=EB=1,∴由勾股定理可知:OB=,故答案为:17.如图,直线y=kx与双曲线y=交于A、B两点,BC⊥y轴于点C,则△ABC的面积为3.【分析】根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△BOC=1.5,则易得S△ABC=3.【解答】解:∵直线y=kx与双曲线y=交于A,B两点,∴点A与点B关于原点对称,∴S△BOC=S△AOC,而S△BOC=×3=1.5,∴S△ABC=2S△BOC=3.故答案为:3.18.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△A1B1C1,当C,B1,C1三点共线时,旋转角为α,连接BB1,交于AC于点D,下面结论:①△AC1C为等腰三角形;②CA=CB1;③α=135°;④△AB1D∽△ACB1;⑤=中,正确的结论的序号为①②④⑤.【分析】首先根据旋转的性质得出AC1=AC,从而结论①可判断;再通过三角形内部角度及旋转角的计算对②③作出判断;通过∠ABD=∠ACB1,∠AB1D=∠BCD=30°,判定△AB1D∽△ACB1;通过证明△ABD∽△B1CD,利用相似三角形的性质列式计算对⑤作出判断.【解答】解:由旋转的性质可知AC1=AC,∴△AC1C为等腰三角形,即①正确;∵∠ACB=30°,∴∠C1=∠ACB1=30°,又∵B1AC1=∠BAC=45°,∴∠AB1C=75°,∴∠CAB1=180°﹣75°﹣30°=75°,∴CA=CB1;∴②正确;∵∠CAC1=∠CAB1+∠B1AC1=120°,∴旋转角α=120°,故③错误;∵∠BAC=45°,∴∠BAB1=45°+75°=120°,∵AB=AB1,∴∠AB1B=∠ABD=30°,在△AB1D与△BCD中,∵∠ABD=∠ACB1,∠AB1D=∠BCD=30°,∴△AB1D∽△ACB1,即④正确;在△ABD与△B1CD中,∵∠ABD=∠ACB1,∠ADB=∠CDB1,∴△ABD∽△B1CD,∴=,如图,过点D作DM⊥B1C,设DM=x,则B1M=x,B1D=x,DC=2x,DC=2x,CM=x,∴AC=B1C=(+1)x,∴AD=AC﹣CD=(﹣1)x,∴===,即⑤正确.故答案为:①②④⑤.三.解答题(共8小题)19.计算:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°【分析】第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项去绝对值,最后一项利用特殊角的三角函数值计算,最后合并即可得出结论.【解答】解:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°=4+1+﹣1+1=+5.20.先化简再求值:(3x+2y)(3x﹣2y)﹣5x(x﹣y)﹣(2x﹣y)2,其中x=﹣,y=﹣1.【分析】原式利用平方差公式,单项式乘多项式法则,以及完全平方公式计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=9x2﹣4y2﹣5x2+5xy﹣4x2+4xy﹣y2=9xy﹣5y2,当x=﹣,y=﹣1时,原式=3﹣5=﹣2.21.为响应“书香学校,书香班级”的建设号召,平顶山市某中学积极行动,学校图书角的新书、好书不断增加.下面是随机抽查该校若干名同学捐书情况统计图:请根据下列统计图中的信息,解答下列问题(1)此次随机调查同学所捐图书数的中位数是4本,众数是2本;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度?(3)若该校有在校生1600名学生,估计该校捐4本书的学生约有多少名?【分析】(1)根据捐2本的学生所占的百分比和人数可以求得本次调查的学生数,从而可以得到中位数和众数;(2)根据统计图中的数据,可以计算出在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度;(3)根据统计图中的数据可以计算出该校捐4本书的学生约有多少名.【解答】解:(1)本次调查的人数为:15÷30%=50(人),捐书四本的学生有50﹣9﹣15﹣6﹣7=13(人),则此次随机调查同学所捐图书数的中位数是4本,众数是2本,故答案为:4本,2本;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是:360°×=108°;答:捐2本书的人数所占的扇形圆心角是108度.(3)1600×=416(名),答:该校捐4本书的学生约有416名.22.如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.【分析】(1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE =∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于BD•CE=BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF﹣BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.【解答】证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD==5.又∵BD•CE=BC•DC,∴CE=.∴BE=.∴EF=BF﹣BE=3﹣.∴CF=cm.23.湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?【分析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【解答】解:(1)设温馨提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温馨提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,根据题意得,,∴50≤y≤52,∵y为正整数,∴y为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,根据题意,费用为50y+150(100﹣y)=﹣100y+15000,当y=52时,所需资金最少,最少是9800元.24.如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE(1)求证:∠C=∠BED;(2)若∠C=50°,AB=2,则的长为(结果保留π)【分析】(1)连接AD,如图,根据圆周角定理得到∠ADB=90°,根据切线的性质得到∠BAC=90°,则利用等角的余角相等得到∠DAB=∠C,然后根据圆周角定理和等量代换得到结论;(2)连接OD,如图,利用(1)中结论得到∠BED=∠C=50°,再利用圆周角定理得到∠BOD的度数,然后根据弧长公式计算的长度.