角平分线性质说课稿
角平分线性质定理说课稿

一、数学内容的本质、地位、作用分析1.数学内容的本质角的平分线的点到角的两边的距离相等。
2。
数学内容的地位和作用角的平分线的性质是全等三角形知识的运用和延续,它为后面证明线段相等、角相等的几何证明提供了一种新的、更为简单的证明方法。
本节分为两课时:第一课时让学生动手探究角的平分线的画法、角的平分线的性质;第二课时主要探究角的平分线的判定,并在此基础上进行简单应用.本节课是第一课时的内容,它不仅为学生动手操作、观察、交流等活动提供了良好的素材,同时也让学生学习了怎样从实际问题中建立数学模型、解决实际问题.二、教学目标分析1、教学目标根据课程标准要求、教材及学生的实际情况,我从知识与技能、过程与方法、情感态度与价值观三个方面确定教学目标。
1.知识与技能(1)会作已知角的平分线;(2)了解角的平分线的性质,能利用三角形全等证明角的平分线的性质;(3)会利用角的平分线的性质进行证明与计算.2。
过程与方法在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力.3.情感、态度与价值观在探究作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.2、目标分析:1.知识与技能(1)所谓“会作已知角的平分线”,就是让学生通过探究角平分仪的原理,从而抽象概括出用尺规做角的平分线的作法;(2)所谓“了解角的平分线的性质,能利用三角形全等证明角的平分线的性质”,就是让学生通过折纸归纳出角的平分线的性质,并能用三角形全等证明这个性质,体会用数学推理的方法证明猜想成立的必要性。
(3)所谓“会利用角的平分线的性质进行证明与计算”,就是通过变式训练,让学生会利用角的平分线的性质进行证明与计算.2。
过程与方法所谓“在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力”,就是在活动中,让学生通过自主探索、合作交流等方式,帮助学生积累数学活动的经验,发展有条理的思维及初步的演绎推理能力。
角平分线的性质说课稿

角平分线的性质说课稿徐庄中学八年级张玉芳今天,我说课的题目是《角的平分线的性质》第一课时,选自新人教版教材《数学》八年级上册第十二章第三节.下面,我从教学背景的分析、教学目标的确定、教学方法与手段的选择、教学过程的设计和教学评价分析等五个方面对我的教学设计加以说明.一、教学背景的分析1.教学内容分析本节内容是全等三角形知识的运用和延续.用尺规作一个角的平分线,其作法原理是三角形全等的“边边边”判定方法和全等三角形的性质;角的平分线的性质证明,运用了三角形全等的“角角边”判定方法和全等三角形的性质.角的平分线的性质证明提供了使用角的平分线的一种重要模式——利用角平分线构造两个全等的直角三角形,进而证明相关元素对应相等.角的平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.2.教学对象分析刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础.3.教学重点、难点本节课的教学重点为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用.难点是:(1)对角平分线性质定理中点到角两边的距离的正确理解;(2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理 1正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.二、教学目标的确定1、知识与技能:(1).会用尺规作一个角的平分线,知道作法的合理性.(2).探索并证明角的平分线的性质.(3).能用角的平分线的性质解决简单问题.2.过程与方法:在经历角平分线的性质定理的推导过程中,提高综合运用三角形的有关知识解决问题的能力,并初步了解角的平分线的性质在生活、生产中的应用。
角平分线的性质说课稿

(3)训练学生思维的灵活性;
3.情感与价值观目标:
(1)激发学生学习的内在动机;
(2)养成学生学习的良好学习习惯;
三、说教学的重难点
本着《角平分线的性质》新课程标准的要求,在吃透教材基础上,我确定了以下教学重点和难点:
教学重点:角平分线的作图方法、角平分线的性质及应用。重点的依据是只有掌握了这几点,才能理解和掌握角平分线的作用,才能为以后的学习打下基础。
1.直观演示法:
利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂
气氛,促进学生对知识的掌握。
2.问题探究法:
引导学生通过创设问题情景并引导学生解决问题的形式获取知识,以学生为主体,使学生的独立探索性得到了充分的发挥,培养学生的自觉能力、思维能力、活动组织能力。
3.集体讨论法:
针对学生提出的问题,组织学生进行集体和分组语境讨论,促使学生在学习中解决问题,培养学生团结协作的精神。
