输电线路电力电缆载流量计算书
电力电缆载流量的计算

载流量/短路电流/膨胀系数计算书一、电缆长期载流量计算电缆导体上所通过的电流叫做电缆的载流量,有时也叫做电缆的“负载”或“负荷”。
电缆允许连续载流量是指电缆的负载为连续恒定电流(100%负载率)时的最大允许量。
电缆的载流量问题通常遇到的有两类:一类是已知电缆的结构及敷设情况,求允许的载流量;另一类是已知需要传输的负载,求电缆的导体面积。
本节介绍载流量的一般计算方法。
为了供使用方便,电缆的生产或使用部门常就一定的条件(如环境温度,电缆最大温度,敷设条件等),对各种规格的电缆计算出载流量,并列成“载流量表”,为了扩大其应用范围,这种表还给出了当环境温度、导体温度、敷设条件变化时的校正系数。
当已知需要传输的负载设计所需的电缆时,往往给出的是负载的“功率”(或“容量”)。
输电线路的功率又分视在功率、有功功率、无功功率三种量,如果线路的电流为I(A),线路电压为U l (kV),负载功率因数为cos ϕ,则有如下关系:功率因数—cos ϕSP =ϕcos功率名称 单相电路中三相电路中视在功率 UI S =22Q P S +=有功功率 ϕcos UI P =ϕcos 3UI P = 无功功率I U Q I U Q C C L L ==或ϕsin UI Q =线路电流I 的计算:ϕϕsin 3cos 33L qL LsU P U PU P I ===电缆长期载流量计算方法电缆允许连续载流量,可用导体高于环境温度的稳态温升推导出来,从电缆的等效热路按热路欧姆定律。
电缆的等值热路图Taθθθ-=∆dW cW cW cW 1T 2T 3T 4T dW dW aθWcn 1λWcn 2λ公式1: a=θθθ∆或公式2:()[]()[]()43d21c211+n +++1+++1+12+T T W W nT W W T W W dc d c λλλθ⎪⎪⎭⎫ ⎝⎛=∆式中:1θ 电缆(导体)的最高允许长期工作温度(℃) θa环境温度(℃)2 R I W 2c =每厘米电缆的每相导体损耗(W/cm) d W每厘米电缆每相的介质损耗(W/cm) I 电缆的允许连续工作电流(连续载流量)(A)R 在允许长期工作温度下每厘米电缆每相的导体交流有效电阻(Ω/cm) T 1 T 2 T 3 T 4 每厘米电缆的绝缘热阻、衬垫热阻、护层热阻及外部热阻(℃.cm/W) n电缆芯数λ1 λ2电缆的护套及铠装损耗系数因为W c =I 2R ,所以电缆的长期允许载流量I 为:()()()()[]{}43212114321d +++1++1++++21--=T T T n T r T T T n T W I λλλθθ⎥⎦⎤⎢⎣⎡式中r 每厘米电缆的导线交流电阻(Ω/cm )从公式可以看出,决定电缆载流量的因素如下:电缆和各种损耗 电缆各部分的热阻电缆的最高允许长期工作温度 环境温度以下为公式中相关参数的计算公式 1、20℃导体直流电阻:()[]201'2020-+=θαR RR 20—20℃时导体最大直流电阻,Ω/km ; α20—导体电阻的温度系数,1/℃; θ—电缆长期最高工作温度,℃; R /—20℃时导体最大直流电阻,Ω/km ;2、90℃导体交流电阻:()()8.0110827.08.019218.1312.08.01928.019217244224444==⨯'=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+++⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+=+÷=++'=-p ss p p p c c pp p s s s p s k k k R fX X X s d s d X X Y X X Y Y Y R R πR /—90℃时导体最大直流电阻,Ω/km ;1 Y S —集肤效应因数 Y P —邻近效应因数 d S —线芯外径,mm ;s —同一回路中电缆中心间的距离,mm ; K s ,k p —常数;取1R —90℃时导体最大交流电阻,Ω/km ;3、热阻计算 3.1 绝缘层热阻:⎪⎪⎭⎫ ⎝⎛+=c T d t T 21ln 211πρ ρT1—绝缘层热阻系数, ℃.m/w ;取3.5 t 1—绝缘厚度,mm ; d S —导体外径,mm ;T 1—导体与护套间热阻,T Ω.m ;3.2 垫层热阻:⎪⎪⎭⎫⎝⎛+=s T D t T 2221ln 2πρ t 2—垫层厚度,mm ; D S —垫层外径,mm ;ρT —热阻系数 , ℃.m/w ;取3.5 T 2—垫层热阻, T Ω.m ;3.3 外护层热阻⎪⎪⎭⎫ ⎝⎛'+=a T D T t21ln 23πρ ρT4—热阻系数, ℃.m/w ;取3.5 t —护套厚度,mm ; D O /—外护层内径mm ; T 3—外护层热阻, T Ω.m ;3.4 外部热阻:电缆敷设在空气中,三角形排列空气中不受日光直接照射情况下的电缆周围热阻由下式给出:()4/141s e h D T θπ∆∙∙∙=E Zh Dg e+=式中h ——散热系数D c ——电缆外径,m ;Δθs ——温差表1 自由空气中电缆黑色表面时的Z ,E 和G 的常数值注①“单根电缆”数据也适用于一组,平面排列的电缆,间距不小于0.75De 。
电缆—载流量的计算

国际电工委员会标准电缆—载流量的计算第3部分:运行条件章节第2章:电力电缆尺寸的经济最佳化IEC 287-3-2 /1995目录前言 (2)0 导引 (3)1 范围 (5)2 参考标准 (5)3 符号 (6)4 总成本的计算 (7)5 经济导体尺寸的确定 (9)5.1 第一种方法:一系列尺寸中每种导体的经济电流范围 (9)5.2 第二种方法:给定负载的经济导体尺寸 (9)附录A 经济导体尺寸计算的例子 (11)B 平均导体温度和电阻 (21)前言1)IEC(国际电工委员会)是一个由各个国家电工委员会(IEC国家委员会)组成的世界标准化组织。
其宗旨是在所有有关电子和电气标准化的问题上促进国际间的合作。
为了达到这个目的,IEC除了举行其它活动外还公布国际标准。
标准制定工作是委托各技术委员会进行的。
任何对讨论的课题感性兴趣的IEC国家委员会,均可参加标准制定工作。
与IEC有联系的国际、政府和民间组织,也参加这样的标准制定工作。
IEC与国际标准化组织(ISO)根据两个组织之间的协议规定的条款进行密切合作。
2)IEC关于技术问题的正式决定或协议(由代表所有对问题感性兴趣的国家委员会的技术委员会准备),尽可能表达了对讨论的问题的国际间一致意见。