【解答】(1)证明:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵AC切⊙O于点A∴CA⊥AB,∴∠BAC=90°,∴∠C+∠ABD=90°,而∠DAB+∠ABD=90°,∴∠DAB=∠C,∵∠DAB=∠BED,∴∠C=∠BED;(2)解:连接OD,如图,∵∠BED=∠C=50°,∴∠BOD=2∠BED=100°,∴的长度==π.25.对某一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k(b﹣a),则称此函数为“k型闭函数”.例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3型闭函数”.(1)①已知一次函数y=2x﹣1(1≤x≤5)为“k型闭函数”,则k的值为2;②若一次函数y=ax﹣1(1≤x≤5)为“1型闭函数”,则a的值为﹣1;(2)反比例函数y=(k>0,.a≤x≤b且0<a<b)是“k型闭函数”,且a+b=,请求a2+b2的值;(3)已知二次函数y=﹣3x2+6ax+a2+2a,当﹣1≤x≤1时,y是“k型闭函数”,求k的取值范围.【分析】(1)①直接利用“k型闭函数”的定义即可得出结论;②分两种情况:利用“k型闭函数”的定义即可得出结论;(2)先判断出函数的增减性,利用“k型闭函数”的定义得出ab=1,即可得出结论;(3)分四种情况,各自确定出最大值和最小值,最后利用“k型闭函数”的定义即可得出结论;【解答】解:(1)①一次函数y=2x﹣1,当1≤x≤5时,1≤y≤9,∴9﹣1=k(5﹣1),∴k=2,故答案为:2;②当α>0时,∵1≤x≤5,∴a﹣1≤y≤5a﹣1,∵函数y=ax﹣1(1≤x≤5)为“1型闭函数”,∴(5a﹣1)﹣(a﹣1)=5﹣1,∴a=1;当a<0时,(a﹣1)﹣(5a﹣1)=5﹣1,∴a=﹣1;故答案为:﹣1;(2)∵反比例函数y=,∵k>0,∴y随x的增大而减小,当a≤x≤b且1<a<b是“1型闭函数”,∴=k(b﹣a),∴ab=1,∵a+b=,∴a2+b2=(a+b)2﹣2ab=2020﹣2×1=2018;(3)∵二次函数y=﹣3x2+6ax+a2+2a的对称轴为直线x=a,∵当﹣1≤x≤1时,y是“k型闭函数”,∴当x=﹣1时,y=a2﹣4a﹣3,当x=1时,y=a2+8a﹣3,当x=a时,y=4a2+2a,①如图1,当a≤﹣1时,当x=﹣1时,有y max=a2﹣4a﹣3,当x=1时,有y min=a2+8a﹣3∴(a2﹣4a﹣3)﹣(a2+8a﹣3)=2k,∴k=﹣6a,∴k≥6,②如图2,当﹣1<a≤0时,当x=a时,有y max=4a2+2a,当x=1时,有y min=a2+8a﹣3∴(4a2+2a)﹣(a2+8a﹣3)=2k,∴k=(a﹣1)2,∴≤k<6;③如图3,当0<a≤1时,当x=a时,有y max=4a2+2a,当x=﹣1时,有y min=a2﹣4a﹣3∴(4a2+2a)﹣(a2﹣4a﹣3)=2k,∴k=(a+1)2,∴<k≤6,④如图4,当a>1时,当x=1时,有y max=a2+8a﹣3,当x=﹣1时,有y min=a2﹣4a﹣3∴(a2+8a﹣3)﹣(a2﹣4a﹣3)=2k,∴k=﹣6a,∴k>6,即:k的取值范围为k≥.26.如图,抛物线y=ax2+bx+c(a<0,a、b、c为常数)与x轴交于A、C两点,与y轴交于B点,A(﹣6,0),C(1,0),B(0,).(1)求该抛物线的函数关系式与直线AB的函数关系式;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l,分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰妤是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标:若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.【分析】(1)根据已知条件可以设抛物线解析式为y=a(x+6)(x﹣1),然后把点B的坐标代入函数解析式求得系数a的值即可;利用待定系数法求得直线AB的解析式;(2)由点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,得到D(m,m+),当DE为底时,作BG⊥DE于G,根据等腰三角形的性质得到EG=GD=ED,GM=OB=,列方程即可得到结论;(3)i:根据已知条件得到ON=OM′=4,OB=,由∠NOP=∠BON,特殊的当△NOP∽△BON时,根据相似三角形的性质得到===,于是得到结论;ii:根据题意得到N在以O为圆心,4为半径的半圆上,由①知,==,得到NP=NB,于是得到(NA+NB)的最小值=NA+NP,此时N,A,P三点共线,根据勾股定理得到结论.【解答】解:设抛物线解析式为y=a(x+6)(x﹣1),(a≠0).将B(0,)代入,得=a(x+6)(x﹣1),解得a=﹣,∴该抛物线解析式为y=﹣(x+6)(x﹣1)或y=﹣x2﹣x+.设直线AB的解析式为y=kx+n(k≠0).将点A(﹣6,0),B(0,)代入,得,解得,则直线AB的解析式为:y=x+;(2)∵点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,∴D(m,m+),当DE为底时,如图1,作BG⊥DE于G,则EG=GD=ED,GM=OB=,∵DM+DG=GM=OB,∴m++(﹣m2﹣m+﹣m﹣)=,解得:m1=﹣4,m2=0(不合题意,舍去),∴当m=﹣4时,△BDE恰好是以DE为底边的等腰三角形;(3)i:存在,如图2.∵ON=OM′=4,OB=,∵∠NOP=∠BON,∴当△NOP∽△BON时,===,∴不变,即OP=ON=×4=3,∴P(0,3);ii:∵N在以O为圆心,4为半径的半圆上,由i知,==,∴NP=NB,∴(NA+NB)的最小值=NA+NP,∴此时N,A,P三点共线,∴(NA+NB)的最小值==3.。

2020年中考二模考试《数学卷》带答案解析

2020年中考二模考试《数学卷》带答案解析