角平分线的性质
各位老师好:
今天我说课的课题是《角平分线的性质》。下面我对本课题进行分析:
一、说教材
(地位与作用)
《角平分线的性质》是人教版必修教材第11章第3节的内容。在此之前,学生们已经学习了全等三角形的判定,这为过度到本节课的学习起到了铺垫的作用。因此,本节课的理论、知识是学好以后课题的基础,它在整个教材中起着承上启下的作用。
八、板书设计:
黑板的中上方给出题目,在左边用尺规作图做出角平
分线、并写出作图过程及证明。在右边写角平分线的第一个性质,画出图形、给出证明。这样设计使板书清晰,便于学生记笔记,也便于最后的总结。
3、学习第一个性质:
有学生喜欢动手的特性,老师先让学生拿出事先准备好的角,然后对折这个角,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?让学生自己独立思考,老师在黑板上画出折痕图形,根据折叠同学们会得出第一个性质;角平分线上的点到角的两边的距离相等。根据这一性质,利用已画好的图形给出条件进行证明,引导学生有由全等三角形进行证明,给出结论:角平分线上的点到角的两边的距离相等。这样设计是让同学们在数学活动中体验数学的乐趣,培养学生对数学的兴趣。让他们独立思考并得出结论是为了让培养学生独立思考的思维能力,让他们体验找出正确结论的快感。最后给出证明,完善该性质,让学生能更加全面的理解该性质。
《角的平分线的性质》说课稿

《角的平分线的性质》说课稿
《角的平分线的性质》说课稿
作为一位不辞辛劳的人民教师,时常要开展说课稿准备工作,说课稿有助于教学取得成功、提高教学质量。那么优秀的说课稿是什么样的呢?下面是小编帮大家整理的《角的平分线的性质》说课稿,仅供参考,大家一起来看看吧。
二、教学内容
本节课的教学内容包括角的平分线的作法、角的平分线的性质及初步应用。
内容解析:
教材通过充分利用现实生活中的实物原型,培养学生在实际问题中建立数学模型的能力。作角的平分线是几何作图中的基本作图。角的平分线的性质是全等三角形知识的延续,也是今后证明两个角相等或证明两条线段相等的重要依据。因此,本节内容在数学知识体系中起到了承上启下的作用。
教师继续引导,用多媒体展示实验过程,学生口述,用三角形全等的方法证明AE是∠BAD的平分线。
[设计意图]帮助学生体验从生产生活中分离,抽象出数学模型,并主动运用所学知识来解决问题。
从上面的探究中可以得到作已知角的平分线的方法。
[教学内容3]
把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?
教学辅助手段:根据本节课的实际教学需要,我选择多媒体PPT课件,几何画板软件教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变。这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握。
六、教学过程的设计
角的平分线的性质说课稿

义务教育课程标准实验教科书八年级数学(上)第十一章第三节角的平分线的性质(一)说课稿角的平分线的性质(一)说课稿一、教材分析:1、本节教材的地位和作用:角的平分线的概念在七年级的教材中己介绍过,它的性质很重要,为证明线段相等或角的相等时开辟了新途径,同时在作图中也运用广泛,是直角三角形全等判定的延续,是轴对称图形的基础,并为以后九年级三角形内心的学习作了铺垫,鉴于这种认识,我认为本课不仅有广泛的实际应用,而且起着承上启下的作用,是今后作图、计算、证明的重要工具。
同时,可以培养学生的观察、分析、归纳能力,探究精神和创新意识2、教学目标的确定:(1)知识目标:1、掌握作已知角的平分线的方法;2、掌握角的平分线的性质。
(2)能力目标:1、提高综合运用三角形全等的有关知识解决问题的能力。
2、通过探究性质,培养学生的归纳的能力。
3、通过性质的应用,培养学生的逻辑思维能力及创新能力。
(3)、情感目标:在探讨作角的平分线的方法及角的平分线的性质过程中,培养学生探究问题的兴趣,增强解决问题的信心,通过合作交流、讨论,增强学生合作沟通能力,逐步培养学生的理性精神。
3、教学重、难点重点:角的平分线的性质的证明及运用难点:角的平分线的性质的探究二、学情分析:学生对角平分线的概念有了很好的理解,对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用性质,仍然去找全等三角形,结果相当于重新证明了一次性质,鉴于这种情况,教学应适时引导。
三、教学方法教法:直观演示法、设疑诱导法、操作发现法学法:动手操作法、自主探究法、观察发现法、合作交流法四、教学程序的设计(一)依据教材的编排和学生的认知规律,我设计了下面的教学流程:创设情景,引入新课——实物研究,提高认知——折纸建模,总结规律——模型转化,命题证明——课堂小结,反思升华。