3)这些意见以标准、技术报告、或导则的形式公布以作为供国际间使用的推荐意见,并在这个意义上被各国家委员会接受。
4)为了促进国际间的统一,IEC国家委员会致力于将IEC国际标准尽最大可能明白无误地用于国家和地区标准。
IEC标准与国家和地区标准之间的任何偏差,应在后者中注明。
国际IEC 287-3-2是由IEC第20技术委员会“电缆”.下属的20A分委会“高压电缆”.制定的。
IEC 287-3-2第1版取消和代替了1991年公布的IEC 1059第1版, 但无技术上的修订。
IEC 287-1-1代替IEC 287第二版的第1和第2章;IEC 287-2-1代替IEC 287第二版的第3章和附录℃和D;.IEC 287-3-1代替IEC 287第二版的附录A和B.。
长期载流量计算书

长期载流量计算书:电缆导体上所通过的电流叫做电缆的载流量,有时也叫做电缆的“负载”或“负荷”。
电缆允许(长期)连续载流量是指电缆的负载为连续恒定电流(100%负载率)时的最大允许量。
电缆所允许的连续载流量,可用导体高于环境温度的稳态温升推导出来。
从电缆的等效热路图(图1)按热路欧姆定律,得:△θ= (W c+21W d)T1+[W c(1+λ1)+ W d]n T2 +[W c(1+λ1+λ2)+ W d]n (T3+ T4)进一步整理公式,可求得电缆长期载流量I:I={)T)(TnR(1)TnR(1RT)Tn(TT21W43212114321d++++++⎢⎢⎣⎡⎥⎥⎦⎤+++-λλλθ△(A)式中:△θ=θ-θa ———高于环境温度的导体温升(℃);θ——电缆(导体)的最高允许长期工作温度(℃);θa——环境温度(℃);W c=I2R——单位长度电缆的每相导体损耗(W/m);W d———单位长度电缆的每相介质损耗(W/m);I———电缆的允许连续工作电流(连续载流量)(A);R——在长期工作温度下每米电缆每相的导体交流有效电阻(Ω/m);T1 、T2 、T3 、T4———单位长度电缆的绝缘热阻、内衬层、外被层、周围媒质热阻(K·m/W);n——电缆的芯数;λ1、λ2———电缆的护套及铠装损耗系数。
从公式可以看出决定电缆载流量的因素有: 1.导电线芯损耗的影响导体的交流电阻的大小与其载流量有密切关系,导体交流电阻的大小取决于导体半径和导体的电导率,为了提高导体的传输容量,必须减少导体的杂质,提高纯度。
当然增大导体的截面对提高电缆的载流量有直接的影响。
一般电缆应在2.5A/mm 2的经济电流密度范围为宜。
2.介质损耗的影响对于10kV 及以下的低压系统,介质损耗占的比重较小,可忽略不计。
但随电压等级的提高,介质损耗W i =U 02ωCtg δ因有电压平方的关系,故其影响会随电压的增加而增大,即便tg δ较小的变化也引起介质损耗较大的变化。
FY-WDZA-YJY63-70载流量计算书

邻近效应 因数Yp由下式给 出: 对于三根单芯电缆, 按三角形排列:
Yp
192
Xp4 0.8
Xp4
dc s1
20.312
dc s1
2
1.18
Xp4
0.27
192 0.8 Xp4
Yp 1.451 10 4
1-2-4 交流 电阻R 导体工作 温度下的交流 电阻R为:
Yp
192
Xp4 0.8
1-1 基 本条件 1-1-1 电缆 结构
26/35kV XLPE 电缆载流量计算书
FS/FY-WDZA-YJY63 26/35kV 1×70m m2 电 缆 结 构 尺 寸 :
标称截面
Sc 70mm2
导体紧压 直径
dc 9.9mm
内屏蔽厚 度
t ic 0.8mm
内屏蔽直 径
Dic 11.5mm
1 1
d
Wd
1
1
1
0.5T1
Ka Ka De h 1 T1 T2 T3
c 01 45K
d 8.56 10 3 K
1 s0 2K 4
d s0 Ka for i 1 10
1 4
n d 1 Kas0
1 break if s0 n 0.001K 4
W
1-6 载流 量的计 算
1-6-2 空 气 中敷 设的电 缆
1-6-2-1空 气 中敷 设的电 缆外部 热阻
T4De h s0
1
Dehs0
式中:h─散热系数 (W/m 2.K5/4 )由下式给 出:
h(De Z g E) Z E W
De 1m
g
5
m2K 4
载流量计算书

电缆载流量计算书电缆有限公司技术部2019/9/211.载流量计算使用条件及必要系数:1. 导体交流电阻 R的计算R=R'(1+y s+y p)R'=R0[1+α20(θ-20)]其中:其中:对于分割导体ks=0.435。
其中:d c:导体直径 (mm)s:各导体轴心之间距离 (mm) 对于分割导体ks=0.37。
2.介质损耗W d的计算W d=ωCU02tgδ其中:ω=2πfC:电容 F/mU:对地电压(V)其中:εD i为绝缘外径 (mm)d c为内屏蔽外径 (mm)3.金属屏蔽损耗λ1的计算λ1=λ1'+λ1〃其中:λ1'为环流损耗λ1〃为涡流损耗λ1〃的计算:其中:ρ:金属护套电阻率 (Ω·m)R:金属护套电阻 (Ω/m)t:金属护套厚度 (mm)D oc:皱纹铝套最大外径 (mm) D it:皱纹铝套最小内径 (mm)a.三角形排列时2b.平行排列时1)中心电缆△2=03)外侧滞后相4.铠装损耗λ2的计算λ2=05热阻的计算5.1热阻T1的计算热阻式中:ρT1 — 绝缘材料热阻系数 (k·m/w)d c — 导体直径 (mm)t 1 — 导体和护套之间的绝缘厚度 (mm)5.2热阻T 2的计算 热阻T 2=05.3外护套热阻T 3的计算其中:t s -外护套厚度 ρT3-外护套(非金属)热阻系数5.4外部热阻T 4计算5.4.1空气中敷设其中:D e *:电缆外径 (mm)h: 散热系数当空气中敷设时,回路数对载流量基本没有影响。
5.4.2土壤中敷设5.4.2.1管道敷设,有水泥槽。
5.4.2.1.1电缆和管道之间的热阻T4′:其中:U、V和Y是与条件有关的常数。
D e 为电缆外径。
θm 为电缆与管道之间介质的平均温度。
5.4.2.1.2管道本身的热阻其中:D o 为管道外径。
D d 为管道内径。
ρT4为管道材料的热阻系数。
5.4.2.1.3管道外部热阻ρe 管道周围土壤的热阻系数。
电缆载流量计算书(示例)

