2010年上海市数学中考试题参考答案
2010年上海市中考数学二模卷及答案

中考数学一.选择题(本大题共10个小题,每小题4分,共40分)1.-2的相反数是 ( ) (A )1/2 (B )-1/2 (C )-2 (D )22.如果t>0,那么a+t 与a 的大小关系是 ( )(A )a+t >a (B )a+t <a (C )a+t ≥a (D )不能确定 3.若∠A =34°,则∠A 的余角的度数为 ( )(A )54° (B )56° (C )146° (D )66° 4.下列交通标志图中,属于轴对称图形的是 ( )5.△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是 ( )(A )135 (B )1312 (C )125 (D )5126.如果两圆的半径长分别为2cm 和5cm ,圆心距为8cm ,那么这两个圆的位置关系是( )(A )内切 (B )外切 (C )相交 (D )外离7.下列调查,比较容易用普查方式的是 ( ) (A )了解嘉兴市居民年人均收入 (B )了解嘉兴市初中生体育中考的成绩 (C )了解嘉兴市中小学生的近视率 (D )了解某一天离开嘉兴市的人口流量8.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 ( ) (A )小明的影子比小强的影子长 (B )小明的影长比小强的影子短 (C )小明的影子和小强的影子一样长 (D )无法判断谁的影子长9.图1所示的电路的总电阻为10Ω,若R 1=2R 2,则R 1,R 2( )(A)R 1=30Ω,R 2=15Ω (B )R 1=203Ω,R 2=103Ω(C )R 1=15Ω,R 2=30Ω (D )R 1=103Ω,R 2=203Ω10.若用(1)、(2)、(3)、(4)四幅图象分别表示变量之间的关系, ( )(1) (2) (3) (4) 请按图象所给顺序,将下面的(a )、(b )、(c )、(d )对应排序 (a )小车从光滑的斜面上滑下(小车的速度与时间的关系)(b )一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系) (c )运动员推出去的铅球(铅球的高度与时间的关系)(d )小杨从A 到B 后,停留一段时间,然后按原速度返回(路程与时间的关系)正确的顺序是 ( ). A.(c )(d )(b )(a ) B.(a )(b )(c )(d ) C.(b )(c )(a )(d ) D.(d )(a )(c )(b )图1二.填空题(每小题5分,共30分)11.函数y=3-x 中自变量x 的取值范围是 。
2010年上海市普陀区中考数学二模卷及答案(无水印)

2009学年度第二学期普陀区初三质量调研数学试卷2010.4(时间:100分钟,满分:150分)考生注意:所有答案务必按照规定在答题纸上完成,写在试卷上不给分一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上] 1 ).(A)(B) ; (C) ; (D) .2. 两条对角线互相垂直平分的四边形是………………………………………………( ).(A) 等腰梯形; (B) 菱形; (C) 矩形; (D) 平行四边形.3.下列条件中,能判定两个等腰三角形相似的是……………………………………( ). (A )都含有一个30°的内角; (B )都含有一个45°的内角; (C )都含有一个60°的内角; (D )都含有一个80°的内角. 4.如果一元二次方程220x x k -+=有两个不相等的实数根,那么k 的取值范围是( ).(A) 1k ≥; (B) 1k ≤; (C) 1k >; (D) 1k <.5.如右图,△ABC 中,D 是边BC 的中点,BA a = ,AD b = ,那么BC等于…( ).(A )a +b ; (B )12(a +b );(C )2(a +b ); (D )—(a +b).6. 气象台预报“本市明天降水概率是80%”,对此消息,下面几种说法正确的是…( ).(A) 本市明天将有80%的地区降水; (B) 明天降水的可能性比较大; (C) 本市明天降有80%的时间降水; (D) 明天肯定下雨.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:23(2)a a ⋅= .8.生物学家发现一种病毒的长度约为0.0043mm ,用科学记数法表示为 = mm . 9.当a=2时,1a -= .AD B 第5题10.不等式组24,50x x >-⎧⎨-<⎩的解集是 .11.一元二次方程20(0)ax bx c a ++=≠有一根为零的条件是 . 12.将图形(右)绕中心旋转180°后的图形是 (画出图形). 13.函数y =的定义域是 . 14. 已知一次函数3y kx =+的图像与直线2y x =平行,那么此一次函数的解析式为 . 15.梯形ABCD 中,AD ∥BC ,如果∠A=5∠B ,那么∠B= 度.16. 在四边形ABCD 中,如果AB ∥CD ,AB=BC ,要使四边形ABCD 是菱形,还需添加一个条件,这个条件可以是 .17.如果一斜坡的坡度为i =110米,那么物体升高了米.18.中心角是40°的正多边形的边数是 .三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分, 满分78分) 19.化简:1(1)11a a a -÷++.20.解方程组:2224,2 1.x y x xy y +=⎧⎨-+=⎩第12题第21题21.如图,在平行四边形ABCD 中,点G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,如果AB=m ,CG =12BC , 求:(1)DF 的长度;(2)三角形ABE 与三角形FDE 的面积之比.22. 如图所示,已知在△ABC 中,AB=AC ,AD 是∠BAC的平分线,交BC 于点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E , (1)求证:四边形ADCE 是矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个 正方形?请加以证明.23. 为了引导学生树立正确的消费观,某机构随机调查了一所小学100名学生寒假中使用零花钱的情况(钱数取整数元),根据调查制成了频率分布表,如下: (1) 补全频率分布表;(2) 使用零化钱钱数的中位数在第 组; (3) 此机构认为,应对消费200元以上的学生提出 勤俭节约的建议,那么应对该校800名学生中约 名学生提出此项建议.A B C D E MN 第22题24. 如图,在平面直角坐标系中,点O为原点,已知点A的坐标为(2,2),点B、C在x轴上,BC=8,AB=AC,直线AC与y轴相交于点D.1)求点C、D的坐标;2)求图象经过B、D、A三点的二次函数解析式及它的顶点坐标.25.如图,已知Sin∠ABC=13,⊙O的半径为2,圆心O在射线BC上,⊙O与射线BA相交于E、F两点,EF=(1)求BO的长;(2)点P在射线BC上,以点P为圆心作圆,使得⊙P同时与⊙O和射线BA相切,求所有满足条件的⊙P的半径.BC上D CFA B O第25题EG2009学年度第二学期普陀区九年级质量调研数学试卷参考答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分)1.(A) ; 2.(B) ; 3.(C); 4.(D) ; 5.(C) ; 6.(B) .二、填空题:(本大题共12题,每题4分,满分48分)7. 45a ; 8. 34.310-⨯; 9. 1; 10. 25x -<<; 11. c =0; 12. ;13.2x ≠; 14.23y x =+; 15. 30; 16.AB =CD 等; 17.5 ; 18. 