高中数学 三角函数:正弦、余弦、正切

合集下载

高中数学三角函数知识点

高中数学三角函数知识点

高中数学三角函数知识点高中数学三角函数知识点1锐角三角函数公式sin =的对边 / 斜边cos =的邻边 / 斜边tan =的对边 / 的邻边cot =的`邻边 / 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A))三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B 降幂公式sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=covers(2)/2tan^2()=(1-cos(2))/(1+cos(2))推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)和差化积sin+sin = 2 sin[(+)/2] cos[(-)/2]sin-sin = 2 cos[(+)/2] sin[(-)/2]cos+cos = 2 cos[(+)/2] cos[(-)/2]cos-cos = -2 sin[(+)/2] sin[(-)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差sinsin = [cos(-)-cos(+)] /2coscos = [cos(+)+cos(-)]/2sincos = [sin(+)+sin(-)]/2cossin = [sin(+)-sin(-)]/2诱导公式sin(-) = -sincos(-) = costan (a)=-tansin(/2-) = coscos(/2-) = sinsin(/2+) = coscos(/2+) = -sinsin() = sincos() = -cossin() = -sincos() = -costanA= sinA/cosAtan(/2+)=-cottan(/2-)=cottan()=-tantan()=tan诱导公式记背诀窍:奇变偶不变,符号看象限高中数学三角函数知识点2定义:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

常见的三种三角函数值域的求法

常见的三种三角函数值域的求法

常见的三种三角函数值域的求法三角函数是高中数学中常见的一个概念,它是指正弦函数、余弦函数和正切函数,这三个函数在计算中十分常用,下面将详细介绍三种三角函数值域的求法。

一、正弦函数值域的求法正弦函数的值域在[-1, 1]之间。

具体求法如下:1. 代数法:由正弦函数的定义可知,y=sin x,其中-1≤y≤1。

即y 的取值范围为[-1, 1]。

2. 图像法:正弦函数的图像在[-π/2,π/2]内单调递增,且满足y的取值范围为[-1, 1]。

3. 单位圆法:我们知道,单位圆(x^2+y^2=1)在第一象限的一段弧上与x轴正半轴所夹的角的正弦值等于这段弧上点的y坐标。

而当角度为0和π时,y坐标分别为0和1,因此正弦函数的值域为[-1,1]。

二、余弦函数值域的求法余弦函数的值域在[-1,1]之间。

具体求法如下:1. 代数法:由余弦函数的定义可知,y=cos x,其中-1≤y≤1。

即y 的取值范围为[-1, 1]。

2. 图像法:余弦函数的图像在[0,π]内单调递减,且满足y的取值范围为[-1, 1]。

3. 单位圆法:我们知道,单位圆(x^2+y^2=1)在第一象限的一段弧上与x轴正半轴所夹的角的余弦值等于这段弧上点的x坐标。

而当角度为0和π/2时,x坐标分别为1和0,因此余弦函数的值域为[-1,1]。

三、正切函数值域的求法正切函数的值域为实数集。

具体求法如下:1. 代数法:由正切函数的定义可知,y=tan x,其中y可取遍所有实数。

因此,正切函数的值域为实数集。

2. 图像法:正切函数的图像在(π/2n,π/2n+1)(n∈Z)上有无限个垂直渐近线。

这说明正切函数可以取遍所有实数,因此正切函数的值域为实数集。

3. 应用法:正切函数在实际应用中十分重要,比如在三角定位中,我们经常需要根据已知的两条边求第三条边的长度,这时就需要用到正切函数。

正切函数值域为实数集,可以表示所有可能的长度。

综上所述,正弦函数的值域为[-1,1],余弦函数的值域为[-1,1],正切函数的值域为实数集。

人教版高一数学必修四最全三角函数公式含正弦余弦正切

人教版高一数学必修四最全三角函数公式含正弦余弦正切

三角函数诱导公式设α为任意角,满足以下公式:公式一:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanα公式二:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanα公式三:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanα公式四:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanα公式五:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanα公式六:sin(π/2+α)=cosαsin(π/2-α)=cosαcos(π/2+α)=-sinαcos(π/2-α)=sinα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:奇变偶不变,符号看象限两角和与差的三角函数sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 二倍角公式sin(2α)=2sinα·cosαcos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2tan(2α)=2tanα/(1-tan^2α) ·三角形中三角函数基本定理【正弦定理】式中R为ABC的外接圆半径【余弦定理】【勾股定理】在直角三角形(C为直角)中,勾方加股方等于弦方(图1.4),即勾股定理也称商高定理,外国书刊中称毕达哥拉斯定理.【正切定理】或【半角与边长的关系公式】式中,r为ABC的内切圆半径,且式中S为ABC的面积. 三角函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα。