电缆载流量计算书(示例)1、电缆结构名称所在层材料内径(mm)厚度(mm)外径(mm)截面积(mm ) 导体导体铜0.00.023.8368.0导体屏蔽绝缘半导电材料23.80.825.461.8绝缘绝缘交联聚乙烯25.40.626.649.0绝缘屏蔽绝缘半导电材料26.64.535.6102.0内护(导体)内护层铜带35.60.236.022.5内护(非金属)内护层聚氯乙烯护套36.00.236.422.7铠装外护层钢带铠装36.40.036.40.0外护外护层聚氯乙烯护套36.42.341.0112.62、运行状况电流类型:三相交流电压等级:35kV电缆数量:3中心点坐标(mm):X = 500.00, Y = 500.00回路间距(mm):100.00电缆间距(mm):100.003、电缆敷设方式、环境条件和运行状况敷设条件:空中干燥和潮湿土壤热阻系数之比率:1.0干燥土壤的热阻系数:1.0自然土壤的热阻系数:1.0土壤临界温度(℃):40.0 ℃环境温度(℃):40.0 ℃土壤临界温升(℃):40.0 ℃二、载流量计算1、交流电阻(1)导体最高工作温度下单位长度直流电阻已知:R0 = 0.000047 /m 20 = 0.003930 1/k = 90.0 ℃结果:R' = 0.000060 /m(2)集肤效应因数已知:f = 50 Hz R' = 0.000060 /m ks = 1.000结果:xs2 = 2.096852结果:ys = 0.022488(3)邻近效应因数已知:f = 50 Hz R' = 0.000060 /m kp = 0.80结果:xp2 = 1.677482不等距时已知:dc = 23.8 mm s = 100.0 mm结果:yp = 0.003418(4)交流电阻已知:R' = 0.000060 /m ys = 0.022488 yp = 0.003418结果:R' = 0.000061 /m2、绝缘损耗(1)导体电容已知: = 2.5 Di = 26.6 mm dc = 23.8 mm结果:c = 1.249e-009 F/m(2)绝缘损耗已知: = 314.2 rad/s c = 1.249e-009 F/m U0 = 20207.26 V tg = 0.004 结果:Wd = 0.640748 W/m3、金属套或屏蔽中的功率损耗(1)最高工作温度下电缆单位长度金属套或屏蔽的电阻已知:s = 1.724e-008 m As = 0.000022 m2 s = 0.003930 1/K= 90.0 ℃= 0.90结果:Rs = 0.000950 /m(2)1已知: = 314.159265rad/s s = 1.724100e-008 m结果:1 = 151.320805(3)gs已知:ts = 0.2mm Ds = 36.0mm 1 = 151.320805结果:gs = 1.000458(4)m已知: = 314.159265rad/s Rs = 0.000950/m结果:m = 0.033071(5)滞后相涡流损耗0、△1、△2已知:m = 0.033071 d = 35.8mm s = 100.0mm结果:0 = 0.000053 △1 = 0.022337 △2 = 0.000000 涡流损耗结果:1'' = 0.000831(6)中间电缆涡流损耗0、△1、△2已知:m = 0.033071 d = 35.8mm s = 100.0mm结果:0 = 0.000210 △1 = 0.000007 △2 = 0.000000 涡流损耗结果:1'' = 0.003248(7)越前相涡流损耗0、△1、△2已知:m = 0.033071 d = 35.8mm s = 100.0mm结果:0 = 0.000053 △1 = 0.013723 △2 = 0.000000 涡流损耗结果:1'' = 0.000824(9)金属套或屏蔽环流损耗结果:1' = 0(10)金属套或屏蔽功率损耗结果:三相中最大的1 = 0.0032484、铠装损耗因数已知:无铠装结果:2 = 05、电缆绝缘热阻T1已知:T = 3.5 Km/W t1 = 5.9 mm dc = 23.8 mm结果:T1 = 0.224299 Km/W6、金属套和铠装之间热阻T2已知:T = 6.0 Km/W t2 = 0.2 mm Ds = 36.0 mm结果:T2 = 0.010552 Km/W7、外护层热阻T3已知:T = 6.0 Km/W t3 = 2.3 mm Da' = 36.4 mm结果:T3 = 0.113640 Km/W8、电缆外部热阻T4(1)散热系数h已知:Z = 0.62 E = 1.95 g = 0.25De = 0.0410 m结果:h = 3.328(2)△d已知:Wd = 0.640748 W/m 1 = 0.003248 2 = 0.000000T1 = 0.224299 KW/m T2 = 0.010552 KW/mn = 1结果:△d = 0.071394 K(3)KA已知:T1 = 0.224299 KW/m T2 = 0.010552 KW/m T3 = 0.113640 KW/m 1 = 0.003248 2 = 0.000000n = 1 De = 0.0410 m结果:KA = 0.149066(4)超过环境温度以上的电缆表面温升△s已知:△= 50.0 K △d = 0.071394 KKA = 0.149066 △s0.25初值= 2.0结果:△s0.25 = 2.460223 K(5)T4结果:T4 = 0.948267 KW/m9电缆额定载流量I已知:交流电阻R = 0.000061 /m金属屏蔽损耗1 = 0.003248铠装损耗2 = 0.000000介质损耗Wd = 0.640748 W/m热阻T1 = 0.224299 Km/W热阻T2 = 0.010552 Km/W热阻T3 = 0.113640 Km/W热阻T4 = 0.948267 Km/W结果:I = 784.831854 A护套感应电压计算书1.计算护套感应电压的中间参数Xs已知:f = 50.000000 Hz Ds = 36.000000 mm S = 100.000000 mm 结果:Xs = 0.000108 /m2.计算护套感应电压的中间参数Xm已知:f = 50.000000 Hz结果:Xm = 0.000044 /m3.电缆护套感应电压U已知:I = 784.831854 A Xs = 0.000108 /m Xm = 0.000044 /m结果:U = 0.105874 /m电缆绝缘厚度计算书1.计算电缆绝缘厚度的中间参数老化系数已知:t = 30.000000 年n = 9.000000结果:K2 = 4.0011112.