小学1-6数学概念大全

合集下载

一到六年级数学概念

一到六年级数学概念

一到六年级数学概念以下是一到六年级的数学概念:一、小学一年级数学概念:1. 数的概念:认识自己的十位数,认识两位小数。

2. 算术概念:加减乘除,比较大小。

3. 平面图形:认识常见的几何图形,如三角形、正方形、圆形等。

4. 量的概念:认识长度、宽度、高度等基本量词,能够用这些量词描述物体大小。

5. 时间概念:认识年月日,能够表示时间,如:几点几分。

6. 空间概念:认识常见的方位词,如上、下、左、右,能够用这些方位词描述位置。

二、小学一年级数学概念:1. 数的概念:数一数自己有多少个手指,认识0到9中的数字。

2. 算术概念:加减乘除,比较大小。

3. 平面图形:认识常见的几何图形,如三角形、正方形、圆形等。

4. 量的概念:认识长度、宽度、高度等基本量词,能够用这些量词描述物体大小。

5. 时间概念:认识年月日,能够表示时间,如:几点几分。

6. 空间概念:认识常见的方位词,如上、下、左、右,能够用这些方位词描述位置。

三、二年级数学概念:1. 数的概念:认识自己的十位数,认识两位小数。

2. 算术概念:加、减、乘、除,能够分别进行运算。

3. 平面图形:认识更多的几何图形,如长方体、圆、球等。

4. 量的概念:认识更多的量词,如米、尺、平方厘米等,能够进行单位换算。

5. 时间概念:认识星期几,能够表示时间,如:几点几分。

6. 空间概念:能够用字母表示不同的位置,如北、南、东、西。

四、三年级数学概念:1. 数的概念:认识整数,能够进行整数运算。

2. 算术概念:加、减、乘、除,能够分别进行运算,能够进行逆运算。

3. 平面图形:认识更多的几何图形,如长方体、正方体、立体图形等。

4. 量的概念:认识更多的量词,如千克、米、厘米等,能够进行单位换算。

5. 时间概念:能够认识月份、日期,能够表示时间,如:几点几分。

6. 空间概念:能够用字母表示不同的位置,如:北、南、东、西。

五、四年级数学概念:1. 数的概念:认识自己的十位数,能够进行整数运算。

小学数学一至六年级数学知识点总结

小学数学一至六年级数学知识点总结

一年级数学知识点:1.数的认识:认识1-10的数字及其书写形式。

2.数的比较:通过大小比较,认识大小关系,如大于、小于等。

3.数的顺序:数数并认识数的排列顺序,如升序、降序等。

4.加法:通过物体相加、图形相加等方式,学习1-10的加法运算。

5.减法:通过物体相减、图形相减等方式,学习1-10的减法运算。

6.几何图形:认识常见的几何图形,如线段、直线、射线、点、面等。

二年级数学知识点:1.进制:学习十进制的认识,如百位、十位、个位等。

2.加法和减法运算:通过十以内数的加减法运算,培养一定的计算能力。

3.数量关系:学习相等的概念,如多少个物体相等,多少个物体与多个物体相等等。

4.时钟和日历:认识时钟和日历,学习时间的概念,如小时、分钟、年、月、日等。

5.分数:了解基本分数概念,如半、四分之一等。

6.长度、重量和容量:认识和估算常见的长度、重量和容量单位。

三年级数学知识点:1.乘法和除法:学习十以内的乘法和除法运算,如2乘以3等于6,6除以3等于2等。

2.数的积和商:懂得乘法和除法运算的结果称为积和商,如2乘以3的积是6,6除以3的商是23.数量的增减:学习一定范围内数的增减规律,如30减去20等于10,20加上30等于50等。