(二)就以下五方面为重点对这节课进行说明:1、创设情景,引入新课(感知角的平分线)开始上课,讲一个小故事,小亮的妈妈是玩具厂的工人,她的工作就是在三角形的钢板上画角的平分线,一天爱动脑筋的小亮替妈妈做了一个平分角的仪器,在这个仪器中:AB=AD,DC=BC,沿AC画一条射线AE,则AE就是∠DAB平分线,同学们能说明它的道理吗?学生们很容易地画出图形,得出AE平分∠DAB,并能通过三角形全等来证明这个结论,我只是纠正证明过程中不严谨的地方,这个问题让学困生参与,以调动他们的学习积极性。
人教版八年级上册12.3.1角的平分线的性质说课稿

(四)总结反馈
在总结反馈阶段,我会引导学生进行自我评价,并提供有效的反馈和建议。首先,我会让学生回顾本节课所学知识,总结角的平分线性质及其应用。然后,我会鼓励学生分享自己的学习心得和感悟,让其他同学从中受益。最后,我会针对学生的表现,给予表扬和鼓励,对需要改进的地方提出建议。
(五)作业布置
课后作业的目的是让学生巩固所学知识,提高解题能力。我会布置以下作业:
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习和实践活动:
1.课堂练习:设计一些具有代表性的题目,让学生在课堂上独立完成,及时巩固所学知识。
2.小组讨论:让学生分组讨论,共同解决一个问题,培养他们的合作精神和解决问题的能力。
3.数学日记:让学生记录下自己在生活中遇到的涉及到角的平分线性质的问题,以及如何解决这些问题,从而培养他们的观察能力和应用能力。
(二)学习障碍
在学习本节课之前,学生需要具备角的计算、三角形的基本性质等前置知识。他们可能存在的学习障碍包括对角的平分线性质的理解不够深入,以及如何运用这些性质解决实际问题。此外,学生可能对角的平分线的判定感到困惑,不知道如何运用判定定理进行正确的判断。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:首先,通过引入实际生活中的几何问题,让学生感受到角的平分线性质的应用,从而激发他们的学习兴趣。其次,设计有趣的数学游戏和小组合作活动,让学生在实践中探索角的平分线的性质,提高他们的参与度和积极性。最后,通过设置合理的挑战性问题,引导学生思考和解决问题,培养他们的成就感和自信心。
角的平分线的性质说课稿

角的平分线的性质说课稿一、说教材本文《角的平分线的性质》是初中数学课程中的重要内容,它位于平面几何的教学单元中,起着承上启下的作用。
在小学阶段,学生已经对角有了一定的认识,而本节内容将在此基础上,深化学生对角的概念及其性质的理解,为后续学习相似三角形、圆等知识打下坚实的基础。
(1)作用与地位角的平分线作为几何图形中的重要元素,不仅在理论研究中具有基础性地位,而且在解决实际问题时也具有广泛的应用。
本节内容通过探究角的平分线性质,不仅加强了学生对几何图形的直观感知,而且培养了学生的逻辑思维能力和空间想象能力。
(2)主要内容本节课主要围绕角的平分线的性质展开,包括以下三个方面:1. 定义:角的平分线是从角的顶点出发,将角平分成两个相等角的射线。
2. 性质:角的平分线上的点到角的两边的距离相等。
3. 应用:利用角的平分线性质解决相关问题。
二、说教学目标学习本课,希望学生能够达到以下教学目标:1. 知识与技能:(1)理解并掌握角的平分线的定义;(2)掌握角的平分线的性质,并能够运用性质解决相关问题;(3)能够准确画出角的平分线。
2. 过程与方法:(1)通过实际操作,培养学生的动手能力;(2)通过探究角的平分线性质,提高学生的逻辑思维能力;(3)通过小组讨论,培养学生的合作意识。
3. 情感态度与价值观:(1)激发学生对几何学习的兴趣,培养学生的自主学习意识;(2)培养学生严谨、细致的学习态度。
三、说教学重难点1. 教学重点:(1)角的平分线的定义;(2)角的平分线的性质;(3)角的平分线的应用。
2. 教学难点:(1)角的平分线性质的推导过程;(2)如何准确画出角的平分线;(3)如何运用角的平分线性质解决实际问题。
四、说教法在教学《角的平分线的性质》这一节时,我计划采用以下几种教学方法,旨在提高学生的学习兴趣,增强理解和记忆,以及提升解决问题的能力。
1. 启发法:- 以生活中的实例引入角的平分线的概念,例如将一块蛋糕平均分给两个人,让学生感受到平分的重要性。
人教版八年级数学上册说课稿:12.3角的平分线的性质

3.结合具体例题,讲解如何运用角的平分线定理解决几何问题,强调解题步骤和关键点。
4.通过师生互动和生生互动,让学生在讨论和实践中深入理解角的平分线的性质和应用。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习和实践活动:
这些媒体资源在教学中的作用是提高教学的直观性,激发学生的学习兴趣,以及提供丰富的学习材料。
(三)互动方式
为了促进学生的参与和合作,我计划设计以下互动环节:
1.师生互动:通过提问、解答、反馈等方式,引导学生思考,鼓励学生表达自己的观点,及时给予评价和指导。
2.生生互动:组织小组讨论和合作探究活动,让学生在小组内分享解题思路,互相学习,共同完成学习任务。