中考数学综合模拟测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数2019的相反数是( )A.2019B.-2019C.12019 D.12019-2.x 的取值范围是( )A. 0x >B. 1x ?C. 1x ³D.1x £3.据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学计数法可表示为( ) A. 60.103110´ B. 71.03110´ C. 81.03110´ D.910.3110´ 4.某个几何体的三视图如图所示,该几何体是( )A .B .C .D .5.从长度分别为2,4,5,6的四条线段中随机取三条,能构成三角形的概率是( ) A.13 B. 14 C. 12 D.346.某班6个合作小组的人数分别是4,6,4,5,7,8,现第4小组调出1人去第2小组, 则调动后各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是( ) A .平均数变小了 B .众数变小了 C .中位数变大了D .方差变大了7.若关于x 的不等式组10233544(1)3x x x a x aì+ï+íï++++î>>恰有三个整数解,则a 的取值范围是( ) A .1≤a <32 B .1<a ≤32 C .1<a <32 D .a ≤1或a >328.如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在»AB 上的点D 处,且 ¼¼:1:3BD AD ⅱ=(¼BD ¢表示»BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:99.(2019德州)在下列函数图象上任取不同两点P 1(x 1,y 1)、P 2(x 2,y 2),一定能使y 2−y 1x 2−x 1<0成立的是( )A .y =3x ﹣1(x <0)B .y =﹣x 2+2x ﹣1(x >0)C .y =−√3x(x >0)D .y =x 2﹣4x +1(x <0)10.4张长为a 、宽为b (a >b )的长方形纸片,按如图的方式拼成一个边长为(a +b )的正方形,图中空白 部分的面积为S 1,阴影部分的面积为S 2.若S 1=2S 2,则a 、b 满足( )A .2a =5bB .2a =3bC .a =3bD .a =2b二、填空题(本大题有6个小题,每小题4分,共24分) 11.分解因式234x y xy -= .12.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%, 结果提前8天完成任务,原来每天制作 件.13.如图,分别以边长为2的等边三角形ABC 的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图 形是一个曲边三角形,已知⊙O 是△ABC 的内切圆,则阴影部分面积为 .第16题14.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB 为1.5米,她先站在A 处看路灯顶端O 的仰角为35°,再往前走3米站在C 处,看路灯顶端O 的仰角为65°,则路灯顶端O 到地面的距离约为 .(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)15.如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)= .16.如图,∠AOB =45°,点M ,N 在边OA 上,OM =x ,ON =x +4,点P 是边OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是 .三、解答题(本小题7个小题,共66分,17题6分,18-19各8分,20-21各10分,22-23各12分,解答应写出文字说明、证明过程或演算步骤)17.(1)先化简,在求值:2(1)(3)(3)x x x +-+-其中x =2. (2)解分式方程:xx−2−1=4x 2−4x+4.18.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.19.某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.20.如图,已知二次函数y=ax2﹣3x+4的图象经过点M(3,4).(1)求a的值和图象的顶点坐标;(2)点Q(m,n)在该二次函数图象上.①当m=﹣2时,求n的值;②若点Q到x轴的距离等于114,直接写出m的值.21. 2月1日上午,沪苏湖铁路南浔交通枢纽工程在湖州南浔举行开工奠基仪式.意味着以后南浔到上海只要半小时左右,极大的方便了人们的出行,甲、乙两城市之间开通了高速列车,如图,OA 是普通列车离开甲城的路程s (km )与行驶时间t (h )的函数图象,BC 是高速列车离开甲城的路程s (km )与行驶时间t (h )的函数图象.请根据图中的信息,解答 下列问题:(1)根据图象信息,普通列车的速度是 km /h ,高速列车的速度是 km /h ;(2)若高速列车在到达乙城1小时后返回甲城,请在图中画出高速列车返回甲城的路程s (km )与时间t (h )的函数图象;并求出高速列车返回时与普通列车相遇的时间;(3)出于安全考虑,两列列车装有告警装置,当两列列车相距20km 时会发出警报,问在上述过程中装置发出警报的时间范围.22.我们定义:有一组领边相等的四边形叫做“等腰四边形”(1)如图1,在四边形ABCD 中,AD ∥BC ,对角线CA 平分∠BCD ,求证:四边形ABCD 是等腰四边形;(2)如图2,在平面直角坐标系中,点A (0,2),点B (4,2)点C 是x 轴正半轴上的动点,当四边形AOCB 是等腰四边形,求出点C 的坐标.BA(3)如图3,在平面直角坐标系中,点A (0,4),点9(,)2B t (t >0),点C 是x 轴正半轴上的动点,且满足∠OAB 与∠OCB 互补,函数ky x=的图像正好经过点B ,当四边形AOCB 是等腰四边形,求k 的值.23.已知:在矩形ABCD 中,E ,F 分别是边AB ,AD 上的点,过点F 作EF 的垂线交DC 于点H ,以EF 为直径作半圆O .(1)填空:点A (填“在”或“不在”)⊙O 上;当»»AE AF =时,tan ∠AEF 的值是; (2)如图1,在△EFH 中,当FE =FH 时,求证:AD =AE +DH ; (3)如图2,当△EFH 的顶点F 是边AD 的中点时,求证:EH =AE +DH ;(4)如图3,点M 在线段FH 的延长线上,若FM =FE ,连接EM 交DC 于点N ,连接FN ,当AE =AD 时,FN =4,HN =3,求tan ∠AEF 的值.答案与解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数2019的相反数是( )A.2019B.-2019C. 12019D.12019-【答案】B【解析】2019的相反数是-2019 故选:B2.x 的取值范围是( ) A. 0x > B. 1x ? C. 1x ³ D.1x £ 【答案】C【解析】∵10x -?,∴1x ³ 故选:C3.据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学计数法可表示为( ) A. 60.103110´ B. 71.03110´ C. 81.03110´ D.910.3110´ 【答案】B【解析】因为1031万=710310000 1.03110=?, 故选:B4.某个几何体的三视图如图所示,该几何体是( )A .B .C .D .【答案】D 【解析】5.从长度分别为2,4,5,6的四条线段中随机取三条,能构成三角形的概率是()A. 13B.14C.12D.34【答案】D【解析】从2,4,5,6人选三条总可能性有4种,其中能构成三角形的情况为:2,4,6;2,5,6;4,5,6共三种;所以构成三角形的概率为:34 P=故选:D6.