4.近似计算:通过估算的方法,进行近似计算。

5.几何形状的分类:学习识别和分类几何形状,如正方形、长方形、三角形、圆形等。

6.三角形:学习三角形的性质和分类。

四年级数学知识点:1.数的读法:学习大数的读法和记数法,如百、千、万等。

2.分数和小数:学习分数和小数的概念和换算,如1/2等于0.5等。

3.运算问题:通过一些实际生活中的运算问题,培养解决问题的能力。

4.三角形和四边形:学习三角形和四边形的性质和分类,如等边三角形、矩形、平行四边形等。

5.数据统计与分析:学习如何统计和分析数据,如制表、图表等。

6.简便计算:学习一些简便计算的方法,如乘法口诀、几何公式等。

五年级数学知识点:1.分数的进一与退一:学会将分数进一和退一,如2/5进一等于3/5等。

小学一至六年级数学知识点归纳

小学一至六年级数学知识点归纳

一年级数学知识点:1.数的认识:数的读写、数的概念、数的比较大小。

2.加法和减法:加减法的概念与运算、加法口算和减法口算。

3.数的合并与拆分:数的合并和数的拆分。

4.数量的意义:数量的概念、数量的认识、数量的表示。

5.时间:时间的概念、日常时间的认识与表示。

6.金钱:金钱的概念、小额货币的认识与表示。

二年级数学知识点:1.加法和减法:两位数加减法、进位和退位运算。

2.数的认识和扩展:数的读写、数的比较大小。

3.乘法和除法:乘法口诀表、简单的乘除法运算。

4.长度和重量:长度的认识与表示、重量的认识与表示。

5.时钟和日历:时钟的概念与表示、日历的概念与表示。

6.二维图形和三维图形:基本二维图形(正方形、长方形、三角形、圆形)的认识与表示、三维图形(立方体、球体、圆柱体、圆锥体)的认识与表示。

三年级数学知识点:1.加法和减法:三位数加减法、进位和退位运算。

2.乘法和除法:两位数乘法、除法口算。

3.数的认识和扩展:数的读写、数的比较大小。

4.分数:分数的概念与表示。

5.长度和重量:长度的认识与表示、重量的认识与表示。

6.时钟和日历:时钟的概念与表示、日历的概念与表示。

7.二维图形和三维图形:基本二维图形(正方形、长方形、三角形、圆形)的认识与表示、三维图形(立方体、球体、圆柱体、圆锥体)的认识与表示。

四年级数学知识点:1.加法和减法:四位数加减法、进位和退位运算。

2.乘法和除法:三位数乘法、除法口算。

3.分数:分数的概念与表示、分数的加减乘除运算。

4.小数:小数的概念与表示、小数与分数的转化。

5.长度和重量:长度的认识与表示、重量的认识与表示。

6.时钟和日历:时钟的概念与表示、日历的概念与表示。

7.平面和空间几何:平面图形的认识与表示、三维图形的认识与表示。

五年级数学知识点:1.加法和减法:五位数加减法、进位和退位运算。

2.乘法和除法:四位数乘法、除法口算。

3.分数:分数的概念与表示、分数的加减乘除运算。

小学数学1-6年级必备的数学概念

小学数学1-6年级必备的数学概念

小学数学1-6年级必背的数学概念(包含口决、定义分类)1、什么是图形的周长?围成一个图形所有边长的总和就是这个图形的周长。

2、什么是面积?物体的表面或围成的平面图形的大小叫做他们的面积。

3、加法各部分的关系:一个加数=和-另一个加数4、减法各部分的关系:减数=被减数-差被减数=减数+差5、乘法各部分之间的关系:一个因数=积÷另一个因数6、除法各部分之间的关系:除数=被除数÷商被除数=商×除数7、角(1)什么是角?从一点引出两条射线所组成的图形叫做角。

(2)什么是角的顶点?围成角的端点叫顶点。

(3)什么是角的边?围成角的射线叫角的边。

(4)什么是直角?度数为90°的角是直角。

(5)什么是平角?角的两条边成一条直线,这样的角叫平角。

(6)什么是锐角?小于90°的角是锐角。

(7)什么是钝角?大于90°而小于180°的角是钝角。

(8)什么是周角?一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°.8、垂直问题(1)什么是互相垂直?什么是垂线?什么是垂足?两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

(2)什么是点到直线的距离?从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。

9、三角形(1)什么是三角形?有三条线段围成的图形叫三角形。

(2)什么是三角形的边?围成三角形的每条线段叫三角形的边。

(3)什么是三角形的顶点?每两条线段的交点叫三角形的顶点。

(4)什么是锐角三角形?三个角都是锐角的三角形叫锐角三角形。

(5)什么是直角三角形?有一个角是直角的三角形叫直角三角形。

(6)什么是钝角三角形?有一个角是钝角的三角形叫钝角三角形。

(7)什么是等腰三角形?两条边相等的三角形叫等腰三角形。

(8)什么是等腰三角形的腰?有等腰三角形里,相等的两个边叫做等腰三角形的腰。

小学数学1—6年级概念大全(60项)