高中数学 三角函数

高中数学 三角函数

高中数学:三角函数一、概述三角函数是高中数学的一个重要组成部分,是解决许多数学问题的关键工具。

它涉及的角度、边长、面积等,都是几何和代数的核心元素。

通过学习三角函数,我们可以更好地理解图形的关系,掌握数学的基本概念。

二、三角函数的定义三角函数是以角度为自变量,角度对应的边长为因变量的函数。

常用的三角函数包括正弦函数(sine)、余弦函数(cosine)和正切函数(tangent)。

这些函数的定义如下:1、正弦函数:sine(θ) = y边长 / r (其中,θ是角度,r是从原点到点的距离)2、余弦函数:cosine(θ) = x边长 / r3、正切函数:tangent(θ) = y边长 / x边长三、三角函数的基本性质1、周期性:正弦函数和余弦函数都具有周期性,周期为 2π。

正切函数的周期性稍有不同,为π。

2、振幅:三角函数的振幅随着角度的变化而变化。

例如,当角度增加时,正弦函数的值也会增加。

3、相位:不同的三角函数具有不同的相位。

例如,正弦函数的相位落后余弦函数相位π/2。

4、奇偶性:正弦函数和正切函数是奇函数,余弦函数是偶函数。

5、导数:三角函数的导数与其自身函数有关。

例如,正弦函数的导数是余弦函数,余弦函数的导数是负的正弦函数。

四、三角函数的实际应用三角函数在现实生活中有着广泛的应用,包括但不限于以下几个方面:1、物理:在物理学中,三角函数被广泛应用于描述波动、振动、电磁场等物理现象。

例如,简谐振动可以用正弦或余弦函数来描述。

2、工程:在土木工程和机械工程中,三角函数被用于计算角度、长度等物理量。

例如,在桥梁设计、建筑设计等过程中,需要使用三角函数来计算最佳的角度和长度。

3、计算机科学:在计算机图形学中,三角函数被用于生成二维和三维图形。

例如,使用正弦和余弦函数可以生成平滑的渐变效果。

4、金融:在金融学中,三角函数被用于衍生品定价和风险管理。

例如,Black-Scholes定价模型就使用了正态分布(一种特殊的三角函数)。

(完整版)高中数学-三角函数公式大全

(完整版)高中数学-三角函数公式大全

三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:r y =αsin 余弦:r x=αcos 正切:x y =αtan 余切:y x =αcot 正割:xr =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线. 二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =. 平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+. 三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限) ⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名改变,符号看象限) 四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(* ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=. 万能公式告诉我们,单角的三角函数都可以用半角的正切..来表示。

高考数学知识点:三角函数线(正弦线、余弦线、正切线)_知识点总结

高考数学知识点:三角函数线(正弦线、余弦线、正切线)_知识点总结

高考数学知识点:三角函数线(正弦线、余弦线、正切线)_知识点总结高考数学知识点:三角函数线(正弦线、余弦线、正切线)三角函数线的定义:设任意角α的顶点在原点O,始边与x轴的正半轴重合,终边与单位圆相交于点P(x,y),过P点作x轴的垂线,垂足为M,过点A(1,0)作单位圆的切线,高二,设它与角α的终边或其反向延长线相交于点T,则有向线段MP、OM,AT分别叫做角α的正弦线,余弦线,正切线,即:sinα=MP,cosα=OM,tanα=AT,如下图:注:线段长度表示三角函数值大小,线段方向表示三角函数值正负。