9. 三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19.解: 原式=1()(1)11a a a a a +-+++ …………………………………………………………4′(各2分) =(1)a a -+ …………………………………………………………………………………2′ =1a a -- ……………………………………………………………………………………2′=1-. ………………………………………………………………………………………2′ 20.2224,(1)2 1.(2)x y x xy y +=⎧⎨-+=⎩解: 由(2)式得到:2()1x y -=,…………………………………………………………………………1′ 再得到 1x y -=或者1x y -=-,……………………………………………………………1′与(1)式组成方程组:24,1.x y x y +=⎧⎨-=⎩或24,1.x y x y +=⎧⎨-=-⎩……………………………………………3′解得:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………………………………4′经检验,原方程组的解是:112,1.x y =⎧⎨=⎩,222,35.3x y ⎧=⎪⎪⎨⎪=⎪⎩……………………………………………1′21.解:(1)∵四边形ABCD 是平行四边形,∴AB=CD=m ,AB ∥CD . ………………………………2′∵CG =12BC , ∴CG =13BG ,………………………………………………1′∵AB ∥CD ,∴CF CGAB BG=.…………………………………………………………………………………1′ ∴13CF m =, …………………………………………………………………………………1′∴23DF m =.…………………………………………………………………………………1′(2)∵AB ∥CD ,∴△ABE ∽△FDE ,………………………………………………………………………………2′ ∴239()24ABE FDE S S ∆∆==. …………………………………………………………………………2′ ∴ 三角形ABE 与三角形FDE 的面积之比为9∶4.22.证明:(1) ∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC , ………………………………………1′ ∴∠ADC =90°.∵AD 是∠BAC 的平分线,∴∠1=12∠BAC ,…………………………………1′ 同理:∠2=12∠MAC .…………………………………1′∵∠BAC +∠MAC=180°. ∴∠1+∠2=90°.即∠EAD =90°. …………………………………1′∵CE ⊥AN , ∴∠AEC =90°. …………………………………1′ ∴四边形ADCE 是矩形.…………………………1′(2)当△ABC 是等腰直角三角形时,四边形ADCE 是一个正方形.……………………………1′ 证明:∵∠BAC =90°,AB=AC ,AD 是∠BAC 的平分线,∴AD 是斜边BC 上的中线,∴AD=DC .……………………………………………………………………………………1′∵四边形ADCE 是矩形, …………………………………………………………………1′∴四边形ADCE 是正方形.…………………………………………………………………1′23.解:(1)见右,每个数1分,共8分;A B CD EM N第22题12(2) 3;…………………………………………2′ (3)120.…………………………………………2′24.解:(1)过点A 作AE ⊥x 轴,垂足为点E .…………1′∵点A 的坐标为(2,2), ∴点E 的坐标为(2,0).……………………1′ ∵AB=AC ,BC =8,∴BE=CE , ……………………………………1′ 点B 的坐标为(-2,0), ……………………1′ 点C 的坐标为(6,0).………………………1′ 设直线AC 的解析式为:y kx b =+(0k ≠),将点A 、C 的坐标代入解析式,得到: 132y x =-+.………………………1′ ∴点D 的坐标为(0,3). …………………1′(2)设二次函数解析式为:2y ax bx c =++(0a ≠), ∵ 图象经过B 、D 、A 三点,∴4230,423 2.a b a b -+=⎧⎨++=⎩…………………………………………………………………………2′解得:1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩…………………………………………………………………………1′∴此二次函数解析式为:211322y x x =-++. …………………………………………1′ 顶点坐标为(12,138). ……………………………………………………………………1′25.(1)解:联接EO ,过点O 作OH ⊥BA 于点H . ………………2′∵EF=EH………………………………1′∵⊙O的半径为2,即EO=2,∴OH=1.…………………………………………………1′在Rt△BOH中,∵Sin∠ABC=13,………………………………………1′∴BO=3.…………………………………………………1′(2)当⊙P与直线相切时,过点P的半径垂直此直线.…………………………………………1′(a)当⊙P与⊙O外切时,①⊙P与⊙O切于点D时,⊙P与射线BA相切,…………………………………………………1′Sin∠ABC=113PPrr=-,得到:14Pr=;………………………………………………………1′②⊙P与⊙O切于点G时,⊙P与射线BA相切,Sin∠ABC =133PPrr=+,得到:52Pr=. ……………………………………………………1′(b) 当⊙P与⊙O内切时,①⊙P与⊙O切于点D时,⊙P与射线BA相切,…………………………………………………1′Sin∠ABC =113PPrr=+,得到:12Pr=;…………………………………………………1′②⊙P与⊙O切于点G时,⊙P与射线BA相切,Sin∠ABC =153PPrr=-,得到:54Pr=. ………………………………………………………1′综上所述:满足条件的⊙P的半径为14、52、12、54.……………………………………………1′。
2010年上海市部分区县中考数学二模答案

2010年松江区初中毕业学业模拟考试数学参考答案及评分标准2010.4一、选择题1、D ;2、C ;3、B ;4、D ;5、A ;6、A 二、填空题7、1-; 8、3≥x ; 9、)1)(1(-+x x x ; 10、5=x ; 11、x y 2-=; 12、a 64.0; 13、51; 14、5; 15、8; 16、4; 17、b a 3132+; 18、52 三、解答题19.解:原式=13133)32(322-++---………………………………5分 =734-……………………………………………………………………5分 20.解:方程两边同乘以)3)(3(-+x x 得:………………………………………1分)3(2)3(2942--++-=x x x x …………………………………………2分整理得:0342=+-x x …………………………………………………2分解得:11=x ,32=x ………………………………………………………3分 经检验:32=x 是原方程的增根;……………………………………………1分 所以,原方程的解为1=x . …………………………………………………1分 21.解:连接AF ,∵AD=AB ,F 是BD 的中点∴AF ⊥BC ,∴︒=∠90AFC …………………………………………………2分 在AFC Rt ∆中,︒=∠90AFC ∵E 是AC 的中点,∴421==AC EF ………………………………………3分 又∵FE ⊥AC ,∴24==CF AF …………………………………………2分 在AFB Rt ∆中,︒=∠90AFB∵2tan ==∠BFAFB ,∴22=BF ,∴102=AB ……………………3分 22.