某班6个合作小组的人数分别是4,6,4,5,7,8,现第4小组调出1人去第2小组,则调动后各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是()A.平均数变小了B.众数变小了C.中位数变大了D.方差变大了【答案】D【解析】A、调配后的平均数不变,故本选项错误;B、原小组的众数是4,调配后的众数仍然是4,故本选项错误;C、把原数从小到大排列为:4,4,5,6,7,8,则中位数是565.52+=,调配后中位数的中位数是475.52+=,则调配后的中位数不变.故本选项错误;D、原方差是:16[2(4﹣5.5)2+(6﹣5.5)2+(5﹣5.5)2+(7﹣5.5)2+(8﹣5.5)2]=94,调配后的方差是16[3(4﹣5.5)2+2(7﹣5.5)2+(8﹣5.5)2]=3512,则调配后方差变大了,故本选项正确;故选:D.7.若关于x的不等式组1233544(1)3x xx a x aì+ï+íï++++î>>恰有三个整数解,则a的取值范围是()A.1≤a<32B.1<a≤32C.1<a<32D.a≤1或a>32【答案】B【解析】解不等式123x x++>,得:x>25-,解不等式3x+5a+4>4(x+1)+3a,得:x<2a,∵不等式组恰有三个整数解,∴这三个整数解为0、1、2,∴2<2a ≤3, 解得1<a ≤32, 故选:B .8.如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在»AB 上的点D 处,且 ¼¼:1:3BD AD ⅱ=(¼BD ¢表示»BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【答案】D【解析】连接OD 交AC 于M .由折叠的知识可得:OM =12OA ,∠OMA =90°, ∴∠OAM =30°, ∴∠AOM =60°,∵且»»:1:3BDAD =, ∴∠AOB =80°设圆锥的底面半径为r ,母线长为l ,802180l r p p =, ∴r :l =2:9. 故选:D .9.(2019德州)在下列函数图象上任取不同两点P 1(x 1,y 1)、P 2(x 2,y 2),一定能使y 2−y 1x 2−x 1<0成立的是( )A .y =3x ﹣1(x <0)B .y =﹣x 2+2x ﹣1(x >0)C .y =−√3x(x >0)D .y =x 2﹣4x +1(x <0)【答案】D【解析】A 、∵k =3>0∴y 随x 的增大而增大,即当x 1>x 2时,必有y 1>y 2 ∴当x <0时,y 2−y 1x 2−x 1>0,故A 选项不符合;B 、∵对称轴为直线x =1,∴当0<x <1时y 随x 的增大而增大,当x >1时y 随x 的增大而减小, ∴当0<x <1时:当x 1>x 2时,必有y 1>y 2,此时y 2−y 1x 2−x 1>0,故B 选项不符合;C 、当x >0时,y 随x 的增大而增大,即当x 1>x 2时,必有y 1>y 2 此时y 2−y 1x 2−x 1>0,故C 选项不符合;D 、∵对称轴为直线x =2,∴当x <0时y 随x 的增大而减小, 即当x 1>x 2时,必有y 1<y 2 此时y 2−y 1x 2−x 1<0,故D 选项符合; 故选:D .10.4张长为a 、宽为b (a >b )的长方形纸片,按如图的方式拼成一个边长为(a +b )的正方形,图中空白 部分的面积为S 1,阴影部分的面积为S 2.若S 1=2S 2,则a 、b 满足( )A .2a =5bB .2a =3bC .a =3bD .a =2b【答案】D 【解析】222111()22()222S b a b ab a b a b =+??-=+,S 2=(a +b )2﹣S 1=(a +b )2﹣(a 2+2b 2)=2ab ﹣b 2, ∵S 1=2S 2,∴a 2+2b 2=2(2ab ﹣b 2), 整理,得(a ﹣2b )2=0, ∴a ﹣2b =0, ∴a =2b . 故选:D .二、填空题(本大题有6个小题,每小题4分,共24分) 11.分解因式234x y xy -= . 【答案】2(4)xy x y -【解析】2324(4)x y xy xy x y -=- 故答案为:2(4)xy x y -12.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%, 结果提前8天完成任务,原来每天制作 件. 【答案】20【解析】设原来每天制作x 件, 根据题意得:4804808(150%)x x-=+,解得:x =20,经检验x =20是原方程的解, 故答案为20.13.如图,分别以边长为2的等边三角形ABC 的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图 形是一个曲边三角形,已知⊙O 是△ABC 的内切圆,则阴影部分面积为 .第16题【答案】53p -【解析】连接OB ,作OH ⊥BC 于H ,如图, ∵△ABC 为等边三角形,∴AB =BC =AC =2,∠ABC =60°, ∵⊙O 是△ABC 的内切圆,∴OH 为⊙O 的半径,∠OBH =30°, ∵O 点为等边三角形的外心, ∴BH =CH =1,在Rt △OBH 中,33OH BH ==, ∵S 弓形AB =S 扇形ACB ﹣S △ABC , ∴阴影部分面积=3S弓形AB +S △ABC ﹣S ⊙O =3(S扇形ACB ﹣S △ABC )+S △ABC ﹣S ⊙O =3S扇形ACB ﹣2S △ABC ﹣S ⊙O =2226025322(360433p p p 创?创-?-故答案为:53p -14.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB 为1.5米,她先站在A 处看路灯顶端O 的仰角为35°,再往前走3米站在C 处,看路灯顶端O 的仰角为65°,则路灯顶端O 到地面的距离约为 .(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)【答案】4.7米【解析】过点O 作OE ⊥AC 于点E ,延长BD 交OE 于点F ,设DF =x∵tan65°=OFDF,∴OF=x tan65° ∴BF=3+x ∵tan35°=OFBF,∴OF=(3+x )tan35° ∴2.1x =0,7(3+x ) ∴x =1.5∴OF=1.5×2.1=3.15 ∴OE=3.15+1.5=4.65≈4.7 故答案为:4.7米15.如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)= .【答案】√217【解析】给图中各点标上字母,连接DE ,如图所示. 在△ABC 中,∠ABC =120°,BA =BC ,∴∠α=30°. 同理,可得出:∠CDE =∠CED =30°=∠α. 又∵∠AEC =60°,∴∠AED =∠AEC +∠CED =90°.