关于三角函数线,要注意以下几点:(1)正弦线、余弦线、正切线都是有向线段,利用它们的数量来表示三角函数值,是数形结合的典型体现。

三角函数线表示三角的函数值的符号规定如下:正弦线MP、正切线AT 方向与y轴平行,向上为正,向下为负;余弦线OM在x轴上,向右为正,向左为负。

(2)作三角函数线时,所用字母一般都是固定的,书写顺序也不能颠倒。

特别要注意正切线必在过A(1,0)的单位圆的切线上(其中二、三象限角需作终边的反向延长线)。

(3)对于终边在坐标轴上的角,有时三角函数线退化为一个点,有时又为整个半径。

当角α的终边在y轴上时,角α的正切线不存在。

(4)当时,正弦线、余弦线、正切线与角α并不是一一对应的。

一般地,每一个确定的MP、OM、AT都对应两个α的值。

诱导公式:公式一公式二公式三公式四公式五公式六规律:奇变偶不变,符号看象限。

即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。

形如2k×90°±α,则函数名称不变。

诱导公式口诀“奇变偶不变,符号看象限”意义:的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。

高中三角函数三角函数的复数形式与欧拉公式

高中三角函数三角函数的复数形式与欧拉公式

高中三角函数三角函数的复数形式与欧拉公式在高中数学中,我们学习了许多关于三角函数的知识,其中包括三角函数的复数形式以及与之相关的欧拉公式。

本文将详细介绍三角函数的复数形式以及欧拉公式,着重强调它们在数学和物理中的应用。

一、三角函数的复数形式三角函数的复数形式是指通过复数的幅角来表示三角函数值。

复数形式可以帮助我们更方便地进行运算和推导。

我们常用的三角函数包括正弦函数、余弦函数和正切函数,它们的复数形式分别为:正弦函数(sin)的复数形式:sin(z) = (e^iz - e^(-iz))/2i余弦函数(cos)的复数形式:cos(z) = (e^iz + e^(-iz))/2正切函数(tan)的复数形式:tan(z) = (e^iz - e^(-iz))/(e^iz + e^(-iz))二、欧拉公式欧拉公式是数学中一条重要的公式,它将三角函数、指数函数和复数联系在一起,形式为:e^(iz) = cos(z) + isin(z)其中,e表示自然对数的底数,i是虚数单位,z是任意实数。

这个公式被视为数学中最具美感的等式之一,将数学中的五个重要常数(0、1、i、π和e)紧密相连。

三、三角函数的复数形式与欧拉公式的应用三角函数的复数形式和欧拉公式在数学和物理中有广泛的应用。

1. 代数运算通过三角函数的复数形式和欧拉公式,我们可以更方便地进行三角函数的代数运算。

复数形式将三角函数从实数域扩展到复数域,使得我们可以利用复数的性质来简化运算。

2. 解析几何在解析几何中,三角函数的复数形式可以帮助我们更直观地理解平面上的向量和旋转变换。

欧拉公式将指数函数与三角函数联系在一起,使得我们可以将向量的旋转变换表示为指数函数形式,更加清晰地描述几何问题。

3. 信号处理与电路分析在信号处理和电路分析中,复数形式和欧拉公式广泛应用于描述和分析周期性信号,如交流电信号。

利用欧拉公式,我们可以将周期信号分解为正弦和余弦函数的和,更容易进行信号处理和电路分析。

高中数学中的三角函数利用特殊角值简化计算的技巧

高中数学中的三角函数利用特殊角值简化计算的技巧

高中数学中的三角函数利用特殊角值简化计算的技巧三角函数是数学中的重要概念,而在高中数学中,我们经常会遇到需要计算三角函数值的情况。

为了简化计算过程,我们可以利用特殊角值的技巧,来快速得到结果。

本文将介绍一些常见的特殊角值,并说明如何利用这些特殊角值简化计算。

一、特殊角值的定义在三角函数中,我们通常会用到正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。

而特殊角值指的是一些特定角的函数值,这些值具有简单的表达式,可以方便我们进行计算。

下面是一些常见的特殊角值及其函数值:1. 0度:sin 0° = 0,cos 0° = 1,tan 0° = 02. 30度:sin 30° = 1/2,cos 30° = √3/2,tan 30° = 1/√33. 45度:sin 45° = √2/2,cos 45° = √2/2,tan 45° = 14. 60度:sin 60° = √3/2,cos 60° = 1/2,tan 60° = √3以上是一些常见的特殊角值,我们可以将它们牢记于心,以便在计算过程中使用。

二、利用特殊角值简化计算的技巧1. 利用特殊角的三角关系在三角函数中,存在一些特殊的角之间的关系,如30度角、45度角、60度角之间的关系。

通过利用这些关系,我们可以推导出其他角的函数值,从而简化计算。

以30度角为例,我们已知 sin 30° = 1/2,cos 30° = √3/2,tan 30° = 1/√3。

利用这些已知值,我们可以得到其他角的函数值:- sin 60° = sin (2 * 30°) = 2 * sin 30° * cos 30° = √3/2- cos 60° = cos (2 * 30°) = cos² 30° - sin² 30° = 1/2- tan 60° = tan (2 * 30°) = 2 * tan 30° / (1 - tan² 30°) = √3通过这种方法,我们可以快速得到其他角度的三角函数值,从而简化计算过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数:正弦、余弦、正切
(一)复习指导
1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.
2.理解正弦函数、余弦函数在区间[0,2π ]的性质(如单调性、最大和最小值、图象与x 轴交点等) 3.理解正切函数在区间)2
π
,2π(-
的单调性. (二)基础知识
1、正弦函数和余弦函数的图象:正弦函数sin y x =和余弦函数cos y x =图象的作图方法:五点法:先取横坐标分别为0,
3,,
,22
2
π
π
ππ的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。