(1)160;0.4;40……3分(2)图略;……2分(3)90~80.……………2分(4)5000………………3分23.(1)证明:∵CE 平分∠BCD 、CF 平分∠GCD∴GCF DCF DCE BCE ∠=∠∠=∠,……………………………………1分∵EF ∥BC ,∴GCF EFC FEC BCE ∠=∠∠=∠,………………………1分 ∴DCF EFC FEC DCE ∠=∠∠=∠,………………………………………1分 ∴OE=OC ,OF=OC ,∴OE=OF ……………………………………………2分 (2)∵点O 为CD 的中点,∴OD=OC ,又OE=OF∴四边形DECF 是平行四边形………………………………………………2分∵CE 平分∠BCD 、CF 平分∠GCD∴DCG DCF BCD DCE ∠=∠∠=∠21,21 ………………………………2分 ∴︒=∠+∠=∠+∠90)21(21DCG BCD DCF DCE ………………………2分即︒=∠90ECF ,∴四边形DECF 是矩形 ………………………………1分24.解:(1)因为直线343+-=x y 分别与x 轴、y 轴交于点A 和点B .由,0=x 得3=y ,0=y ,得4=x , 所以)0,4(A )3,0(B ……………1分 把)0,1(-C )3,0(B 代入c ax ax y +-=42中,得⎩⎨⎧=++=043c a a c , 解得⎪⎩⎪⎨⎧-==533a c …………………………………2分 ∴这个二次函数的解析式为3512532++-=x x y ……………………………1分 527)2(532+--=x y ,P 点坐标为P )527,2( ………………………………1分(2)设二次函数图象的对称轴与直线343+-=x y 交于E 点,与x 轴交于F 点把2-=x 代入343+-=x y 得,23=y , ∴)23,2(E ,∴103923527=-=PE …………………………1分∵PE//OB ,OF=AF , ∴AE BE =∵AD ∥BP ,∴DE PE =,5392==PE PD ……………………………2分(3)∵)23,2(E , ∴25494=+=OE ,∴OE ED > 设圆O 的半径为r ,以PD 为直径的圆与圆O 相切时,只有外切,………1分 ∴251039=-r , 解得:5321=r ,572=r ……………………………3分 即圆O 的半径为532或5725.解:1(1)∵90=∠=∠FEB DEC ,∴BEC DEF ∠=∠……………1分∵90=∠+∠=∠+∠DCP BCE DCP EDF ,…………………………1分 ∴BCE EDF ∠=∠,∴△DEF ∽△CEB …………………………………1分(2)∵PDC Rt ∆中,CP DE ⊥,∴90=∠=∠CED CDP∴△DEC ∽△PDC ,∴DCPDEC DE = ………………………………………1分 ∵△DEF ∽△CEB ,∴DCDFCB DF EC DE ==…………………………………1分 ∴DCDFDC PD =,∴DF PD =………………………………………………1分 ∵AP =x ,DF =y ,∴,1x PD -= ∴x y -=1 ……………………………1分)10(<<x …………………………………………………………………1分(3)∵△DEF ∽△CEB ,∴22CB DF S S CE B DE F =∆∆ (1) …………………………1分 ∵CF DF S S CE F DE F =∆∆(2),∴(1)÷(2)得2CBCFDF S S CE B cE F ⋅=∆∆ ……………1分 又∵E F C B E C S S ∆∆=4,∴412=⋅=∆∆CB CF DF S S CE B cE F ……………………………1分 当P 点在边DA 上时, 有411)1(=⋅-x x ,解得21=x ………………………………………………2分 当P 点在边DA 的延长线上时,411)1(=⋅+x x ,解得212-=x ……………………………………………1分长宁一、选择题(本大题共6题,每题4分,满分24分.) 1.D 2.C 3.A 4.B 5.C 6.D二、填空题(本大题共12题,每题4分,满分48分.填对得4分,填错或不填、多填均得0分) 7. 2 8.1 9.x 5 10. 1 11. b a - 12. 3±≠x 13. 2321+=x y 14. △OAF ,△OED 15.0120-22=+x x (或()12112=+x ,()12111=+++x x x )16.31 17. ()b a +43(或b a 4343+) 18. 30三、解答题:(本大题共7题,满分78分)19.(本题10分)解:︒︒-︒+︒60sin 30sin 260sin 30sin 22=()260sin 30sin ︒-︒ ………4分=22321⎪⎪⎭⎫⎝⎛-=2321- ……………… 4分 =213-(或2123-) …… 2分 20.(本题10分)解:整理(1)\(2)得⎪⎩⎪⎨⎧+>+->335211x x x (2)()()⎪⎩⎪⎨⎧->-+-+>22212121x x⎩⎨⎧<+->22)21(x x …………… 2分⎩⎨⎧<-->121x x …… …….2分∴ 121<<--x …… ……..1分∴不等式组的整数解为-2,-1,0 …….. 3分21.(本题10分)(1)80;…… ………..2分(2)0.05 ;…… …...2分 (3)84;…… ……..3分(4)不合理,初三年级学生的随机样本不能代表该校全体学生。
2010年上海市闸北区中考数学二模卷及答案(无水印)

(图二)九年级闸北数学学科期中练习卷(2010.5)(考试时间:100分钟,满分:150分)考生注意:1.本试卷含三个题,共25题:2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个结论中,有且只有一个选项是正确的。
选择正确项的代号并填涂在答题纸的相应位置上.】1.下列运算中,结果正确的是(A )33a a a ÷=; (B )224a a a +=; (C )325()a a =; (D )2a a a ⋅=. 2.一个人的呼吸系统每天吸入和呼出大约20000升空气,20000用科学记数法可表示为 (A )2×104; (B )2×105; (C )2×10-4; (D )2×10-5. 3.一元二次方程x 2+2x +1=0根的情况是(A )有两个不相等的实数根; (B )有两个相等的实数根; (C )有一个实数根; (D )无实数根. 4.反比例函数y =xk 的图像在一、三象限内,那么(A )k >0; (B )k ≠0;(C )k <0; (D )k 取一切实数.5.如图一,平行四边形ABCD 中,AC 、BD 为对角线,那么BC BA +等于(A )AC ;(B )CA ; (C )BD ;(D )DB . 6. 一个水池接有甲、乙、丙三个水管,先打开甲,一段时间后再打开乙,水池注满水后关闭甲,同时打开丙,直到水池中的水排空.水池中的水量)(3m v 与时间)(h t 之间的函数关系如图二,则关于三个水管每小时的水流量,下列判断正确的是 (A )乙>甲; (B )丙>甲; (C )甲>乙; (D )丙>乙.二、填空题:(本大题共12题,每小题4分,满分48分) 【请将结果直接填入答题纸的相应位置.】 7.计算:2·8 = ▲ . 8.分解因式:x 2-9= ▲ . 9.方程121=-x的解是 ▲ .10.某抗菌药原价30元,经过两次降价,现价格为10.8元,若平均每次降价率相同,且均为x ,则可列出方程 ▲ .CDBA(图一)11.