五、板书设计与教学反思
(一)板书设计
我的板书设计将采用清晰、简洁的布局,主要内容分为三个部分:定义与性质、定理与例题、总结与提示。板书的风格将突出重点,逻辑清晰,使用不同颜色的粉笔来区分重要信息,如定义用蓝色,性质用绿色,例题用红色,以便学生快速识别。
板书在教学过程中的作用是帮助学生梳理知识结构,强化记忆,以及提供视觉辅助。为确保板书清晰、简洁,我将遵循以下原则:
主要知识点包括:角的平分线的定义、角的平分线定理、以及如何运用角的平分线性质解决实际问题。具体来说,学生需要掌握角的平分线将角分为两个相等角的基本性质,理解并运用角的平分线定理,即从一个角的顶点引出的平分线与这个角的对边相交,所形成的两个三角形是相似的。
(二)教学目标
知识与技能目标:通过本节课的学习,使学生能够理解并掌握角的平分线的定的数学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《角平分线的性质》说课稿
我说课的题目是《角的平分线的性质》第二课时,即《角平分线的判定》。
下面,我从教材分析、教法与学法、教学过程、设计说明四个方面对我的教学设计加以说明.
一、教材分析
(一)地位和作用:
本节课的教学内容包括探索并证明角平分线性质定理的逆定理,会用角平分线性质定理的逆定理解决问题。
是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.角平分线的性质和判定为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面的学习奠定基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.
(二)教学目标
1、知识目标:
(1)探索并证明角平分线性质定理的逆定理.(2)会用角平分线性质定理的逆定理解决问题了解尺规作图的原理及角的平分线的性质.
2、基本技能:
让学生通过自主探索,运用逻辑推理的方法证明关于角平分线的判定,并体会感性认识与理性认识之间的联系与区别。
3、数学思想方法:从特殊到一般
4、基本活动经验:体验从操作、测量、猜想、验证的过程,获得验证几何命题正确性的一般过程的活动经验
设计意图:
通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能力了解角的平分线的性质在生产,生活中的应用培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.
(三)教学重难点
进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把本节课的教学重点定为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用,难点是:
(1)对角平分线性质定理中点到角两边的距离的正确理解;(2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)
教学难点突破方法:
(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.
二、教法和学法
本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”.鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合.
教学辅助手段:根据本节课的实际教学需要,我选择多媒体PPT课件,几何画板软件教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这
样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.
三.教学过程
(一)创设情景引出课题
出示生活中的数学问题:
《角平分线的性质》说课稿问题1 如图,要在S 区建一个广告牌P,使它到两条高速公路的距离相等,离两条公路交叉处500 m,请你帮忙设计一下,这个广告牌P 应建于何处(在图上标出它的位置,比例尺为1:20 000)?
[设计意图]利用多媒体渲染气氛,激发情感.
教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。
学生动手画图,猜测并说出观察到的结论.李薇同学很快就回答:“在两条路夹角的平分线上,因为由昨天我们学习的角平线的性质定知道到角两边路离相等的点在角的平分线上。
”其余同学对这一回答也表示了认可。
此是教师提问:角平分线的性质的题设是已知角平分线,结论是有到角两边距离相等,而此题是要求角两边距离相等,那这个点在这个角的平分线上吗?这二者有区别吗?”学生晃然明白过来这二者是有区别的,此时教
师引导学生分析:“只要后者是正确的,那李薇同学的回答也就可行了,这便是今天我们要研究的内容”由此引入本节新课。
.