设等边三角形的边长为a ,则AE =2a ,DE =2×sin60°•a =√3a , ∴AD =√AE 2+DE 2=√7a , ∴cos (α+β)=DEAD =√217. 故答案为:√217.16.如图,∠AOB =45°,点M ,N 在边OA 上,OM =x ,ON =x +4,点P 是边OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是 .【答案】x =0或x =或4x << 【解析】分三种情况:①如图1,当M 与O 重合时,即x =0时,点P 恰好有三个;②如图2,以M 为圆心,以4为半径画圆,当⊙M 与OB 相切时,设切点为C ,⊙M 与OA 交于D ,∴MC ⊥OB , ∵∠AOB =45°,∴△MCO 是等腰直角三角形, ∴MC =OC =4,∴OM =当M 与D 重合时,即4x OM DM =-=时,同理可知:点P 恰好有三个;③如图3,取OM =4,以M 为圆心,以OM 为半径画圆,则⊙M 与OB 除了O 外只有一个交点,此时x =4,即以∠PMN 为顶角,MN 为腰,符合条件的点P 有一个,以N 圆心,以MN 为半径画圆,与直线OB 相离,说明此时以∠PNM 为顶角,以MN 为腰,符合条件的点P 不存在,还有一个是以NM 为底边的符合条件的点P ; 点M 沿OA 运动,到M 1时,发现⊙M 1与直线OB 有一个交点;∴当4x <<时,圆M 在移动过程中,则会与OB 除了O 外有两个交点,满足点P 恰好有三个;综上所述,若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是:x =0或x =或4x <<.故答案为:x =0或x =或4x <<.三、解答题(本小题7个小题,共66分,17题6分,18-19各8分,20-21各10分,22-23各12分,解答应写出文字说明、证明过程或演算步骤)17.(1)先化简,在求值:2(1)(3)(3)x x x +-+-其中x =2. (2)解分式方程:xx−2−1=4x 2−4x+4.【解析】(1)原式2221(9)210x x x x =++--=+ 当x =2时,原式=221014?= (2)解:x x−2−1=4x 2−4x+4,方程两边乘(x ﹣2)2得:x (x ﹣2)﹣(x ﹣2)2=4, 解得:x =4,检验:当x =4时,(x ﹣2)2≠0. 所以原方程的解为x =4.18.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.【解析】(1)如图所示,线段AF即为所求;(2)如图所示,点G即为所求;(3)如图所示,线段EM即为所求.19.某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.【解析】(1)本次抽样调查的样本容量是55010%=,故答案为:50;(2)参与篮球社的人数=50×20%=10人,参与国学社的人数为50﹣5﹣10﹣12﹣8=15人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为12 36086.450按=?;(4)3000×20%=600名,答:全校有600学生报名参加篮球社团活动.20.如图,已知二次函数y=ax2﹣3x+4的图象经过点M(3,4).(1)求a的值和图象的顶点坐标;(2)点Q(m,n)在该二次函数图象上.①当m=﹣2时,求n的值;②若点Q到x轴的距离等于114,直接写出m的值.【解析】(1)把点M(3,4)代入y=ax2﹣3x+4中得9a﹣9+4=4,∴a=1,∴y=x2﹣3x+4,∵y=x2﹣3x+4=(x﹣32)2+74,∴顶点坐标为37(,)24;(2)①当m =﹣2时,n =4+6+4=14,②点Q 到x 轴的距离等于114,∴n =114, ∴m 2﹣3m +4=114,解得m =12或52,∴m 的值为12或52.21. 2月1日上午,沪苏湖铁路南浔交通枢纽工程在湖州南浔举行开工奠基仪式.意味着以后南浔到上海只要半小时左右,极大的方便了人们的出行,甲、乙两城市之间开通了高速列车,如图,OA 是普通列车离开甲城的路程s (km )与行驶时间t (h )的函数图象,BC 是高速列车离开甲城的路程s (km )与行驶时间t (h )的函数图象.请根据图中的信息,解答 下列问题:(1)根据图象信息,普通列车的速度是 km /h ,高速列车的速度是 km /h ;(2)若高速列车在到达乙城1小时后返回甲城,请在图中画出高速列车返回甲城的路程s (km )与时间t (h )的函数图象;并求出高速列车返回时与普通列车相遇的时间;(3)出于安全考虑,两列列车装有告警装置,当两列列车相距20km 时会发出警报,问在上述过程中装置发出警报的时间范围.【解析】(1)由图象得:普通列车的速度是 600÷6=100km /h ,高速列车的速度是 600÷(3﹣1)=300km /h .(2)设DE 解析式:y =kx +b ,由题意得:{600406k b k b =+=+,解得:{3001800k b =-=∴DE 解析式y =﹣300x +1800 由题意得:AO 解析式:y =100x ∴{3001800100y x y x =-+=,解得:{4.5450x y == 答:高速列车返回时与普通列车相遇的时间 (3)设BC 解析式y =mx +n 根据题意得:{60030m nm n=+=+解得:{300300m n ==-∴BC 解析式:y =300x ﹣300 根据题意得:{100(300300)2030030010020x x x x --?--?解得:1.4≤x ≤1.6 由题意得:{100(3001800)20300180010020x x x x --+?-+-? 解得:4.45≤x ≤4.55终上所述:装置发出警报的时间范围为1.4≤x ≤1.6和4.45≤x ≤4.5522.我们定义:有一组领边相等的四边形叫做“等腰四边形”(1)如图1,在四边形ABCD 中,AD ∥BC ,对角线CA 平分∠BCD ,求证:四边形ABCD 是等腰四边形;(2)如图2,在平面直角坐标系中,点A (0,2),点B (4,2)点C 是x 轴正半轴上的动点,当四边形AOCB 是等腰四边形,求出点C 的坐标.(3)如图3,在平面直角坐标系中,点A (0,4),点9(,)2B t (t >0),点C 是x 轴正半轴上的动点,且满足∠OAB 与∠OCB 互补,函数ky x=的图像正好经过点B ,当四边形AOCB 是等腰四边形,求k 的值.B【解析】(1)∵CA 平分∠BCD ,∴∠BCA =∠ACD ∵AD ∥BC ,∴∠BCA =∠CAD ∴∠CAD =∠ACD ∴AD =CD∴四边形ABCD 是等腰四边形(2)①OA =OC 时,则OC =2,∴C (2,0)②BA =BC 时,以B 为圆心,AB 为半径画圆,交x 轴于12,C C ,则124BC BC ==∴12C H C H ==∴12(4(4C C -+③OC =BC 时作BH ⊥x 轴,连结OB ,设OC =BC =a 则CH =4-a∴222(4)2a a =-+,解得52a =∴5(,0)2C∴5(2,0),(,0),(42C -+(3)∵∠OAB 与∠OCB 互补,∴A 、O 、C 、B 四点共圆,∵∠AOC =90°,∴∠ABC =90°① AB =BC 时,则△ABC 为等腰直角三角形作BH ⊥y 轴,BG ⊥x 轴,则△BHA ≌△BGC ,∴92BG BH ==,∴99(,)22B ,∴814k =② OA =OC 时,则C (4,0),以AC 为直径画圆,交直线92y =于12,B B , 12AG = 作12BH B B ^则AGB BHC V :V ,92CH =, ∴AG BG BH CH =即12942t t =-,解得2t =?