若f (x )= 3x -5,则f (-3)= ▲ . 12.在函数y =322+x 的定义域是 ▲ .13.一次函数y =2x -4与y 轴交点的坐标是 ▲ .14.一个口袋中有4个白球,5个红球,6个黄球,每个球除颜色外都相同,搅匀后随机从袋中摸出一个球,这个球是白球的概率是 ▲ .15.在Rt △ABC 中,∠C =90°,∠A =30°,BC =1,则AB = ▲ . 16.在△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC , 若AD =8,BD =4,BC =6,则DE = ▲ . 17.如图三,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把△AO B 绕点A 顺时针旋转90°后得到△A O B '',则点B '的坐标是 ▲ .18.在△ABC 中,AB =AC =5,若将△ABC 沿直线BD 翻折,使点C 落在直线AC 上的点C ′处,AC ′=3,则BC = ▲ ..三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 解不等式组:⎪⎩⎪⎨⎧≤-+<+,231,32)1(3x x x x ,并把解集在数轴上表示出来.20.(本题满分10分)解方程:26x +=.21.(本题满分10分,每空格2分,第2小题2分)小张同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形统计图和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小张同学共调查了 名居民的年龄,扇形统计图中a = ; (2)补全条形统计图,并注明人数;(3)若在该辖区中随机抽取一人,那么这个人年龄是60岁及以上的概率为 ; (4) 若该辖区年龄在0~14岁的居民约有3500人,请估计该辖区居民人数是 人.0~14 15~40 41~59 60及以上 年龄(图三)22.(本题满分10分,每小题满分各5分)已知:如图四,在平面直角坐标系中,点O 为坐标原点, 以y 轴负半轴上一点A 为圆心,5为半径作圆A ,交x 轴于点 B 、点C ,交y 轴于点D 、点E ,tan ∠DBO =21.求:(1)点D 的坐标;(2)直线CD 的函数解析式.23.(本题满分12分,每小题满分各6分) 已知:如图五,在等腰梯形ABCD 中,AD ∥BC ,AB =DC ,点E 为边BC 上一点,且AE =DC . (1)求证:四边形AECD 是平行四边形;(2)当∠B =2∠DCA 时,求证:四边形AECD 是菱形.24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)已知:如图六,抛物线的顶点为点D ,与y 轴相交于点A ,直线y =ax +3与y 轴也交于点A ,矩形ABCO 的顶点B 在此抛物线上,矩形面积为12.(1)求该抛物线的对称轴;(2)⊙P 是经过A 、B 两点的一个动圆,当⊙P 与y 相交,且在y 轴上两交点的距离为4时,求圆心P (3)若线段DO 与AB 交于点E ,以点 D 、A 、E 的三角形是否有可能与以点D 、O 、A 如果有可能,请求出点D 请说明理由. 25.(本题满分14分,第(1)小题满分5分,第(2)小题满分4如图七,在直角坐标平面内有点A (6, 0),B (0, 8),C 射线AB 上的动点,点M 以2个单位长度/秒的速度自C 向A 单位长度/秒的速度自A 向B 方向作匀速运动,MN 交OB (1)求证:MN ∶NP 为定值; (2)若△BNP 与△MNA 相似,求CM 的长; (3)若△BNP 是等腰三角形,求CM 的长.(图四)A B C D E (图五)闸北初中数学学科学业练习卷答案要点与评分标准(2010.4)一、选择题:(本大题共6题,每题4分,满分24分)1.D ; 2.A ; 3.B ; 4.A ; 5.C ; 6.C .二、填空题:(本大题共12题,每小题4分,满分48分)7.4; 8.(x +3)(x -3); 9.1; 10.30(1-x )2=10.8; 11.-14; 12.x ≠-23; 13.(0, -4); 14.154;15.2; 16.4; 17.(7, 3); 18.10或210.三、解答题(本大题共7题,满分78分) 19.解:3323223x x x x+<+⎧⎨-≤⎩…………………………………………………………………2分⎩⎨⎧-≥<20x x …………………………………………………………………………4分 所以不等式组的解集为-2≤x <0, …………………………………………………2分 解集在数轴上表示正确.…………………………………………………………… 2分20.解:92-x =6-2x …………………………………………………………………1分x 2-9=36-24x +4x 2 …………………………………………………………………2分x 2-8x +15=0 …………………………………………………………………………2分 (x -3)(x -5)=0 ………………………………………………………………………1分 x 1=3,x 2=5(舍)……………………………………………………………………2分 经检验:原方程根为x =3. …………………………………………………………2分 21.解:(1)500,20%;(2)图略,人数为110人;(3)12%;(4)17500.22.解:(1)∵在Rt △BDO 中,tan ∠DBO =21∴BODO =21,设DO =a ,则BO =2a …………………………………………………1分联结AB ,∵圆A 的半径为5,∴AB =AD =5,AO =5-a …………………………1分∵在Rt △ABO 中,AO 2+BO 2=AB 2,∴(5-a )2+(2a )2=52 …………………1分∴a 1=2,a 2=0(舍) …………………………………………………………………1分 ∴D (0,2) ……………………………………………………………………………1分 (2)∵AD ⊥BC ,∴BO =CO =2a =4 …………………………………………………1分 ∴C (4,0) ……………………………………………………………………………1分 设直线CD 的函数解析式为y =kx +b (k ≠0),把C (4,0),D (0,2)代入,得⎩⎨⎧==+204b b k ,∴122k b ⎧=-⎪⎨⎪=⎩ …………………………………………………………2分∴直线CD 的函数解析式为y =-21x +2 ……………………………………………1分23.证:(1)∵在等腰梯形ABCD 中,AD ∥BC ,AB =DC∴∠B =∠DCB …………………………………………………………………………1分∵AE =DC , ∴AE =AB ………………………………………………………………1分 ∴∠B =∠AEB …………………………………………………………………………1分 ∴∠DCB =∠AEB ………………………………………………………………………1分 ∴AE ∥DC ………………………………………………………………………………1分 ∴四边形AECD 为平行四边形 ………………………………………………………1分 (2)∵AE ∥DC ,∴∠EAC =∠DCA ………………………………………………1分 ∵∠B =2∠DCA ,∠B =∠DCB∴∠DCB =2∠DC ……………………………………………………………………1分 ∴∠ECA =∠DCA ……………………………………………………………………1分 ∴∠EAC =∠ECA ……………………………………………………………………1分 ∴AE =C E ………………………………………………………………………………1分 ∵四边形AECD 为平行四边形∴四边形AECD 为菱形.