(按AC)计算电缆绝缘厚度已知:Eo = 20.207259 kV K1 = 1.100000 K2 = 4.001111 K3 = 1.100000 Elac = 30.000000 kV/mm结果:Tac = 3.261000 mm3.(按冲击电压)计算电缆绝缘厚度已知:BIL = 550.000000 kV I1 = 1.250000 I2 = 1.100000 I3 = 1.100000 EIimp = 60.000000 kV/mm结果:Timp = 13.865000 mm4.(最终结果)计算电缆绝缘厚度已知:Tac = 3.261000 mm Timp = 13.865000 mm结果:Timp = 14.900000 mm电缆导体短路电流计算书1.计算电缆导体短路电流中间参数(K)载流体常数已知:c = 3450000.000000 J/K.m3 = 254.452926 20 = 0.000000 .m结果:K = 741.075156 As1/2/mm22.计算电缆导体短路电流已知:K = 741.075156 As1/2/mm2 S = 368.000000 mm2 t = 3.000000 秒f = 250.000000 ℃i = 90.000000 ℃= 254.452926结果:I = 97.300000 KA/3S电缆金属屏蔽短路电流计算书1.计算电缆金属屏蔽短路电流中间参数(K)载流体常数已知: = 2500000.000000 J/K.m3 = 254.452926 = 0.000000结果:K = 630.8450672.计算电缆金属屏蔽短路电流已知:K = 630.845067 As1/2/mm2 S = 368.000000 mm2 t = 3.000000 秒f= 200.000000 ℃i = 90.000000 ℃= 254.452926 = 1.200000结果:I = 84.700000 KA/3S电缆使用过程中电动力计算书1.电缆使用过程中电动力最大值已知:S = 1.000000 mm lm = 97300.000000 A/1S cost - 31/2cost = 31/2(最大值)结果:F = 1420.093500 N/m2.电缆使用过程中电动力最小值已知:S = 1.000000 mm lm = 97300.000000 A/1S cost - 31/2cost = 31/2/2(最小值)结果:F = 710.046750 N/m电缆工井长度计算书1、电缆温升后电缆伸长量(1)临界温度t计算已知:A = 368.000000 mm2 E = 30000.000000 N/mm2 = 0.000020 l/℃= 0.300000W = 161.300000 N/m L = 150.000000 m f = 1000.000000 N结果:t = 41.930000 ℃(2)按电缆弯曲半径要求计算温升65℃时已知:t = 65 A = 368.000000 mm2 E = 30000.000000 N/mm2 = 0.000020 l/℃= 0.300000W = 161.300000 N/m L = 150.000000 m f = 1000.000000 N结果:m = 0.060000 m(3)按电缆弯曲半径要求计算温升25℃时已知:t = 25 A = 368.000000 mm2 E = 30000.000000 N/mm2 = 0.000020 l/℃= 0.300000W = 161.300000 N/m L = 150.000000 m f = 1000.000000 N结果:m = 0.000000 m2、工井内电缆弯曲段长度S计算(1)220KV单芯XLPE电缆允许最小施工弯曲半径R0已知:D = 0.041000 m结果:R0 = 0.820000 m(2)电缆工井试算长度S已知:R0 = 0.820000 m C = 0.500000 m结果:R0 = 1.200000 m(3)修正施工弯曲半径R0已知:S = 1.200000 m C = 0.500000 m(4)修正相邻工井间电缆距离La已知:S = 1.200000 m C = 0.500000 m结果:La = 1.300000 m(5)修正计算过程中间变量0已知:S = 1.200000 m C = 0.500000 m结果:0 = 0.789582(6)修正计算过程中间变量B0已知:R0 = 0.850000 m 0 = 0.789582结果:B0 = 0.065370 m(7)修正计算过程中间变量B1已知:m = 0.060000 m B0 = 0.065370 m La = 1.300000 m 结果:B1 = 0.110300 m(8)验证S是否合理的阶段性结果R1已知:B1 = 0.110300 m La = 1.300000 m结果:R1 = 0.533958 m(9)S本次试算时的取值已知:S = 1.200000 m(10)S下次试算时的取值(可能不采用)已知:S = 1.200000 m Step = 0.3 m结果:S = 1.500000 m(11)修正施工弯曲半径R0已知:S = 1.500000 m C = 0.500000 m结果:R0 = 1.250000 m(12)修正相邻工井间电缆距离La已知:S = 1.500000 m C = 0.500000 m结果:La = 1.581000 m(13)修正计算过程中间变量0已知:S = 1.500000 m C = 0.500000 m结果:0 = 0.643501(14)修正计算过程中间变量B0已知:R0 = 1.250000 m 0 = 0.643501结果:B0 = 0.064130 m(15)修正计算过程中间变量B1已知:m = 0.060000 m B0 = 0.064130 m La = 1.581000 m(16)验证S是否合理的阶段性结果R1已知:B1 = 0.117100 m La = 1.581000 m结果:R1 = 0.725598 m(17)S本次试算时的取值已知:S = 1.500000 m结果:S = 1.500000 m(18)S下次试算时的取值(可能不采用)已知:S = 1.500000 m Step = 0.3 m结果:S = 1.800000 m(19)按电缆弯曲半径要求试算的结果S已知:S = 1.500000 m结果:S = 1.500000 m按保护层疲劳限制核算畸变量并根据结果再次试算S(20)按保护层疲劳限制核算畸变量已知:S = 1.500000 m C = 0.500000 m d = 0.035800 m m = 0.000000 m 结果: = 0.000000 m(21)S本次试算时的取值已知:S = 1.500000 m结果:S = 1.500000 m(22)S下次试算时的取值(可能不采用)已知:S = 1.500000 m Step = 0.3 m结果:S = 1.800000 m(23)按保护层疲劳限制试算的结果S已知:S = 1.500000 m结果:S = 1.500000 m3、工井长度已知:S = 1.500000 m 电缆接头长= 2.000000 m 结果:工井长度= 5.600000 m。