小学数学1—6年级概念大全(60项)

小学数学1—6年级概念大全(60项)1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(8+9)×5=8×5+9×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

O除以任何不是O的数都得O。

7、简便乘法:被乘数、乘数末尾有O的乘法,可以先把O 前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

8、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

9、等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

10、什么叫方程式?答:含有未知数的等式叫方程式。

11、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。

即例出代有χ的算式并计算。

12、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

13、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

14、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

15、异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

16、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

17、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

18、分数除以整数(0除外),等于分数乘以这个整数的倒数。

19、真分数:分子比分母小的分数叫做真分数。

20、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。

小学数学1-6年级各年级知识点

小学数学1-6年级各年级知识点

小学数学1-6年级各年级知识点1.数一数。

2.比一比:“同样多”、“多”、“少”以及“长”、“短”、“高”、“矮”。

3.1~5的认识和加减法:⑴ 1~5的认识(基数、读写、数序、比大小、序数、组成)⑵ 1~5的加减法(加减法含义、计算)⑶ 0的认识(表示起点、没有)和加减法。

4.认识物体和平面图形:长方体、正方体、圆柱和球等立体图形与长方形、正方形、三角形和圆等平面图形。

5.分类:单一标准的分类和不同标准的分类。

6.6~9的认识和加减法:1)6、7的认识和加减法(数数、数序、比大小、序数、写数、组成)。

2)8、9的认识和加减法(出现了“一图两式”和“一图四式”、渗透统计思想、比多比少内容)。

3)10的认识和有关10的加减法(省略了10的序数意义、填未知加数)。

4)连加、连减和加减混合计算。

5)整理和复。

7.11~20各数的认识:数数、读数、数序和大小、序数、写数、个位和十位、10加几和十几加减几(不退位)、十几减十。

8.认识钟表:认识钟面、认识整时、认识半时。

9.20以内的进位加法:9加几(“点数”、“接着数”、“凑十”和“根据具体题目选择特殊方法”);8、7、6加几(“拆小数,凑十数”、“拆大数,凑小数”和“交换加数的位置”);5、4、3、2加几和“用数学”。

一(下)1.位置:用“上、下,前、后,左、右”描述物体的相对位置;根据行、列确定物体的位置。

2.20以内的退位减法:十几减9;十几减几;用数学。

3.图形的拼组:平面图形的特征;立体图形的关系。

4.100以内数的认识:数的认识(包括数数、数的组成、数位的含义、数的顺序)和加减(大小比较、整十数加一位数和相应的减法)。

5.认识人民币:认识人民币的单位元、角、分,知道1元=10角,1角=10分;简单的计算。

6.100以内的加法和减法(一):口算整十数加、减整十数;口算两位数加、减一位和整十数;用加法和减法解决简单的问题。

7.认识时间:认识几时几分(5分5分数、1分1分数)。

小学1-6年级数学知识点总结【完整版】

太全啦! | 小学1-6年级数学知识点总结!一、概念(一)整数1、整数的意义自然数和0都是整数。

2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。

倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

小学1-6年级数学公式概念收集汇总(整数小数分数四则运算及运算定律法则顺序)

小学1-6年级数学公式概念收集汇总(含整数、小数、分数四则运算和运算定律、运算法则、运算顺序)一、整数四则运算1 整数加法:把两个数合并成一个数的运算叫做加法。

在加法里,相加的数叫做加数,加得的数叫做和。

加数是部分数,和是总数。

加数+加数=和一个加数=和-另一个加数2 整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。

被减数是总数,减数和差分别是部分数。

加法和减法互为逆运算。

3 整数乘法:求几个相同加数的和的简便运算叫做乘法。

在乘法里,相同的加数和相同加数的个数都叫做因数。

相同加数的和叫做积。

在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。

一个因数×一个因数 =积一个因数=积÷另一个因数4 整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

乘法和除法互为逆运算。

在除法里,0不能做除数。

因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

被除数÷除数=商除数=被除数÷商被除数=商×除数二、小数四则运算1. 小数加法:小数加法的意义与整数加法的意义相同。

是把两个数合并成一个数的运算。

2. 小数减法:小数减法的意义与整数减法的意义相同。

已知两个加数的和与其中的一个加数,求另一个加数的运算.3. 小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