………………………………………………………………1分 24.解:(1)∵直线y =ax +3与y 轴交于点A ,∴点A 坐标为(0,3)……………………………………………………………………1分∴AO =3,∵矩形ABCO 的面积为12,∴AB =4………………………………………1分 ∴点B 的坐标为(4,3)∴抛物线的对称轴为直线x =2 ……………………………1分 (2)∵⊙P 经过A 、B 两点,∴点P 在直线x =2上,即点P 的坐标为(2,y )……………………………………1分 ∵⊙P 与y 轴相交,且在y 轴上两交点的距离为4又∵AB =4,∴点P 到AB 的距离等于点P 到y 轴的距离为2………………………………………1分 ∴点P 的坐标为(2,1)或(2,5)……………………………………………………2分 (3)①设△DAE ∽△DAO ,则∠DAE =∠DAO ,与已知条件矛盾,此情况不成立. 过点D 作DM ⊥y 轴,垂足为点M ,DN ⊥x 轴,垂足为点N .………………………1分 设点D 坐标为(2,y ),则ON =DM =2,DN =OM =y ,AM =y -3②设△DAE ∽△DOA ,则∠DAE =∠DOA ,∴∠DAM =∠DON ……………………1分 ∵∠DMA =∠DNO =90°,∴△DAM ∽△DON ………………………………………1分E∴DMDN AMON =,∴232yy =-, ∴2340y y --= ∴11y =-(舍),24y =∴点D 坐标为(2,4) …………………………………………………………………1分设抛物线解析式为2()y a x m k =-+∵顶点坐标为(2,4),∴m = -2,k =4,则解析式为2(2)4y a x =-+ 将(0,3)代入,得a =41-,∴抛物线解析式为21(2)44y x =--+.…………1分25.证明:(1) 过点N 作NH ⊥x 轴于点H 设AN =5k ,得:AH =3k ,CM =2k① 当点M 在CO 上时,点N 在线段AB 上时: ∴OH =6-3k ,OM =4-2k , ∴MH =10-5k , ∵PO ∥NH ,∴1055633M N M H k N PO Hk-===- ② 当点M 在OA 上时,点N 在线段AB ∴OH =3k -6,OM =2k -4,∴MH =5k -10, ∵PO ∥NH ∴,5105363M N M H k N PO Hk -===-解:(2) 当△BNP 与△MNA 相似时:① 当点M 在CO 上时,只可能是∠MNB =∠MNA =90∴△BNP ∽△MNA △∽BOA ,A M AB A NA O=,1021056k k-=,3031k =,6031C M =② 当点M 在OA 上时,只可能是∠NBP =∠NMA ∵PBA BN P BPN PM O BN P BAO BAO PBA BPN ∠=∠+∠⎫⎪∠=∠+∠⎬⎪∠>∠>∠⎭∴P B A P M O ∠≠∠,矛盾∴不成立. (3) ∵25P O N H=,22455P O N H k ==⋅,∴85P O k =,① 当点M 在CO 上时,105B N k =-,(ⅰ) B P B N =,881055k k -=-,1017k =,C M =(ⅱ) P B P N =,则PNB PBN ∠=∠,∵PN B BAC ∠>∠(ⅲ) NB NP =,则N B P N P B ∠=∠∵N P B M N H ∠=∠, N B P A N H ∠=∠,∴M N H A N H ∠=∠ 又∵N H M A ⊥,可证△M N A ∆为等腰三角形, ∴M H A H =,∴1053k k -=,∴54k =,52C M =……………………………1分② 当点M 在OA 上时,510B N k =-,(ⅰ) B P B N =,885105k k -=-,3011k =, 6011C M =………………………1分(ⅱ) P B P N =或NB NP =∵090PBN ∠>,∴不成立.…………………………1分。
2010年上海市中考数学试题含答案

【解析】无理数即为无限不循环小数,则选C。
2.在平面直角坐标系中,反比例函数 y = ( k<0 .第一、三象限 B.第二、四象限 C.第一、二象限 D.第
三、四象限
【解析】设K=-1,则x=2时,y=
,点在第四象限;当x=-2时,y=
,在第二象限,所以图像过第二、四象限,即使选B
,所以
,则AB=4,所以BD=AB-AD=3 17.一辆汽车在行驶过程中,路程 y(千米)与时间 x(小时)之间的函
数关系如图3所示 当时 0≤x≤1,y关于x的函数解析式为 y = 60 x,那 么当 1≤x≤2时,y关于x的函数解析式为_____y=100x-40___. 【解析】在0≤x≤1时,把x=1代入y = 60 x,则y=60,那么当 1≤x≤2时由 两点坐标(1,60)与(2,160)得当1≤x≤2时的函数解析式为y=100x40
(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料
的游客人数占A出口的被调查游客人数的__________%.
(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?
(3)已知B、C两个出口的被调查游客在园区内人均购买饮料
的数量如表一所示 若C出口的被调查人数比B出口的被
表一
调查人数多2万,且B、C
2010年上海市初中毕业统一学业考试数学
卷
(满分150分,考试时间100分钟)
2010-6-20
1、 选择题(本大题共6题,每题4分,满分24分)
(10上海)1.下列实数中,是无理数的为( )
A. 3.14
B.
C.
D.
(10上海)2.在平面直角坐标系中,反比例函数 y = ( k<0 ) 图像的量支
顺时针旋转得到 点,则 C=1
2010年上海市中考数学压轴题解法赏析与思考

2010上海市中考数学压轴题解法赏析与思考青浦区实验中学 范莉花2010年上海市中考数学第25题是一道以几何基础图形为素材的“压轴题”,主要是等腰三角形、勾股定理、锐角三角比、三角形一边的平行线性质定理、垂径定理等知识点进行有机综合,通过三个相对独立的小问题,形成有一定梯度的综合应用题。
我有幸参加了今年中考数学试卷的阅卷工作,发现该题第(2)小题至少有15种解法,相当一部分考生的答题过程思路清晰、解答巧妙,现整理部分精彩证法,与读者共同分享。
题目:如图1,在Rt △ABC 中,∠ACB =90°.半径为1的圆A 与边AB 相交于 点D ,与边AC 相交于点E ,连结DE 并延长,与线段BC 的延长线交于点P.(1)当∠B =30°时,连结AP ,若△AEP 与△BDP 相似,求CE 的长;(2)若CE=2,BD=BC ,求∠BPD 的正切值;(3)若31tan =∠BPD ,设CE=x ,△ABC 的周长y ,求y 关于x 的函数关系式.图1 图2 (备用) 图3(备用)第(2)小题求∠BPD 的正切值,这是个较为常见的问题,对于基础扎实的考生来说难度适中,一般来讲解决这个问题的关键是设法在直角三角形中求出对边与邻边,其主要思路有两个:思路一,寻找或构造含∠BPD 的直角三角形,求出对边和邻边即可;思路二,寻找或构造含与∠BPD 相等的角的直角三角形,求出对边和邻边即可。
由于本题条件是CE=2,BD=BC 及∠ACB =90°,半径为1的圆A 与边AB 相交于点D ,与边AC 相交于点E ,因此根据勾股定理,大部分学生较易求出BD=BC=4,AB=5,AC=3。
(设BD=BC=x ∴AB=x+1,AC=3 ∵∠ACB =90° ∴222)1(3+=+x x 解得BD=BC=4)本题关键问题是如何运用已知条件与求三角比值的关系,此处充分发挥数形结合地特色,体现多向思维尝试、探究的设计意图,预留较多的解题途径,考查学生分析问题、解决问题的基本功和灵活性。
2010年上海市初中毕业统一学业考试数学卷.