∴94k =?③ OA =AB 时,则AB =4,∴t =,∴4k =∴8194k =? 23.已知:在矩形ABCD 中,E ,F 分别是边AB ,AD 上的点,过点F 作EF 的垂线交DC 于点H ,以EF 为直径作半圆O .(1)填空:点A (填“在”或“不在”)⊙O 上;当»»AE AF =时,tan ∠AEF 的值是; (2)如图1,在△EFH 中,当FE =FH 时,求证:AD =AE +DH ;(3)如图2,当△EFH 的顶点F 是边AD 的中点时,求证:EH =AE +DH ;(4)如图3,点M 在线段FH 的延长线上,若FM =FE ,连接EM 交DC 于点N ,连接FN ,当AE =AD 时,FN =4,HN =3,求tan ∠AEF 的值.【解析】(1)连接AO ,∵∠EAF=90°,O为EF中点,∴AO=12EF,∴点A在⊙O上,当»»AE AF=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF交HD的延长线于点G,∵F分别是边AD上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FH,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M作MQ⊥AD于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=FQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴DQ HM x FQ FM a==,∵DC∥AB∥QM,∴MN QD x EN AD a==,∴MN HM x EN FM a==,∵FE=FM,∴MN HM xEN FE a==,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴34 MN HN xEN FN a===,∴3 tan4AF xAEFAE a?==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A启东市2020年第二次中考适应性调研测试数学试题答卷时间:120分钟 满分:150分注意事项:1.本试卷的选择题和非选择题都在答题纸上作答,不能..答在试卷上. 2.答卷前,考生务必将自己的学校、姓名、考试号用0.5毫米黑水笔填写在答题纸对应位置上. 3.选择题每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.4.非选择题必须在指定的区域内,用0.5毫米黑色字迹的签字笔作答,不能超出指定区域 或在非指定区域作答,否则答案无效.一、选择题(本题共10小题,每小题3分,共30分)在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题纸上.1.如图,如果数轴上A ,B 两点表示的数互为相反数,那么点B 表示的数为( ★ )A B3A .2B .-2C .3D .-32.已知∠1=40°,则∠1的余角的度数是( ★ )A .40°B .50°C .140°D .150° 3.已知a -b =1,则代数式2a -2b -3的值是( ★ )A .-1B .1C .-5D .5 4.如图,△ABC 中,∠C =90°,BC =2,AB =3,则下列结论正确的是(A .35sin =A B .32cos =A C .32sin =A D .25tan =A 5.小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支中性笔和2盒笔芯,用了56元;小丽买了2支中性笔和3盒笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y 元,根据题意所列方程组正确的是( ★ )A .22056,2328x y x y +=⎧⎨+=⎩B .20256,2328x y x y +=⎧⎨+=⎩C .20228,2356x y x y +=⎧⎨+=⎩D .2228,20356x y x y +=⎧⎨+=⎩6.抛物线y =-12x 2的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为( ★ )A . (0,-2)B . (0,2)C . (-2,0)D . (2,0)圆矩形平行四边形直角三角形7.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是中心对称图形的概率为( ★ )A . 12B . 14C . 34 D .18.如图,四边形ABCD 的顶点都在坐标轴上,若AB ∥CD ,△ABD 与△ACD 的面积分别为10和20,若双曲线y =kx 恰好经过BC 的中点E ,则k 的值( ★ )A .103B .-103C .5D .-59.如图,边长为2的正方形EFGH 在边长为6的正方形ABCD 所在平面上移动,始终保持EF ∥AB .线段CF 的中点为M ,DH 的中点为N ,则线段MN 的长为( ★ )A .10B .172 C .17 D .410310.如图①是钢丝制作的一个几何探究工具,其中△ABC 内接于⊙G ,AB 是⊙G 的直径, AB =6,AC =2.现将制作的几何工具放在平面直角坐标系中(如图②),然后点A 在射 线Ox 上由点O 开始向右滑动,点B 在射线Oy 上也随之向点O 滑动(如图③),当 点B 滑动至与点O 重合时运动结束,在整个运动过程中,点C 运动的路径是( ★ ) A .4 B . C .2-24 D .24-10二、填空题(本题共8小题,每小题3分,共24分)不需写出解答过程,把最后结果填在答题纸对应的位置上.11.人体内某种细胞的形状可近似看作球形,它的直径约为0.000000156m ,则这个数用科学记数法A B C DExyO(第8题)GC.A B 图① C B G.A y xO 图②O.CBGAy x图③可表示为 ★ ____m .12.说明命题“4x >-,则216x >”是假命题的一个反例可以是x = ★ . 13.如图,将平行四边形ABCD 的一边BC 延长至E ,若∠A =110°,则∠1=___★____.14.已知一组数据:2, 1,-1,0, 3,则这组数据的中位数是 ★ .15.如图,将Rt △ABC 绕直角顶点A 顺时针旋转90°,得到△AB ′C ′,连结BB ′,若∠1=20°,则∠C 的度数 是 ★ .16. 