2、正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R 。

(2)值域:都是[]1,1-,对sin y x =,当()22x k k Z π
π=+
∈时,y 取最大值1;
当()
322
x k k Z π
π=+∈时,y 取最小值-1;对cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取
最小值-1。

(3)周期性:①sin y x =、cos y x =的最小正周期都是2π;②()sin()f x A x ωϕ=+和
()cos()f x A x ωϕ=+的最小正周期都是2||
T πω=。

(4)奇偶性与对称性:正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线
()2x k k Z π
π=+
∈;余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z π
π⎛⎫
+
∈ ⎪⎝
⎭,对称轴是直线()x k k Z π=∈(正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴
的交点)。

(5)单调性:
()sin 2,222y x k k k Z ππππ⎡⎤=-+∈⎢⎥⎣⎦在上单调递增,在()32,222k k k Z ππππ⎡
⎤++∈⎢⎥⎣
⎦单调递减;
cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。

特别提醒,别
忘了k Z ∈!
3、正切函数tan y x =的图象和性质:
(1)定义域:{|,}2
x x k k Z π
π≠
+∈。

遇到有关正切函数问题时,你注意到正切函数的定义域了吗?
(2)值域是R ,在上面定义域上无最大值也无最小值;
(3)周期性:是周期函数且周期是π,它与直线y a =的两个相邻交点之间的距离是一个周期π。

绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定。

如x y x y sin ,sin 2==的周期都是π, 但sin y x =
cos x +的周期为
2
π
,而1|2sin(3)|,|2sin(3)2|626y x y x ππ=-+=-+,|tan |y x =的周期不变;
(4)奇偶性与对称性:是奇函数,对称中心是,02
k π⎛⎫
⎪⎝⎭
()k Z ∈,特别提醒:正(余)切型函数的对称中心有两类:一类是图象与x 轴的交点,另一类是渐近线与x 轴的交点,但无对称轴,这是与正弦、余弦函数的不
同之处。

(5)单调性:正切函数在开区间(),22k k k Z ππππ⎛⎫
-++∈ ⎪⎝⎭
内都是增函数。

但要注意在整个定义域上不
具有单调性。

如下图:
注意:正切函数在开区间(),22k k k Z ππππ⎛⎫
-++∈ ⎪⎝⎭
内都是增函数。

但要注意在整个定义域上不具有单调性。

例1.用五点法画出函数)3
sin(+=x y 草图,并求出函数的周期,单调区间,对称轴,对称中心.
例2.求函数)6
π
2sin(2+=x y 在区间[0,2π ]上的值域.
例3.求下列函数的值域. (1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ).
例4.求函数x
x
y cos 3sin 1--=的值域.
例题解析
例1解:
3
π+
x 0
2
π π
2
π3 2π
x 3π-
6π 3π2 6π7 3π5 y
1
-1
周期为T =2π,
单调增区间为,),6π
π2,6π5π2(Z ∈+-
k k k 单调减区间为,),6π
7π2,6ππ2(Z ∈++k k k
对称轴为,,6π
πZ ∈+=k k x
对称中心为.),0,3
π
π(Z ∈-k k
小结:画图的时候,要注意五个点的选取.
例2分析:在求这样函数值域的时候,最好是把括号中与x 有关的代数式的取值范围求出来,然后利用三角函数图象求其值域.
解:因为0≤x ≤2π,所以,6
π76π26π,π20≤+≤≤≤
x x 由正弦函数的图象, 得到],1,2
1
[)6π2sin(-∈+x
所以y ∈[-1,2].
例3解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3, 令t =cos x ,则,4
13
)21(413)21(3)(],1,1[222
++-=++-=++-=-∈t t t t y t
利用二次函数的图象得到].4
13
,
1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=
,)4
π
sin(+x ,则
]2,2[-∈t 则,,12--=t t y
利用二次函数的图象得到].21,4
5
[+-
∈y 小结:利用三角函数关系把代数式转化成一个二次函数形式,利用图象,求其值域,要注意转化后自变量的取值范围.
例4解:设A (3,1),P (cos x ,sin x ),
把y 看成定点A 与动点P 所在直线的斜率, 因为动点P (cos x ,sin x )在单位圆上,
所以只要求经过点A (3,1)与单位圆相切的两条直线的斜率,
两条切线的斜率分别为0和,4
3 所以].4
3,0[ y
小结:这是数形结合解题的一个典型问题.。

相关文档
最新文档