4. 小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

5. 乘方:求几个相同因数的积的运算叫做乘方。

三、分数四则运算1. 分数加法:分数加法的意义与整数加法的意义相同。

人教版小学1至6年级数学概念公式大全

人教版小学1至6年级数学概念公式大全一、图形计算公式1、三角形的面积=底×高÷2。

公式S= a×h÷22、正方形的面积=边长×边长公式S= a²或S=a×a3、长方形的面积=长×宽公式S= ab4、平行四边形的面积=底×高公式S= ah5、梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷26、内角和:三角形的内角和=180度。

7、长方体的体积=长×宽×高公式:V=abh8、长方体(或正方体)的体积=底面积×高公式:V=Sh9、正方体的体积=棱长×棱长×棱长公式:V=aaa=a310、圆的周长=直径×π公式:L=πd=2πr11、圆的面积=半径×半径×π公式:S=πr212、圆柱的侧面积:圆柱的侧面积等于底面的周长乘高。

公式:S=ch=πdh=2πrh13、圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:S=ch+2s=ch+2πr214、圆柱的体积:圆柱的体积等于底面积乘高。

公式:V=Sh15、圆锥的体积=1/3底面×积高。

公式:V=1/3Sh二、数量关系1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加减乘除加数+加数=和一个加数=和-另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数三、计算法则1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

小学一至五年级数学概念-公式

小学一至五年级数学概念-公式小学一至五年级数学概念-公式名称含义(方法)1、长方体1、定义:由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体2、特征:①有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。

②一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

最多有8条棱相等2、正方体1、定义:由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)2、特征:有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等3、棱两个面相交的线叫棱4、顶点三条棱相交的点叫做顶点5、长、宽、高长方体中相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高特殊长方体长宽高都相等的长方体叫正方体6、体积物体所占空间的大小叫做物体的体积7、底面积长方体或正方体底面的面积叫做底面积8、长方体的体积1、长方体的体积=底面积×高;V=sh底面积=体积÷高;s=V÷h高=体积÷底面积;h==V÷s2、长方体的体积=长×宽×高;V长=abh长=体积÷宽÷高 (或长=体积÷(宽×高))a=V÷b÷h或V÷﹙bh﹚宽=体积÷长÷高 ( 或宽=体积÷(长×高)b=V÷a÷h 或V÷﹙ah﹚高=体积÷长÷宽 (或高=体积÷(长×宽)h=V÷a÷b 或V÷﹙ab﹚9、立方体的体积正方体的体积=棱长×棱长×棱长=棱长3V 正=a×a×a=a3=sh10、通用体积公式正(长)方体的体积=底面积×高 s=sh11、表面积定义长(正)方体6个面的总面积叫作它的表面积前或后面的面积=长×高;左或右面的面积=宽×高;上或下面的面积=长×宽12、长方体表面积1、长方体表面积=长×宽×2+长×高×2+宽×高×2= 2(长×宽+长×高+宽×高)S表= 2ab+2ah+2b h= 2(ab+ah+bh)2、有一组对面是正方形的长方体:表面积=底面边长2×2 +底面边长×高×4S表=2 a 2+4ah13、生活实际油箱、罐头盒等都是6个面;游泳池、鱼缸等都只有5个面;水管、烟囱、通风管等都只有4个面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学1-6年级数学概念理解+详细说明十进制计数法:一(个)、十、百、千、万……都叫做计数单位.其中“一”是计数的基本单位.10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十.这种计数方法叫做十进制计数法。