已知m 、n 是关于x 的一元二次方程x 2-2ax +a 2+a -2=0的两实根,那么m +n 的最大值是 ★ .17.如图,直线33+-=x y 分别与x 轴、y 轴交于A 、B 两点,点P 是xy 3-=()0<x 的图像上一点,PH ⊥x 轴于H ,当以P 为圆心, PH 为半径的圆与直线AB 相切时, OH 的长为 ★ .18.如图,平面直角坐标系中,分别以点A (﹣2,3),B (3,4) 为圆心,以1、2为半径作⊙A 、⊙B , M 、N 分别是⊙A 、⊙B 上的动点,P 为x 轴上的 动点,则PM +PN 的最小值等于 ★ .三、解答题(本题共10小题,共96纸对应的位置和区域内解答. 19.(本小题满分10分)(1)解不等式组212(3)33x x x +≥⎧⎨+->⎩,,(2)化简:1-a -2a ÷a 2-4a 2+a.CEEDCBAABC DM(第23题)20.(本小题满分8分)如图,AB AD ⊥,AE AC ⊥,E C ∠=∠,DE BC =. 求证:AD AB =.21.(本小题满分8分)随着市民环保意识的增强,烟花爆竹销售量逐年下降.某销售点2020年销售烟花爆竹2 000箱,2020年销售烟花爆竹为1 280箱.求2020年到2020年烟花爆竹销售量的年平均下降率.22.(本小题满分8分)“校园手机”现象越来越受到社会的关注.某校小记者随机调查了某地区若干名学生和家长对学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①; (2)求图②中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的家长大约有多少名?23.(本小题满分8分)如图,已知∠MON =25°,矩形ABCD 的边BC 在OM 上, 对角线AC ⊥ON .当AC =5时,求AD 的长. (参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果精确到0.1)24.(本小题满分10分)A ,B 两城相距600千米,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (千米)与行驶时间 x (小时)之间的函数图象.(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围; (2)当它们行驶了7小时时,两车相遇,求乙车速度.40 140 140 210 70 30 80 30 图① 赞成 无所谓20%反对家长对中学生带手机的态度统计图图②25.(本小题满分8分)如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率; (2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少 (用树状图或列表法求解)?26.(本小题满分8分)如图,已知扇形AOB 中,∠AOB =120°,弦AB =23,点M 是弧AB 上任意一点(与端点A 、B 不重合),ME ⊥AB 于点E ,以点M 为圆心、ME 长为半径作⊙M , 分别过点A 、B 作⊙M 的切线,两切线相交于点C . (1)求弧AB 的长;(2)试判断∠ACB 的大小是否随点M 的运动而改变,若不变,请求出∠ACB 的大小; 若改变,请说明理由.27.(本小题满分13分)操作:将一把三角尺放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q ,设A 、P 两点间的距离为x . 探究:(1)当点Q 在边CD 上时,线段PQ 与线段PB 之间有怎样的大小关系?试证明你观察到的结论;(2)当点Q 在边CD 上时,设四边形PBCQ 的面积为y ,求y 与x 之间的函数关系式,并写出x 的取值范围;(3)当点P 在线段AC 上滑动时,△PCQ 是否能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q 的位置,并求出相应x 的值;如果不可能,试说明理由.CEBAM32128.(本小题满分15分)如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P 是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;(3)点M、N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M、N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.①连接AN,当△AMN的面积最大时,求t的值;②线段PQ能否垂直平分线段MN?如果能,请求出此时直线PQ的函数关系式;如果不能请说明你的理由.2020年第二次中考适应性调研测试数学试题参考答案与评分标准一、选择题(本题共10小题,每小题3分,共30分)1.D 2.B 3.A 4.C 5.B 6.D 7.C 8.A 9.C 10.D二、填空题(本题共8小题,每小题3分,共24分)11.1.56×10-712.-2(答案不唯一)13.70°14.115.65°16.4 17.231518.74—3三、解答题(本题共10小题,共96分)19.(1)解:由x+2≥1得x≥-1,……………………………………………1分EDCB A由2x +6-3x 得x <3, ……………………………………………2分∴不等式组的解集为-1≤x <3. ……………………………………………5分 (2)解:原式=1-a -2a ·a (a +1)(a +2)( a -2)……………………………………………6分=1-a +1a +2 ……………………………………………………………8分=1a +2. ………………………………………………………………10分 20.证明:∵ AB AD ⊥,AE AC ⊥,∴90,EAC DAB ∠=∠=︒ ……………………………………………1分 即 EAD DAC CAB DAC ∠+∠=∠+∠.∴∠EAD =∠CAB . ……………………………………3分在△ADE 和△ABC 中,E C EAD CAB DE BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ADE ≌△ABC . ………………………………………6分∴ AD = AB . …………………………………………8分21.解:设2020年到2020年烟花爆竹销售量的年平均下降率为x . ……………1分 依题意可得:()2200011280x -= …………………………………………………5分解得0.2x = ……………………………………………………………………7分 答:2020年到2020年烟花爆竹销售量的年平均下降率为20%. …………………8分 22.(1)图中家长反对280人 ……………………………………1分家长总人数400 ……………………………………2分 补全图略 ……………………………………4分(2)36° ……………………………………6分 (3)4550名 ……………………………………8分23.