电缆电线的承载电流计算
电缆及电线的电流计算公式1、电线的载流量是这样计算的:对于1.5、2.5、4、6、10mm2的导线可将其截面积数乘以5倍。
对于16、25mm2的导线可将其截面积数乘以4倍。
对于35、50mm2的导线可将其截面积数乘以3倍。
对于70、95mm2的导线可将其截面积数乘以2.5倍。
对于120、150、185mm2的导线可将其截面积数乘以2倍。
看你的开关是多少安的用上面的工式反算一下就可以了。
2、二点五下乘以九,往上减一顺号走。
三十五乘三点五,双双成组减点五。
条件有变加折算,高温九折铜升级。
穿管根数二三四,八七六折满载流。
说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。
由表53可以看出:倍数随截面的增大而减小。
“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。
如2.5mm’导线,载流量为2.5×9=22.5(A)。
从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。
“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。
从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。
即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。
“条件有变加折算,高温九折铜升级”。
上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。
若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。
电缆载流计算方法
5.1电缆载流量设计选择条件: Ib≤Iz=Ir*ПF其中转换系数ПF=Fd*fw*Fh,Iz 为电缆载流能力,Ir 为电缆标称额定电流,Ib 为最大长期计算负载电流(有效值)。
Fd: 捆扎系数。
捆扎方式是指多根电缆的叠累,UPS 系统中多为三线叠累,叠累换算系数为0.7;或参考下表: 电线槽内多根并列敷设的修正电缆在线槽内多根并列时,考虑电缆相互的热影响,应作修正,修正如下表:根数 2 345 6-78-1011-14 15-20修正值0.8 0.7 0.650.60.55 0.5 0.45 0.4Fh:电缆的使用寿命对载流能力影响较大,在任何情况下负载与负载能力之商都不大于换算系数的乘积时,其使用寿命不受限制,而系统的MTBF 是150000小时,换算系数Fh 约为1.25; Fw:不同环境温度间换算系数当以温升作为载流设计依据时,需要考虑周边环境对载流导体的温升影响 载流导体做出适当的降额。
当敷设处的环境温度与规定不一致,应作修正,修正系数: F W =cn an θθθθ−−θn ――电线允许长期工作温度,上表为70℃ θa ――敷设处环境温度,℃。
θc ――已知载流量对应的温度,℃。
注:沿不同冷却条件的路径敷设绝缘导线和电缆时, 当冷却条件最坏段的长度超过5m,应按该段条件选择绝缘导线和电缆的截面,或只对该段采用大截面的绝缘导线和电缆电线明敷的载流量,见下表聚氯乙烯绝缘电线明敷的载流量(θn =70 ℃)铜芯(BV 、BVR 型)截面(mm 2) 25℃30℃35℃40℃1 20 19 18 171.5 25 24 23 212.5 34 32 30 284 45 42 40 376 58 55 52 4810 80 75 71 6516 111 105 99 9125 146 138 130 12035 180 170 160 14850 228 215 202 18770 281 265 249 23195 345 325 306 283120 398 375 353 326150 456 430 404 374185 519 490 461 426下表为美标线载流能力及主要技术参数:UL1015- X AWG –105℃-600V second core cableKey technical parameterNominal cross-se ction area(AWG) Construction ofconductorNo./dia(±0.005)Conductordiameter(mm)Max.Conductorresistance at 20℃(Ω/km)Insulationthickness(mm)Max.Overalldiameter(mm)Approx.Completed cableweight(kg/km)Permissible currentrating atambienttemperature in airat 25℃(A)16 26/0.254 1.49 14.6 0.762 3.0~3.4 20 2015 33/0.254 1.64 11.3 0.762 3.1~3.6 24 27 14 41/0.254 1.86 8.96 0.762 3.3~3.8 31 30 13 52/0.254 2.09 7.1 0.762 2.60~4.0 34.5 32 12 63/0.254 2.32 5.75 0.762 3.8~4.3 56.8 38 11 84/0.254 2.80 4.48 0.762 4.3~4.7 67.4 43 10 105/0.254 3.10 3.55 0.762 4.6~5.0 79.2 55 9 133/0.254 3.50 2.82 0.762 5.0~5.4 94.5 72 8 