整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读.其他数位一个或连续几个0都只读一个“零”。

整数的写法:从高位一级一级写,哪一位一个单位也没有就写0.四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1.这种求近似数的方法就叫做四舍五入法.整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推.小数部分:把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示.如1/10记作0.1,7/100记作0.07.小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位.小数部分有几个数位,就叫做几位小数.如0.36是两位小数,3.066是三位小数,更多学习资料请关注ABC微课堂小数的读法:整数部分整数读,小数点读点,小数部分顺序读.小数的写法:小数点写在个位右下角.小数的性质:小数末尾添0去0大小不变.化简小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍.小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推.分数和百分数■分数和百分数的意义1、分数的意义:把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数.在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位.2、百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数.也叫百分率或百分比.百分数通常不写成分数的形式,而用特定的“%”来表示.百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称.3、百分数表示两个数量之间的倍比关系,它的后面不能写计量单位.4、成数:几成就是十分之几.■分数的种类按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数■分数和除法的关系及分数的基本性质1、除法是一种运算,有运算符号;分数是一种数.因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子.2、由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质.3、分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据.■约分和通分1、分子、分母是互质数的分数,叫做最简分数.2、把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分.3、约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止.4、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.5、通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数.■倒数1、乘积是1的两个数互为倒数.2、求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.3、 1的倒数是1,0没有倒数■分数的大小比较1、分母相同的分数,分子大的那个分数就大.2、分子相同的分数,分母小的那个分数就大.3、分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小.4、如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大.■百分数与折数、成数的互化:例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐闯砂俜质褪?0%,则六成五就是65%.■纳税和利息:税率:应纳税额与各种收入的比率.利率:利息与本金的百分率.由银行规定按年或按月计算.利息的计算公式:利息=本金×利率×时间■纳税和利息:税率:应纳税额与各种收入的比率.利率:利息与本金的百分率.由银行规定按年或按月计算.利息的计算公式:利息=本金×利率×时间百分数与分数的区别主要有以下三点:1.意义不同.百分数是“表示一个数是另一个数的百分之几的数.”它只能表示两数之间的倍数关系,不能表示某一具体数量.如:可以说 1米是 5米的 20%,不可以说“一段绳子长为20%米.”因此,百分数后面不能带单位名称.分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”.分数不仅可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕米等.2.应用范围不同.百分数在生产、工作和生活中,常用于调查、统计、分析与比较.而分数常常是在测量、计算中,得不到整数结果时使用.3.书写形式不同.百分数通常不写成分数形式,而采用百分号“%”来表示.如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数.而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数.数的整除■整除的意义整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b 整除(也可以说b能整除a)除尽的意义甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0).■约数和倍数1、如果数a能被数b整除,a就叫b的倍数,b就叫a的约数.2、一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身.3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数.■奇数和偶数1、能被2整除的数叫偶数.例如:0、2、4、6、8、10……注:0也是偶数 2、不能被2整除的数叫基数.