[设计理由]依据新课程理念,教师要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习了角平分线的性质,为后续的学习作好知识上的储备.
(二)、主体探究,体验过程
问题2交叉角的平分线的性质中的已知和结论,你能得到什么结论,这个新结论正确吗?让学生分组讨论、交流,再利用几何画板软件验证结论,并用文字语言阐述得到的性质.(《角平分线的性质》说课稿角的内部到角的两边距离相等的点在角的平分线上。
)追问1你能证明这个结论的正确性吗?
结合图形写出已知,求证,分析后写出证明过程.证明后,教师强调经过证明正确的命题可作为定理.教师归纳,强调定理的条件和作用.同时强调文字命题的证明步骤.
[设计意图]经历实践→猜想→证明→归纳的过程,培养学生的动手操作能力和观察能力,符合学生的认知规律,尤其是对于结论的验证,信息技术在此体现
其不可替代性,从而更利于学生的直观体验上升到理性思维.
追问2 这个结论与角的平分线的性质在应用上有什么不同?
这个结论可以判定角的平分线,而角的平分线的性。
质可用来证明线段相等.
(三)巩固练习,应用性质。
让学生运用本节所学知识分步来解决课前所提问题。
让学生体会生活中蕴含数学知识,数学知识又能解决生活中的问题,感受数学的价值,让人人学到有用的数学。
《角平分线的性质》说课稿在教学的实际过程中,重视学生的亲身体验、自主探究、过程感悟。
在教学中,给学生一段时间去体悟,给他们一个空间去创造,给他们一个舞台去表演;让他们动脑去思考,用眼睛去观察,用耳朵去聆听,用自己的嘴去描述,用自己的手去操作。
这种探究超越知识范畴而扩展到情感、价值观领域,使课堂成为学生生命成长的乐园。
为了让学生做到学以致用,在判定证明完后,我让学生回头来解决问题1,对于问题1的解决作了如下分解:在问题1中,在S 区建一个广告牌P,使它到两条公路的距离相等.
(1)这个广告牌P 应建于何处?这样的广告牌可建
多少个?
(2)若这个广告牌P 离两条公路交叉处500 m(在图上标出它的位置,比例尺为1:20 000),这个广告牌应建于何处?
(3)如图,要在S 区建一个广告牌P,使它到两条公路和一条铁路的距离都相等.这个广告牌P 应建在何处?
《角平分线的性质》说课稿这样有梯次的设问为学生最终解决问题1作了很好的分解,学生独立解决这道路问题也就变得很简单了。
同时在分解问题(3)时,有学生说作三角的平分线找交点,有学生反驳说作两条就可以了因为第三条角平分也一定过这个交点。
此时老师及时提问任意三角形的两内角平分线的交点在第三个角的平分线上吗?那么我们来作下面的探究。
(教师出示问题2:如图,点P是△ABC的两条角平分线BM, CN 的交点,点P 在∠BAC的平分线上吗?这说明三角形的三条角平分线有什么关系?这样提出问题连惯性强,让学生的思维始终处于活跃和不断对知识的渴求探索中。
(四)归纳小结,充实结构
1、这节课你有哪些收获,还有什么困惑?
2、通过本节课你了解了哪些思考问题的方法?
教师让学生畅谈本节课的收获与体会.学生归纳、梳理交流本节课所获得的知识技能与情感体验.
[设计意图]通过引导学生自主归纳,调动学生的主动参与意识,锻炼学生归纳概括与表达能力.
五、布置作业
作业,必做题:教材习题12.3第3、7题;选做题:课时通上选做部分题。
[设计意图]设置必做题的目的是巩固本节课应知应会的内容,面向全体学生,人人必须完成.选做题要求学生根据个人的实际情况尽力完成,使学有余力的学生得到提高,达到“不同的人得到不同的发展”的目的.
本节课设计了四个环节,环环相扣,三个整合点,层层深入,将信息技术与教学进行有机整合,充分调动学生的自主探究与合作交流,教师注意适时的点拔引导,学生的主体地位和教师的主导作用得以充分体现,切实能够达到发展思维、提升能力的根本目的,能够较好地实现教学目标,也使课标理念能够很好地得到落实。