168/0.254 4.00 2.23 1.143 6.2~6.6 132.6 79 7 210/0.254 4.40 1.76 1.143 6.6~7.1 154.3 85 6 266/0.254 5.00 1.41 1.524 7.9~8.5 207.1 108 5 336/0.254 5.60 1.11 1.524 8.6~9.1 271.8 121 4 420/0.254 6.30 0.882 1.524 9.2~9.7 303.6 1443 532/0.254 7.10 0.700 1.524 10.1~10.6377.1 1632 665/0.254 7.90 0.555 1.524 10.9~11.4446.3 1801 836/0.254 8.80 0.440 2.032 12.8~13.3583.5 2101/0 1064/0.254 10.00 0.349 2.032 14.0~14.5700.0 2482/0 342/0.51 11.50 0.276 2.032 15.5~16.874.6 2783/0 418/0.51 12.70 0.219 2.032 16.7~17.21048.9 3324/0 532/0.51 14.40 0.174 2.032 18.4~18.91279.4 378250kcmil 637/0.51 15.60 0.147 2.413 20.4~20.91581.8 432300 kcmil 735/0.51 17.0 0.122 2.413 21.8~22.41782.6 472350 kcmil 882/0.51 18.60 0.105 2.413 23.4~24.2071.7 522400 kcmil 980/0.51 19.30 0.0920 2.413 24.1~24.72261.3 582 450 kcmil 1127/0.51 20..80 0.0818 2.413 25.6~26.2635.9 6305.2保护器件应能对所连接的电缆提供过载和短路保护。
电力电缆载流量的计算
电力电缆载流量的计算首先,我们需要了解电缆的基本参数,例如电缆的截面积、导体材料和环境温度。
这些参数将直接影响电力电缆的功率输送能力。
电缆截面积通常以平方毫米(mm²)为单位表示,导体材料决定了电缆的导电性能,而环境温度则影响了电缆的散热能力。
其次,我们需要知道电缆的额定电流(也称为安全电流)和额定电压。
额定电流是指电缆能够承受的连续工作电流,而额定电压则是指电缆能够承受的最高电压。
这两个参数通常在电缆的技术规格中有详细说明。
电缆载流量的计算可以根据以下两种方法进行。
方法一:基于电缆截面积和电缆材料的标准载流量公式一般情况下,电力电缆的载流量公式如下:I = K·sqrt(S/A)其中,I为电缆的载流量,单位是安培(A);K为一个系数,与电缆的材料和环境温度有关;S为电缆的截面积,单位是平方毫米(mm²);A为电缆的导体材料的标称导体面积,单位是平方毫米(mm²)。
此公式是根据电缆传导能力的基本原理推导而来的,可以较为准确地估计电缆的载流量。
具体的K值可以从电缆的技术规格表中查找。
方法二:基于导线温升的载流量计算这种方法通过计算电缆导线的温升来确定电缆的载流量。
通常,电导率对于电缆的导线材料是已知的,因此可以根据导线材料的电导率和截面积计算电阻。
然后,根据电流通过导线时产生的功率损耗和导线的热容量,可以计算导线的温升。
最后,根据电缆的环境温度和导线的最大温升限制,可以确定电缆的载流量。
综上所述,电力电缆载流量的计算方法有多种,包括基于电缆截面积和电缆材料的标准载流量公式,以及基于导线温升的计算方法。
在实际工程中,可以根据具体情况选择适用的计算方法,并结合相关规范和标准进行计算,以确保电缆的安全运行。
电缆载流量计算书
电缆载流量计算书2/143212114321}))(1()1()](5.0[{T T nR T nR RT T T T n T W I d +++++++++-∆=λλλθ其中:I :载流量 (A ):θ∆ 导体温度与环境温度之差(℃)R :90℃时导体交流电阻(Ω/m ) n: 电缆中载流导体数量 W d : 绝缘介质损耗 λ1: 护套和屏蔽损耗因数 λ2: 金属铠装损耗因数T 1: 导体和金属护套间绝缘层热阻(k.m/w ) T 2: 金属护套和铠装层之间内衬层热阻(k.m/w ) T 3: 电缆外护层热阻(k.m/w )T 4: 电缆表面与周围媒质之间热阻(k.m/w ) 1.1导体交流电阻R 的计算 R=R /(1+y s +y p )R /=R 0[1+α20(θ-20)] 其中:R ‘:最高运行温度下导体直流电阻(Ω/m ) Y s :集肤效应因数 Y p :邻近效应因数R 0:20℃时导体直流电阻,(Ω/m) θ:最高运行温度90℃α20:20℃铜导体的温度系数,0.00393 1/℃448.0192ss s X X y +=s s k fX R 72108-'=π其中:圆形紧压导体k s =1}27.08.019218.1312.0{8.0192442244+++⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=ppc c p pp XXs d s d X X y 其中:d c : 导体直径,(mm )S: 各导体轴心之间距离,(mm ) 对于圆形紧压导体k s =1 1.2 介质损耗w d 的计算 W d =ωCUo 2tg δ其中: ω=2πf f:频率,50Hz C: 电容 F/mUo: 对地电压,64000(V) tg δ:介质损耗角正切,0.001 91018-⎪⎪⎭⎫ ⎝⎛=×εc id D Ln C F/m 其中: ε=2.3Di: 为绝缘外径(mm) dc 内屏蔽外径(mm) 1.3 金属屏蔽损耗λ1的计算 "+'=111λλλ '1λ-为环流损耗"1λ -为涡流损耗1.3.1'1λ 的计算'1λ=0 1.3.2 "1λ的计算()⎥⎦⎤⎢⎣⎡⨯+∆+∆+="12421011012)(1s i s st g RRβλλ 6.110(1374.1-⎪⎪⎭⎫⎝⎛+=-s i s s s D D t g β)2/17104⎪⎪⎭⎫⎝⎛=s i ρπωβ其中:R :导电线芯交流电阻( Ω.m )ρs :金属屏蔽电阻率1.7241×10-8( Ω.m ) R s :金属屏蔽电阻 ( Ω.m ) D s :金属屏蔽外径 (mm ): t S : 金属屏蔽厚度,(mm ) 金属屏蔽电阻的计算 []m A R s s sss /)20(1Ω-+=θαρA s =π(Dit+2C+t )tm 2其中: A s :金属屏蔽面积,mm 2αs :温度系数4.03×10-3 1/℃ θs :运行时金属屏蔽温度,60℃ 平行排列时: 1)中心电缆22201)2/(6m s d m +=λ()7.4.108.312/86.0o m s d m +=∆02=∆其中 710-⨯=sR m ωd :金属屏蔽平均直径mm S :电缆中心轴之间的距离mm2)外侧超前相22201)2/(5.1m s d m +=λ216.07.01)2/(7.4+=∆m s d m△2=21m3..3(d/2s)1.47m+5.063)外侧滞后相22201)2/(5.1m s d m +=λ125.01)2/()3.0(2)2(74.0+-++=∆m s d m m m△2=0.92m 3.7(d/2s)m+2三角形排列时2220213⎪⎭⎫⎝⎛+=S D m m s λ )66.192.0(45.212)33.014.1(+⎪⎭⎫ ⎝⎛+=∆m s s D m02=∆ 710-=Rsw m 1.4铠装损耗λ2的计算 钢带电阻的计算20℃时钢带电阻率:ρs= 0.0000007Ω·m 电阻温度系数αs=0.005 ℃-1金属套或铠装层工作温度(实际温度要低)θs=70℃ 铠装层截面积 AS=π*(dl+ts)*ts/2/0.7*10^(-6)工作温度下铠装层的电阻Rs :Rs=ρs/As[1+αs(θs-θ0)]钢带铠装层的损耗λ2 (金属套两端互连)电缆导体轴间距离S 铠装层直径:Ds 角频率:ω=314则: X=2ω10-7Ln (2*2(1/3)*S/Ds )环流损耗由下式给出λ2'=Rs/R/(1+Rs2/X2)由于金属套两端互连:λ2''=铠装层的损耗λ2 :λ2=λ2'+λ2''1.5热阻的计算 1.5.1热阻T 1的计算T 1=ρ1/(2π)Ln(1+2t 1/d c ) k ·m/w其中: ρ1: 材料热阻系数,3.5 (k..m/w) d c : 导体直径, (mm)t 1 : 导体和护套之间的绝缘厚度, (mm) 1.5.2热阻T 2的计算金属屏蔽与铠装之间内衬层热阻T 2的计算已知: 内衬层厚度:til 金属屏蔽(成缆)外径:Dh 隔离套或内衬层热阻系数:ρt金属屏蔽与铠装之间热阻T 2由下式给出T 2= (ρt/2π)ln(1+2til/Dh)1.5.3外护套热阻T 3的计算⎥⎦⎤⎢⎣⎡+++=s it oc oc t D D t D T 2/)(2ln 2333πρ k ·m/wρ3: 材料热阻系数,3.5(k..m/w) t 3: 外护套厚度,mm Doc :铠装层外径,mm Dit :铠装层内径mm t s :铠装层厚度mm 1.5.4外部热阻T4的计算 1.5.4.1 土壤中敷设 eT D LT 4ln244πρ=k ·m/w其中:4T ρ:土地热阻系数, k ·m/w L :敷设深度,mm D e :电缆外径,mm 1.5.4.2.管道敷设1.5.4.2.1.电缆和管道之间的'4T : ))(1.01/(4e m D v U T γθ++='k ·m/w其中:U 、v 、γ是与条件有关的常数,分别为5.2,1.1,0.11 D e 为电缆外径,cmm θ为电缆与管道之间介质的平均温度,50℃ 1.5.4.2. 2管道本身的热阻)2/()/ln(44πρDd Do T T ="k ·m/w其中:Do 为管道外径,mm Dd 为管道内径,mm4T ρ为管道材料的热阻系数,(k..m/w) 1.5.4.2. 3管道外部热阻b c e p c NG Fe D L T πρρπρ24ln 24-+⎪⎪⎭⎫ ⎝⎛="k ·m/w 其中:N 为管道内有负荷电缆根数,e ρ管道周围土壤的热阻系数,(k..m/w) c ρ排管混凝土的热阻系数,(k..m/w)D p :管道外径, mm Fe=NkNk k k k k S S S S S S '⋅⋅⋅'⋅'2211r b 管道等效半径,由下式表示:⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=2145.022x Ln x y Ln y x y x Lnr b π其中:x 和y 分别表示管道的长边和短边,分别为100cm ,30cm L b 为地表面到电缆轴线的间距,100cm ⎥⎥⎦⎤⎢⎢⎣⎡-+=1ln 22b bbb br L r L G 所以外部热阻为: T 4="+"+'444T T T 1.5.4.3空气中敷设:()25.041ns Deh T θπ∆=其中:E Deh g+Z=其中,Z, g ,E 是常数,查表()()[]2131211111λλλλπ++++++=T T T DehK A 112111T W d d ⎥⎦⎤⎢⎣⎡-+=∆λθ()()25.025.025.011⎥⎥⎦⎤⎢⎢⎣⎡∆+∆+∆=∆+n S A d n s K θθθθ(迭代计算)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电缆载流量计算书
公司名称:DHAC_COMPM
软件名称:道亨电力电缆计算系统
版本号:(4.10.2016.0908)
工程名称:
设计员:设计时间:2016.12.22
第一部分:载流量一、基本条件
2.运行状况
线路类型:三相交流电
电压等级:110(kV)
频率:50(Hz)
共有1个回路
当前回路是第1个回路
3.电缆敷设方式、环境条件
----------施工段1----------
敷设方式:隧道敷设
媒质温度:40(℃)
不考虑隧道内的温升
----------施工段1----------
4.电缆排列方式、相序、接地方式、位置信息
----------施工段1----------
排列方式:垂直排列
相序:ABC
接地方式:单端接地
位置:(500,-327.95), (500,-677.95), (500,-1027.95) ----------施工段1----------
二、载流量计算
所有回路、所有施工段的载流量结果汇总表(考虑环境温升\不考虑环境温升)(A):
施工段1
1、交流电阻
(1)最高温度下的直流电阻
()[]201200-+⨯=θαR R'求得:R'=1.44086e-005(Ω/m)
(2)集肤效应因数
s s k R'f πx 72108-⨯⋅= 44
80192s s s x .x y +=求得:X s 2=3.79382