例如:1、3、5、7、9……■整除的特征1、能被2整除的数的特征:个位上是0、2、4、6、8.2、能被5整除的数的特征:个位上是0或5.3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除.更多学习资料请关注A B C 微课堂■质数和合数1、一个数只有1和它本身两个约数,这个数叫做质数(素数).2、一个数除了1和它本身外,还有别的约数,这个数叫做合数.3、1既不是质数,也不是合数.4、自然数按约数的个数可分为:质数、合数5、自然数按能否被2整除分为:奇数、偶数■分解质因数1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数.例如:18=3×3×2,3和2叫做18的质因数.2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数.通常用短除法来分解质因数.3、几个数公有的因数叫做这几个数的公因数.其中最大的一个叫这几个数的最大公因数.公因数只有1的两个数,叫做互质数.几个数公有的倍数叫做这几个数的公倍数.其中最大的一个叫这几个数的最大公倍数.4、特殊情况下几个数的最大公约数和最小公倍数.(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数.(2)如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积.■奇数和偶数的运算性质:1、相邻两个自然数之和是奇数,之积是偶数.2、奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数.整数、小学、分数四则混合运算■四则运算的法则1、加法a、整数和小数:相同数位对齐,从低位加起,满十进一b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加2、减法a、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减3、乘法a、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同b、分数:分子相乘的积作分子,分母相乘的积作分母.能约分的先约分,结果要化简4、除法a、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上.除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数■运算定律加法交换律 a+b=b+a结合律(a+b)+c=a+(b+c)减法性质 a-b-c=a-(b+c)a-(b-c)=a-b+c乘法交换律a×b=b×a结合律(a×b)×c=a×(b×c)分配律(a+b)×c=a×c+b×c除法性质a÷(b×c)=a÷b÷ca÷(b÷c)=a÷b×c(a+b)÷c=a÷c+b÷c(a-b)÷c=a÷c-b÷c商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数.推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍.一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍.■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变.推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍.被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍.■利用积的变化规律和商不变规律性质可以使一些计算简便.但在有余数的除法中要注意余数.如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100.简易方程■用字母表示数用字母表示数是代数的基本特点.既简单明了,又能表达数量关系的一般规律. ■用字母表示数的注意事项1、数字与字母、字母和字母相乘时,乘号可以简写成“•“或省略不写.数与数相乘,乘号不能省略.2、当1和任何字母相乘时,“ 1” 省略不写.3、数字和字母相乘时,将数字写在字母前面.■含有字母的式子及求值求含有字母的式子的值或利用公式求值,应注意书写格式■等式与方程表示相等关系的式子叫等式.含有未知数的等式叫方程.判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式.所以,方程一定是等式,但等式不一定是方程.■方程的解和解方程使方程左右两边相等的未知数的值,叫方程的解.求方程的解的过程叫解方程.■在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x.■解方程的方法1、直接运用四则运算中各部分之间的关系去解.如x-8=12加数+加数=和一个加数=和-另一个加数被减数-减数=差减数=被减数-差被减数=差+减数被乘数×乘数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=除数×商2、先把含有未知数x的项看作一个数,然后再解.如3x+20=41先把3x看作一个数,然后再解.3、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解.4、利用运算定律或性质,使方程变形,然后再解.如:2.2x+7.8x=20先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解.比和比例■比和比例应用题在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”.■解题策略按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答■正、反比例应用题的解题策略1、审题,找出题中相关联的两个量2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系.3、设未知数,列比例式4、解比例式5、检验,写答语数感和符号感■在数学教学中发展学生的数感主要指,使学生具有应用数字表示具体的数据和数量关系的能力;能够判定不同的算术运算,有能力进行计算,并具有选择适当方法(心算、笔算、使用计算器)实施计算的经验;能根据数据进行推论,并对数据和推论的精确性和可靠性进行检验,等等.