解:延长AC 交ON 于点E ,∵AC ⊥ON ,∴∠OEC =90°, ……………………………………2分 在Rt △OEC 中,∵∠O =25°,∴∠OCE =65°,∴∠ACB =∠OCE =65° ………………………………4分 ∵四边形ABCD 是矩形,∴∠ABC =90°,AD =BC , ………………………………5分 在Rt △ABC 中,BC =AC ·sin25°=5×0.42=2.1, …………………………………7分 ∴AD =BC =2.1 ………………………………………………………8分24.(1)①当0≤x ≤6时,x y 100= ……………………………………2分②当6<x ≤14时, ……………………………………………………………………3分 设b kx y +=,∵图象过(6,600),(14,0)两点, ∴⎩⎨⎧=+=+.014,6006b k b k 解得⎩⎨⎧=-=.1050,75b k …………………………………………………4分∴105075+-=x y . …………………………………………………5分 ∴⎩⎨⎧≤<+-≤≤=).146(105075)60(100x x x x y ……………………………………………6分(2)当7=x 时,5251050775=+⨯-=y , ……………………………………8分757525==乙v (千米/小时). ……………………………………10分 25.解:(1)P (小鸟落在草坪上)=69=23. ……………………………………3分 (2)用树状图或表格列出所有可能的结果: “树状图”开始1 2 32 3 1 3 1 2 ……………………………………6分 列表:1 2 3 1(1,2)(1,3)……………………………………6分所以编号为1,2,的2个小方格空地种植草坪的概率=2163=.………………………8分26.解:(1)过点O 作OH ⊥AB 于H , 则AH =21AB =3 ……………………………………1分 得AO =2, …………………………………2分 ∴弧AB 的长=341802120ππ=⋅ ……………………………………3分 (2)连接AM 、BM∵ME ⊥AB ,∴AB 是⊙M 的切线, ……………………………………4分 ∵AC 、BC 是⊙M 的切线,∴⊙M 是△ABC 的内切圆∴AM 、BM 是∠CAB 、∠ABC 的平分线 …………………………………5分 ∴∠ACB =90°+21∠AMB , …………………………………………………6分 得∠AMB =120°, …………………………………………………………7分 ∴∠ACB =60°,即∠ACB 的大小不变,为60°. ………………………8分27.(1)证明:过点P 作MN ∥BC ,分别交AB 、CD 于点M 、N ,则四边形AMND 和四边形BCNM 都是矩形,△AMP 和△CNP 都是等腰三角形(如图1),……………………1分 ∴NP =NC =MB .∵∠BPQ =90°∴∠QPN +∠BPM =90°,而∠BPM +∠PBM =90°∴∠QPN =∠PBM . ……………………………………2分 又∵∠QNP =∠PMB =90°∴△QNP ≌△PMB (ASA ),∴PQ =PB . ……………………………………3分 (2)由(1)知△QNP ≌△PMB ,得NQ =MP . 设AP =x ,∴AM =MP =NQ =DN =22x ,BM =PN =CN =1-22x ,………………… 4分 ∴CQ =CD -DQ =1-2×22x =1-2x ……………………………………5分 ∴S △PBC =1 2BC •BM =1 2×1×(1-22x )=12-24x ,S △PCQ =12CQ •PN =12×(1-2x )(1-22x )=12-324x +12x 2, ………………………………6分∴S 四边形PBCQ =S △PBC +S △PCQ =12x 2-2x +1, …………………………… 7分即y =12x 2-2x +1(0≤x <22). …………………………… 8分(3)△PCQ 可能成为等腰三角形. ……………………………………9分 ①当点Q 在边DC 上,由PQ 2=CQ 2得:(1-22x )2+(22x ) 2=(1-2x ) 2 解得x 1=0,x 2=2(舍去); ……………………………………10分 ②当点Q 在边DC 的延长线上(如图2),由PC =CQ 得:2-x =2x -1,解得x =1. …………………………………11分 ③当点Q 与C 点重合,△PCQ 不存在. …………………………………12分 综上所述,x =0或1时,△PCQ 为等腰三角形. ……………………………………13分28.(1)抛物线的解析式为:y =x 2+4x +3 ……………………………………………2分 (2)证明:当x =-4时,y =3,∴P (-4,3).∵C (0,3),∴PC =4且PC ∥x 轴. ………………………………………………3分 ∵一次函数y =kx -4k (k ≠0)的图象交x 轴于点Q ,当y =0时,x =4,∴Q (4,0),即OQ =4.∴PC =OQ , ………………………………………………4分 又∵PC ∥x 轴, ∴四边形POQC 是平行四边形 …………………………………………5分 ∴∠OPC =∠AQC . ………………………………………………………………………6分 (3)①过点N 作ND ⊥x 轴于点D ,则ND ∥y 轴.∴△QND ∽△QCO ∴ND CO =NQCQ,在Rt △OCQ 中,CQ =CO 2+OQ 2=32+42=5, ∴ND 3=5-t 5, ∴ND =35(5-t ) ………………………………………………7分 ∴S △AMN =12AM ·ND =12·3t ·35(5-t )=-910 (t -52)2+485 ………………………………8分∵0≤t ≤73∴当t =73时,△AMN 的面积最大 ……………………………………………9分②能. ……………………………………………10分 假设PQ 垂直平分线段MN ,则QM =NQ , ∴7-3t =5-t , ∴t =1.(图1) (图2)此时AM=3,即点M与点O重合,QM=NQ=4.即线段PQ能垂直平分线段MN ……………………………………11分如图,∵ND∥y轴∴△QND∽△QCO∴NDCO=NQCQ,又∵CO=3,CQ=5,∴ND=125,DQ=165∴MD=MQ—DQ=45,……………………………………………12分设PQ交y轴于点E,∵∠MND=90°-∠NMD=∠MQE,∴Rt△MND∽Rt△EQM,∴NDMD=MQME. ∴ME=43.∴E(0,43),……………………………………………13分∵Q(4,0),∴直线QE为y=-13x+43. ………………………………………………14分即直线PQ为y=-13x+43.………………………………………………15分11。

相关文档
最新文档