2010年上海市初中毕业统一学业考试数学卷(满分150分,考试时间100分钟)2010-6-20一、选择题(本大题共6题,每题4分,满分24分)1.下列实数中,是无理数的为(C )A. 3.14B.13C. 3 D.92.在平面直角坐标系中,反比例函数y = kx( k<0 ) 图像的两支分别在(B )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限3.已知一元二次方程x2 + x ─ 1 = 0,下列判断正确的是(B )A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C),这组数据的中位数和众数分别是(D)A. 22°C,26°CB. 22°C,20°CC. 21°C,26°CD. 21°C,20°C5.下列命题中,是真命题的为(D )A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似6.已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1 = 3,则圆O1与圆O2的位置关系是(A )A.相交或相切B.相切或相离C.相交或内含D.相切或内含二、填空题(本大题共12题,每题4分,满分48分)7.计算:a 3÷a 2 = ___a____.8.计算:( x + 1 ) ( x ─ 1 ) = ____x2-1________.9.分解因式:a 2 ─ a b = _____a(a-b)_________.10.不等式3 x ─ 2 >0 的解集是____x>2/3___.11.方程x + 6 = x 的根是______x=3______.12.已知函数f ( x ) =1x 2 + 1,那么f ( ─ 1 ) = ______1/2_____.13.将直线y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是____y=2x+1__________.14.若将分别写有“生活”、“城市”的2张卡片,随机放入“让更美好”中的两个内(每个只放1张卡片),则其中的文字恰好组成“城市让生活更美好”的概率是____1/2______15.如图1,平行四边形ABCD中,对角线AC、BD交于点O 设向量=a,=b,则向量1()2AO a b=+.(结果用a、b表示)16.如图2,△ABC中,点D在边AB上,满足∠ACD =∠ABC,若AC = 2,AD = 1,则DB = __3________.17.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图3所示当时0≤x≤1,y关于x的函数解析式为y = 60 x,那么当1≤x≤2时,y关于x的函数解析式为_____y=100x-40___.ABAD图1 图2图3图418.已知正方形ABCD 中,点E 在边DC 上,DE = 2,EC = 1(如图4所示) 把线段AE 绕点A 旋转,使点E 落在直线BC 上的点F 处,则F 、C 两点的距离为__1或5_________. 三、解答题(本大题共7题,19 ~ 22题每题10分,23、24题每题12分,25题14分,满分78分)19.计算:12131271)()2-+-解:原式2411112=--+233121523=+--+-=-=20.解方程:x x ─ 1 ─ 2 x ─ 2x─ 1 = 0解:()()()221110x x x x x x ∙----∙∙-=()()222110x x x x ----=()2222210x x x x x --+-+=22420x x x -+-+=22520x x -+=()()2120x x --=∴122x x ==或代入检验得符合要求21.机器人“海宝”在某圆形区域表演“按指令行走”,如图5所示,“海宝”从圆心O 出发,先沿北偏西67.4°方向行走13米至点A 处,再沿正南方向行走14米至点B 处,最后沿正东方向行走至点C 处,点B 、C 都在圆O 上.(1)求弦BC 的长;(2)求圆O 的半径长. (本题参考数据:sin 67.4° =1213 ,cos 67.4° = 513 ,tan 67.4° = 125) (1)解:过点O 作O D ⊥AB ,则∠AOD+∠AON=090,即:sin ∠即:AD=A O ×513 =5,OD=A O ×sin 67.4° =AO × 1213又沿正南方向行走14米至点B 所以A B ∥NS,AB ⊥BC,所以E 点位BC 的中点,且 所以BC=24(2)解:连接OB ,则OE=BD=AB-AD=14-5=9又在R T △BOE 中,BE=12, 所以15BO === 即圆O 的半径长为15图5F F 1EDCBA22.某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成图6.(1)在A出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的___60____%.(2)试问A出口的被调查游客在园区内人均购买了多少瓶饮料?(3)已知B、C两个出口的被调查游客在园区内人均购买饮料的数量如表一所示若C出口的被调查人数比B出口的被调查人数多2万,且B、C两个出口的被调查游客在园区内共购买了49万瓶饮料,试问B出口的被调查游客人数为多少万?9万解:(1)由图6知,购买2瓶及2瓶以上饮料的游客人数为2.5+2+1.5=6(万人)而总人数为:1+3+2.5+2+1.5=10(万人)所以购买2瓶及2瓶以上饮料的游客人数占A出口的被调查游客人数的6100%60% 10⨯=(2)购买饮料总数位:3×1+2.5×2+2×3+1.5×4=3+5+6+6=20(万瓶)人均购买=20210==购买饮料总数万瓶瓶总人数万人(3)设B出口人数为x万人,则C出口人数为(x+2)万人则有3x+2(x+2)=49解之得x=9所以设B出口游客人数为9万人23.已知梯形ABCD中,AD//BC,AB=AD(如图7所示),∠BAD的平分线AE交BC于点E,连结DE.(1)在图7中,用尺规作∠BAD的平分线AE(保留作图痕迹,不写作法),并证明四边形ABED是菱形;(2)∠ABC=60°,EC=2BE,求证:ED⊥DC.(1)解:分别以点B、D为圆心,以大于AB的长度为半径,分别作弧,且两弧交于一点P,则连接AP,即AP即为∠BAD的平分线,且AP交BC于点E,∵AB=AD,∴△AB O≌△AO D ∴BO=OD∵AD//BC, ∴∠OBE=∠ODA, ∠OAD=OEB∴△BOE≌△DOA∴BE=AD(平行且相等)∴四边形ABDE为平行四边形,另AB=AD,∴四边形ADBE为菱形(2)设DE=2a,则CE=4a,过点D作D F⊥BC∵∠ABC=60°,∴∠DEF=60°,∴∠EDF=30°,∴EF=12DE=a,则,CF=CE-EF=4a-a=3a,∴CD=∴DE=2a,EC=4a,CD=,构成一组勾股数,∴△EDC为直角三角形,则ED⊥DC24.如图8,已知平面直角坐标系xOy,抛物线y=-x2+bx+c过点A(4,0)、B(1,3) .表一FOE CDBA(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.