■培养学生的数感的目的就在于使学生学会数学地思考,学会用数学的方法理解和解释现实问题.■ 数感的培养有利于学生提出问题和解决问题能力的提高.学生在遇到问题时,自觉主动地与一定的数学知识和技能建立起联系,这样才有可能建构与具体事物相联系的数学模型.具备一定的数感是完成这类任务的重要条件.如,怎样为参加学校运动会的全体运动员编号?这是一个实际问题,没有固定的解法,你可以用不同的方式编,而不同的编排方案可能在实用性和便捷性上是不同的.如,从号码上就可以分辨出年级和班级,区分出男生和女生,或很快的知道一名队员是参加哪类项目.■ 数概念本身是抽象的数概念的建立不是一次完成的,学生理解和掌握数的概念要经历一个过程.让学生在认识数的过程中,更多地接触和经历有关的情境和实例, 在现实的背景下感受和体验会使学生更具体更深刻地把握数的概念,建立数感.在认识数的过程中,让学生说一说自己身边的数,生活中用到的数,如何用数表示周围的事物等,会让学生感觉到数就在自己身边,运用数可以简单明了地表示许多现象.估计一页书的字数,一本书有多少页,一把黄豆有多少粒等,这些对具体数量的感知与体验,是学生建立数感的基础,这对学生理解数的意义会有很大的帮助.■无论在哪个学段都应鼓励学生用自己独特的方式表示具体的情境中的数量关系和变化规律,这是发展学生符号感的决定性因素.■引进字母表示是学习数学符号、学会用符号表示具体情境中隐含的数量关系和变化规律的重要一步.尽可能从实际问题中引入,使学生感受到字母表示的意义.第一,用字母表示运算法则、运算定律以及计算公式.算法的一般化,深化和发展了对数的认识.第二,用字母表示现实世界和各门学科中的各种数量关系.例如,匀速运动中的速度v、时间t和路程s的关系是s=vt.第三,用字母表示数,便于从具体情境中抽象出数量关系和变化规律,并确切地表示出来,从而有利于进一步用数学知识去解决问题.例如,我们用字母表示实际问题中的未知量,利用问题中的相等关系列出方程.■字母和表达式在不同场合有不同的意义.如:5=2x+1表示x所满足的一个条件,事实上,x这里只占一个特殊数的位置,可以利用解方程找到它的值;Y=2x表示变量之间的关系,x是自变量,可以取定义域内任何数,y是因变量,y随x的变换而变化;(a+b)(a-b)=a-b表示一个一般化的算法,表示一个恒等式;如果a和b分别表示矩形的长和宽,S表示矩形的面积,那么S=ab表示计算矩形面积公式,同时也表示矩形的面积随长和宽的变化而变化.■如何培养学生的符号感要尽可能在实际问题情境中帮助学生理解符号以及表达式、关系式意义,在解决实际问题中发展学生的符号感.必须要对符号运算进行训练,要适当地、分阶段地进行一定数量的符号运算.但是并不主张进行过繁的形式运算训练.学生的符号感的发展不是一朝一夕就可以完成的,而是应该贯穿于数学学习的全过程,伴随着学生数学思维的提高逐步发展.量的计算■事物的多少、长短、大小、轻重、快慢等这些可以测定的客观事物的特征叫做量.把一个要测定的量同一个作为标准的量相比较叫做计量.用来作为计量标准的量叫做计量单位.■数+单位名称=名数只带有一个单位名称的叫做单名数.带有两个或两个以上单位名称的叫做复名数高级单位的数如把米改成厘米低级单位的数如把厘米改成米■只带有一个单位名称的数叫做单名数.如:5小时, 3千克(只有一个单位的)带有两个或两个以上单位名称的叫做复名数.如:5小时6分,3千克500克(有两个单位的)56平方分米=(0.56)平方米就是单名数转化成单名数560平方分米=(5)平方米(60平方分米) 就是单名数转化成复名数的例子.■高级单位与低级单位是相对的.比如,"米"相对于分米,就是高级单位,相对于千米就是低级单位.■常用计算公式表(1)长方形面积=长×宽,计算公式s=a b(2)正方形面积=边长×边长,计算公式s=a×a(3)长方形周长:(长+宽)× 2,计算公式s=(a+b)×2(4)正方形周长=边长× 4,计算公式s= 4a(5)平形四边形面积=底×高,计算公式s=ah.(6)三角形面积=底×高÷2,计算公式s=a×h÷2(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2(8)长方体体积=长×宽×高,计算公式v=abh(9)圆的面积=圆周率×半径平方,计算公式s=лr^2(10)正方体体积=棱长×棱长×棱长,计算公式v=a^3(11)长方体和正方体的体积都可以写成底面积×高,计算公式v=sh(12)圆柱的体积=底面积×高,计算公式v=s h■1年12个月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11.月份,平年2月28天,闰年2月29天■闰年年份是4的倍数,整百年份须是400的倍数.■平年一年365天,闰年一年366天.■公元1年—100年是第一世纪,公元1901—2000是第二十世纪.平面图形的认识和计算■三角形1、三角形是由三条线段围成的图形.它具有稳定性.从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高.一个三角形有三条高.2、三角形的内角和是180度3、三角形按角分,可以分为:锐角三角形、直角三角形、钝角三角形4、三角形按边分,可以分为:等腰三角形、等边三角形、不等边三角形■四边形1、四边形是由四条线段围成的图形.2、任意四边形的内角和是360度.3、只有一组对边平行的四边形叫梯形.4、两组对边分别平行的四边形叫平行四边形,它容易变形.长方形、正方形是特殊的平行四边形;正方形是特殊的长方形.■圆圆是平面上的一种曲线图形.同圆或等圆的直径都相等,直径等于半径的2倍.圆有无数条对称轴.圆心确定圆的位置,半径确定圆的大小.■扇形由圆心角的两条半径和它所对的弧围成的图形.扇形是轴对称图形.■轴对称图形1、如果一个图形沿着一条直线对折,两边的图形能够完全重合,这个图形叫做轴对称图形;这条窒息那叫做对称轴.2、线段、角、等腰三角形、长方形、正方形等都是轴对称图形,他们的对称轴条数不等.■周长和面积1、平面图形一周的长度叫做周长.2、平面图形或物体表面的大小叫做面积.3、常见图形的周长和面积计算公式。

相关文档
最新文档