Y s =0.0707225
(3)邻近效应因数
p p k R'f πx 72108-⨯⋅=⎥⎥
⎥
⎥
⎥
⎦
⎤
⎢⎢⎢⎢⎢⎣⎡
+++
⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+=2708019218
131208019244
2244.x .x .s d .s d x .x y p p c c p p p
不等距时21s s s ⋅=求得:X p 2=3.22693
Y p =0.00366388
(4)交流电阻
求得:R=1.54804e-005(Ω/m)
2、绝缘损耗
(1)导体电容
求得:C=2.15389e-010(F/m)
(2)绝缘损耗
求得:W d =0.277162(W/m)
3、金属套和铠装中的功率损耗
(1)最高工作温度下电缆单位长度金属套或屏蔽的电阻
求得:单位长度金属套或屏蔽的电阻R s =3.3457e-005(Ω/m)
(2)最高工作温度下电缆单位长度铠装的电阻
已知:无铠装层。
求得:铠装层电阻R s =0(Ω/m)
(3)金属套、铠装并联电阻
已知:上面的金属套电阻和铠装层电阻
求得:金属套和铠装层并联电阻R s =3.3457e-005(Ω/m)
(4)金属套、铠装并联电抗
求得:金属套、铠装并联电抗X=0.000107894(Ω/m)
(5)金属套、铠装的损耗
说明:单芯电缆金属套和铠装中的损耗是合在一起算的,λ1包含金属套损耗和铠装层损耗。
1)、计算环流损耗λ1'
λ1'=0
2)、计算涡流损耗λ1''
2171104⎪⎪⎭⎫ ⎝
⎛=S ρπωβ710-⨯=S R m ω()
6.11013174.1-⨯⨯⎪⎪⎭⎫ ⎝⎛+=-S S S S D D t g β(1)三根单芯电缆呈三角形排列: 2220213⎪⎭
⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+=S d m m λ ()()66.192.045.21233.014.1+⋅⎪⎭⎫ ⎝⎛+=∆m S d m 02=∆(2)三根单芯电缆呈平面排
列:
(a)中间电缆: 2220216⎪⎭
⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+=S d m m λ ()7.04.108.31286.0+⋅⎪⎭⎫ ⎝⎛=∆m S d m 02=∆(b)越前相的外侧电缆: 2220215.1⎪⎭⎫ ⎝⎛⎪⎪⎭
⎫ ⎝⎛+=S d m m λ ()216.07.0127.4+⋅⎪⎭⎫ ⎝⎛=∆m S d m ()06.547.13.32221+⎪⎭⎫ ⎝⎛=∆m S d m (c)滞后相的外侧电缆:
2220215.1⎪⎭
⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+=S d m m λ ()()()125.0123.02274.0+⎪⎭⎫ ⎝⎛-++=∆m S d m m m ()27.32292.0+⎪⎭⎫ ⎝⎛=∆m S d m ()()⎥⎥⎦⎤⎢⎢⎣⎡⨯+∆+∆+⨯=1241210"1
10121S S S t g R R βλλ已知:ω=314.159(1/s), ρs =2.84e-008, t s =2.6(mm), D s =134.1(mm), R s =3.3457e-005(Ω/m), d=125.7(mm), s=350(mm) 求得:β1=117.902, m=0.938994, g s =1.01531
求得:λ1''=0.204869
3)、计算所有损耗
"1'11λλλ+= ) 环流损耗 ("1'1涡流损耗λλ求得:
单芯电缆的金属套或屏蔽的环流损耗λ1'=0
单芯电缆的金属套或屏蔽的涡流损耗λ1''=0.204869
单芯电缆的金属套或屏蔽的损耗λ1=0.204869
单芯电缆的铠装或加强层损耗λ2=0
4、导体和金属套之间的热阻T1
求得T 1=0.518848(K·m/W)
5、金属套和铠装之间的热阻T2
求得:T 2=0(K·m/W)
6、外护层热阻T3
求得:T 3=0.110902(K·m/W)
7、电缆外部热阻T4
求得:T 4=0.277088(K·m/W)
8、计算载流量
求得:I=1806(A)
9、计算额定传输容量
求得:额定传输容量=344.089(MV*A)
10、计算金属护套环流(A)
求得(考虑/不考虑环境温升):
A 相=0(0%)
B 相=0(0%)
C 相=0(0%)
第二部分:阻抗
一、正、(负)序阻抗
单回路:
单端接地或交叉互联:
))****(ln(*10**2*3/141c
c GMR S m S n S j R Z -+=ω 2*7788.0c
c d GMR =
f
**2πω=
两端接地:
223
3/142221*)*)*(ln(*10**2**s m m c s m s m c R X X j GMR S m n j R X R X R Z +-+++=-ω
)*)*(ln(*10**23/14s
m GMR S m n X -=ω 2*7788.0c c d GMR =
正、(负)序阻抗:
----------施工段1----------
dm=440.972(mm)
GMRc=18.8859(mm)
De=0(mm)
f=50
w=314.159
0.0154804+j0.197956(Ω/km)
----------施工段1----------
二、零序阻抗
单回路:
单端接地:
[]
⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++=-9/12340)****(*ln *10**2*3*3S m S n S GMR D j R R Z c e g c ω f D e ρ660=
两端接地或交叉互联:
⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡++=-9/23/23/19/23/23/141)*(**)*(**ln *10**2*33*3m n S GMR m n S GMR j R R Z c s s c ω f D e ρ660=
----------施工段1----------
dm=440.972(mm)
GMRc=18.8859(mm)
De=0(mm)
零序阻抗:0.24648+j0.338585(Ω/km)
----------施工段1----------。