(1)解:将A(4,0)、B(1,3)两点坐标代入抛物线的方程得: 2244b 013c b c ⎧-++=⎪⎨-++=⎪⎩解之得:b=4,c=0所以抛物线的表达式为:24y x x =-+将抛物线的表达式配方得:()22424y x x x =-+=--+所以对称轴为x=2,顶点坐标为(2,4) (2)点p (m ,n )关于直线x=2的对称点坐标为点E (4-m ,n ),则点E 关于y 轴对称点为点F 坐标为(4-m,-n ), 则四边形OAPF 可以分为:三角形OFA 与三角形OAP ,则OFAP OFA OPA S S S ∆∆=+= 12OFAS OA n ∆=∙∙+ 12OPA S OA n ∆=∙∙= 4n =20 所以n =5,因为点P 为第四象限的点,所以n<0,所以n= -5代入抛物线方程得m=525.如图9,在Rt △ABC 中,∠ACB =90°.半径为1的圆A 与边AB 相交于点D ,与边AC 相交于点E ,连结DE 并延长,与线段BC 的延长线交于点P .(1)当∠B =30°时,连结AP ,若△AEP 与△BDP 相似,求CE 的长; (2)若CE=2,BD=BC ,求∠BPD 的正切值; (3)若1tan 3BPD ∠=,设CE=x ,△ABC 的周长为y ,求y 关于x 的函数关系式.图9 图10(备用) 图11(备用)(1)解:∵∠B =30°∠ACB =90°∴∠BAC =60° ∵AD=AE ∴∠AED =60°=∠CEP ∴∠EPC =30°∴三角形BDP 为等腰三角形 ∵△AEP 与△BDP 相似∴∠EAP=∠EPA=∠DBP=∠DPB=30° ∴AE=EP=1∴在RT △ECP 中,EC=12EP=12(2)过点D 作D Q ⊥AC 于点Q ,且设AQ=a ,BD=x ∵AE=1,EC=2 图8∴QC=3-a∵∠ACB =90°∴△ADQ 与△ABC 相似 ∴AD AQAB AC=即113a x =+,∴31a x =+ ∵在RT △ADQ中DQ =∵DQ ADBC AB=∴111x x x +=+ 解之得x=4,即BC=4 过点C 作CF//DP∴△ADE 与△AFC 相似,∴AE ADAC AF =,即AF=AC ,即DF=EC=2, ∴BF=DF=2∵△BFC 与△BDP 相似 ∴2142BF BC BD BP ===,即:BC=CP=4 ∴tan ∠BPD=2142EC CP == (3)过D 点作D Q ⊥AC 于点Q ,则△DQE 与△PCE 相似,设AQ=a ,则QE=1-a ∴QE DQEC CP =且1tan 3BPD ∠= ∴()31DQ a =-∵在Rt △ADQ 中,据勾股定理得:222AD AQ DQ =+ 即:()222131a a =+-⎡⎤⎣⎦,解之得41()5a a ==舍去 ∵△ADQ 与△ABC 相似 ∴445155AD DQ AQ AB BC AC x x====++ ∴5533,44x xAB BC ++==∴三角形ABC 的周长553313344x xy AB BC AC x x ++=++=+++=+ 即:33y x =+,其中x>0FQAE D PCB。
2010年上海市金山区中考数学二模卷及答案

12010年金山区模拟一数 学 卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.化简32(3)x 所得的结果是( ).A .99x B .69x C .66x D .96x 2.若b a <,则下列各式中一定成立的是( ) A .33a b ->- B .33a b< C .33a b -<- D .ac bc < 3.在平面直角坐标系中,下列直线中与直线23y x =-平行的是( )A .3y x =-B .23y x =-+C .23y x =+D .32y x =- 4.在平面直角坐标系中,将二次函数22x y =的图象向左平移3个单位,所得图象的解析式为( )A .22(3)y x =+B .22(3)y x =-C .223y x =+D .223y x =- 5.在正多边形中,外角和等于内角和的是( ) A .正六边形 B .正五边形 C .正四边形 D .正三边形 6.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d 的取值范围是( ) A .8d > B . 2d > C .02d ≤< D . 8d >或02d ≤<二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7.因式分解:22x x -= . 8.如果方程()132x a -=的根是3x =,那么a = . 9.请你写一个大于2且小于3的无理数 .210.函数1()1f x x=-的定义域是 . 11. ()322a b a --=.12.在Rt △ABC 中,∠C =90°,13sinA =,BC =6,那么AB = . 13.在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n =__________. 14.如图1,已知a ∥b ,140∠=,那么2∠的度数等于 .15.两个相似三角形对应边上高的比是1∶4 ,那么它们的面积比是 .16.在Rt △ABC 中,∠C =90°,∠A =30°,BC =6,以点C 为圆心的⊙C 与AB 相切,那么⊙C 的半径等于 .17.在四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,如果四边形EFGH 为菱形,那么四边形ABCD 可能是 (只要写一种). 18.如图2,在△ABC 中,AD 是BC 上的中线,BC =4,∠ADC =30°,把△ADC 沿AD 所在直线翻折后 点C 落在点C ′ 的位置,那么点D 到直线BC ′ 的距离是 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 解分式方程:212111xx x -=-- 20.(本题满分10分)一块长方形绿地的面积为2400平方米,并且长比宽多20米,那么这块绿地的长和宽分别为多少米? 21.(本题满分10分,每小题满分各5分)如图3,在△ABC 中,sin ∠B =45,∠C =30°,AB =10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年上海市初中毕业统一学业考试数学卷参 考 答 案一、选择题1.C 【解析】无理数即为无限不循环小数,则选C.2.B 【解析】设K =-1,则x =2时,y =12-,点在第四象限;当x =-2时,y = 12,在第二象限,所以图像过第二、四象限,即使选B3.B 【解析】根据二次方程的根的判别式:()()224141150b ac ∆=-=-⨯⨯-=>,所以方程有两个不相等的实数根,所以选B4.D 【解析】中位数定义:将所有数学按从小到大顺序排列后,当数字个数为奇数时即中间那个数为中位数,当数字的个数为偶数时即中间那两个数的平均数为中位数. 众数:出现次数最多的数字即为众数 所以选择D.5.D 【解析】两个相似三角形的要求是对应角相等,A 、B 、C 中的类型三角形都不能保证两个三角形对应角相等,即选D. 6.A 【解析】如图所示,所以选择A二、填空题7.a 【解析】32321a a a a a -÷===8.x 2-1【解析】根据平方差公式得:(x +1)(x -1)=x 2-1 9.a (a -b )【解析】提取公因式a ,得:()2a ab a a b -=- 10.x >2/3【解析】3x -2>0,3x >2,x >2/311.x =3【解析】由题意得:x >0两边平方得:26x x +=,解之得x =3或x =-2(舍去)12.1/2【解析】把x =-1代入函数解析式得:()()2211111211f x -===+-+ 13.y =2x +1【解析】直线y =2x -4与y 轴的交点坐标为(0,-4),则向上平移5个单位后交点坐标为(0,1),则所得直线方程为y =2x +114.1/2【解析】“生活”、“城市”放入后有两种可能性,即为:生活让城市更美好、城市让生活更美好.则组成“城市让生活更美好”的可能性占所有可能性的1/2.15.()1=2AO b a +u u u r r r【解析】AD BC a ==u u u r u u u r r ,则AC AB BC=2b a AO =++=u u u r u u u r u u u r r r u u u r ,所以()1=2AO b a +u u u r r r16.3【解析】由于∠ACD =∠ABC ,∠BAC =∠CAD ,所以△AD C ∽△ACB ,即:AC ADAB AC=,所以2AB AD AC •=,则AB =4,所以BD =AB -AD =3 17.y =100x -40【解析】在0≤x ≤1时,把x =1代入y =60x ,则y =60,那么当1≤x≤2时由两点坐标(1,60)与(2,160)得当1≤x ≤2时的函数解析式为y =100x -40 18.1或5【解析】题目里只说“旋转”,并没有说顺时针还是逆时针,而且说的是“直线BC 上的点”,所以有两种情况如图所示:顺时针旋转得到1F 点,则1F C =1逆时针旋转得到2F 点,则22F B DE ==,225F C F B BC =+= 三、解答题19.解:原式()(()()234311273231131312-=+-+-++-()22434332312315232323-=+-+-+-=-+-=20.解:()()()221110x x x x x x •----••-=()()222110x x x x ----=()2222210x x x x x --+-+=22420x x x -+-+= 22520x x -+=()()2120x x --=∴122x x ==或代入检验得符合要求21.(1)解:过点O 作OD ⊥AB ,则∠AOD +∠AON =090,即:sin ∠AOD =cos ∠AON =513即:AD =AO ×513 =5,OD =AO ×sin67.4°=AO ×1213=12又沿正南方向行走14米至点B 处,最后沿正东方向行走至点C 处所以AB ∥NS ,AB ⊥BC ,所以E 点位BC 的中点,且BE =DO =12 所以BC =24(2)解:连接OB ,则OE =BD =AB -AD =14-5=9又在Rt △BOE 中,BE =12,所以222291222515BO OE BE =+=+==即圆O 的半径长为1522.(1)60 (2)2瓶 (3)9万解:(1)由图6知,购买2瓶及2瓶以上饮料的游客人数为2.5+2+1.5=6(万人)而总人数为:1+3+2.5+2+1.5=10(万人)所以购买2瓶及2瓶以上饮料的游客人数占A 出口的被调查游客人数的6100%60%10⨯= (2)购买饮料总数位:3×1+2.5×2+2×3+1.5×4=3+5+6+6=20(万瓶)人均购买=20210==购买饮料总数万瓶瓶总人数万人(3)设B 出口人数为x 万人,则C 出口人数为(x +2)万人则有3x +2(x +2)=49 解之得x =9所以设B 出口游客人数为9万人23.解:(1)分别以点B 、D 为圆心,以大于AB 的长度为半径,分别作弧,且两弧交于一点P ,则连接AP ,即AP 即为∠BAD 的平分线,且AP 交BC 于点E , ∵AB =AD ,∴△ABO ≌△AOD ∴BO =OD ∵AD //BC , ∴∠OBE =∠ODA , ∠OAD =OEB ∴△BOE ≌△DOA∴BE =AD (平行且相等)∴四边形ABDE 为平行四边形,另AB =AD ,∴四边形ADBE 为菱形(2)设DE =2a ,则CE =4a ,过点D 作DF ⊥BC∵∠ABC =60°,∴∠DEF =60°, ∴∠EDF =30°, ∴EF =12DE =a ,则DF ,CF =CE -EF =4a -a =3a ,∴CD ===∴DE =2a ,EC =4a ,CD =,构成一组勾股数,∴△EDC 为直角三角形,则ED ⊥DC24.解:(1)将A (4,0)、B (1,3)两点坐标代入抛物线的方程得:2244b 013c b c ⎧-++=⎪⎨-++=⎪⎩解之得:b =4,c =0所以抛物线的表达式为:24y x x =-+将抛物线的表达式配方得:()22424y x x x =-+=--+所以对称轴为x =2,顶点坐标为(2,4)(2)点p (m ,n )关于直线x =2的对称点坐标为点E (4-m ,n ),则点E 关于y 轴对称点为点F 坐标为(4-m ,-n ),则四边形OAPF 可以分为:三角形OF A 与三角形OAP ,则OFAP OFA OPA S S S ∆∆=+=12OFA S OA n ∆=••+12OPA S OA n ∆=•• =4n =20所以n =5,因为点P 为第四象限的点,所以n <0,所以n =-5 代入抛物线方程得m =525.解:(1)∵∠B =30°∠ACB =90°∴∠BAC =60° ∵AD =AE ∴∠AED =60°=∠CEP ∴∠EPC =30°∴三角形BDP 为等腰三角形∵△AEP 与△BDP 相似∴∠EAP =∠EP A =∠DBP =∠DPB =30° ∴AE =EP =1∴在Rt △ECP 中,EC =12EP =12(2)过点D 作DQ ⊥AC 于点Q ,且设AQ =a ,BD =x∵AE =1,EC =2 ∴QC =3-a ∵∠ACB =90°∴△ADQ 与△ABC 相似∴AD AQ AB AC= 即113a x =+,∴31a x =+ ∵在Rt △ADQ 中222232811x x DQ AD AQ x +-⎛⎫=-=-=⎪+⎝⎭∵DQ AD BC AB=∴228111x x x x x +-+=+ 解之得x =4,即BC =4 过点C 作CF //DP∴△ADE 与△AFC 相似,∴AE ADAC AF=,即AF =AC ,即DF =EC =2, ∴BF =DF =2 ∵△BFC 与△BDP 相似∴2142BF BC BD BP ===,即:BC =CP =4 ∴tan ∠BPD =2142EC CP == (3)过D 点作DQ ⊥AC 于点Q ,则△DQE 与△PCE 相似,设AQ =a ,则QE =1-a∴QE DQEC CP =且1tan 3BPD ∠= ∴()31DQ a =-∵在Rt △ADQ 中,据勾股定理得:222AD AQ DQ =+即:()222131a a =+-⎡⎤⎣⎦,解之得41()5a a ==舍去 ∵△ADQ 与△ABC 相似∴445155AD DQ AQ AB BC AC x x====++ ∴5533,44x xAB BC ++==∴三角形ABC 的周长553313344x xy AB BC AC x x ++=++=+++=+ 即:33y x =+,其中x >0。