近年排列组合概率高考题_5

合集下载

2023高考数学试题汇编(排列组合统计概率)

2023高考数学试题汇编(排列组合统计概率)

2023高考数学试题汇编(无答案)排列与组合1. (2023甲卷理科T9)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为A.120B.60C.40D.302. (2023乙卷理科T7)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种B.60种C.120种D.240种3. (2023新一卷T7)记S n 为数列{a n }的前n 项和,设甲:{a n }为等差数列:乙:{nn S }为等差数列,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件4. (2023新一卷T13)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有 种(用数字作答)5. (2023新二卷T3)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同抽样结果共有( )A.1520045400C C ⋅种 B.4020020400C C ⋅种 C.3020030400C C ⋅种 D.2020040400C C ⋅种 6. (2023上海卷T10)已知(1+2023x )100+(2023−x )100=a 0 +a 1x +a 2x 2+…+a 100x 100,其中a 0,a 1,a 2…a 100∈R若0≤k ≤100且k ∈N,当a k <0时,k 的最大值是 .7. (2023上海卷T12)空间内存在三点A 、B 、C,满足AB=AC=BC=1,在空间内取不同两点(不计顺序),使得这两点与A 、B 、C 可以组成正四棱锥,求方案数为 .8. (2023天津卷T11)在(2x 3-x1)6的展开式中,x 2项的系数为 . 概率与统计1. (2023甲卷理科T6)有50人报名足球俱乐部,60人报名乒乓球俱乐部,结束70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球,俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.12. (2023甲卷文科T4)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为3. (2023乙卷理科T5,文科T7)设O 为平面坐标系的坐标原点,在区域{(x,y)|1≤x 2+y 2≤4}内随机取一点,记该点为A,则直线OA 的倾斜角不大于4的概率为 ( )4. (2023乙卷文科T9)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A. B. C. D.5. (2023新一卷T 9)有一组样本数据x 1,x 2,…,x 6,其中x 1是最小值,x 6是最大值,则A.x 2,x 3,x 4,x 5的平均数等于x 1,x 2,…,x 6的平均数B.x 2,x 3,x 4,x 5的中位数等于x 1,x 2,…,x 6的中位数C.x 2,x 3,x 4,x 5的标准差不小于x 1,x 2,…,x 6的标准差D.x 2,x 3,x 4,x 5的极差不大于x 1,x 2,…,x 6的极差6. (2023新二卷T12)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输,单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码:三次传输时,收到的信专中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)3D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率7.(2023上海卷T9)国内生产总值(GDP)是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP稳步增长,第一季度和第四季度的GDP分别为231和242,且四个季度GDP的中位数与平均数相等,则2020年GDP总额为8.(2023上海卷T14)根据身高和体重散点图,下列说法正确的是( )A.身高越高,体重越重B.身高越高,体重越轻C.身高与体重成正相关D.身高与体重成负相关9.(2023天津卷T7)调查某种群花萼长度和花瓣长度,所得数据如图所示,其中相关系数r ,下列说法正确的是( )0.8245A. 花瓣长度和花萼长度没有相关性B. 花瓣长度和花萼长度呈现负相关C. 花瓣长度和花萼长度呈现正相关D. 若从样本中抽取一部分,则这部分的相关系数一定是0.824510.(2023天津卷T13)甲乙丙三个盒子中装有一定数量的黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.11.(2023甲卷理科T19)为探究某药物对小鼠的生长作用,将40只小鼠均分为两组,分别为对照组(不药物)和实验组(加药物)(1)设其中两只小鼠中对照组小鼠数目为X,求X的分布到和数学期望:(2)测得40只小鼠体重如下(单位:g):(已按从小到大排好)对照组:17.3 18.4 20.1 20.4 21.5 23.2 24.6 24.8 25.0 25.426.1 26.3 26.4 26.5 26.8 27.0 27.4 27.5 27.6 28.3实验组:5.4 6.6 6.8 6.9 7.8 8.2 9.4 10.0 10.4 11.2,14.4 17.3 19.2 20.2 23.6 23.8 24.5 25.1 25.2 26.0(i)求40只小鼠体重的中位数m,并完成下面2×2列联表:(i)根据2×2列联表,能否有95%的把握认为药物对小鼠生长有抑制作用参考数据:12.(2023甲卷文科T19)一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g)试验,结果如下:对照组的小白鼠体重的增加量从小到大排序为:15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.132.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2试验组的小白鼠体重的增加量从小到大排序为7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.219.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5(1)计算试验组的样本平均数(2)(i)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表(∈)根据(∈)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()()22n ad bc a b c d a c b d χ-=++++13. (2023乙卷理科T17文科T17)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,y(i=1,2,…10),试验结果如下记zi=xi -yi(i=1,2,…,10),记z 1,z 2,…,z 1的样本平均数为z ,样本方差为s 2,(1)求z ,s 2 (2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥2102s ,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)14. (2023新一卷T21)甲、两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮,无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8,由抽签确定第1次投篮的人选,第一次投篮的人是甲,乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率:(3)已知:若随机变量x 服从两点分布,且P(x i =1)=1−P(x i =0)=q i,i=1,2,…,n,则∑∑=n i ni i i q X )(E ,.记前n 次(即从第1次到第n 次)投篮中甲投篮的次数为Y ,求E(Y)15. (2023新二卷T19)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图: 利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为p(c);误诊率是将患者判定为阳性的概率,记为q(c).假设数据在组内均匀分布,以事件发生的概率作为相应事件发生的概率(1)当漏诊率p(c)=0.5%时,求临界值c 和误诊案q(c);(2)设函数f(c)=p(c)+q(c).当c∈[95,105]时,求f(c)的解析式,并求f(c)在区间[95,105]的最小值16.(2023上海卷T19)21世纪汽车博览会在上海2023年6月7日在上海举行,下表为某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:(1)若小明从这些模型中随机拿一个模型,记事件A为小明取到的模型为红色外观,事件B取到模型有棕色内饰,求P(B)、P(B/A),并据此判断事件A和事件B是否独立(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:1、拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观内饰都异色、以及仅外观或仅内饰同色;2、按结果的可能性大小,概率越小奖项越高;(3)奖金额为一等奖600元,二等奖300元,三等奖150元,请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的数学期望。

排列组合概率选择题

排列组合概率选择题

概率测试题一、选择题:(5分×6)1、 书架上同一层任意立放着不同的10本书,那么指定的3本书连在一起的概率为()A 、1/15B 、1/120C 、1/90D 、1/302、 停车场可把12辆车停放在一排上,当有8辆车已停放后而恰有4个空位连在一起,这样的事件发生的概率为()A 、8127CB 、8128C C 、8129CD 、81210C 3、 甲盒中有200个螺杆,其中有160个A 型的,乙盒中有240个螺母,其中有180个A 型的,现从甲乙两盒中各任取一个,则能配成A 型的螺栓的概率为()A 、1/20B 、15/16C 、3/5D 、19/204、 一个小孩用13个字母:3个A ,2个I ,2个M ,2个J 其它C 、E 、H 、N 各一个作组字游戏,恰好组成“MA THEMATICIAN ”一词的概率为()A 、!824B 、!848C 、!1324D 、!1348 5、 袋中有红球、黄球、白球各1个,每次任取一个,有放回地抽取3次,则下旬事件中概率是8/9的是()A 、颜色全相同B 、颜色不全相同C 、颜色全不同D 、颜色无红色6、 某射手命中目标的概率为P ,则在三次射击中至少有1次未命中目标的概率为()A 、P 3B 、(1—P)3C 、1—P 3D 、1—(1-P)3二、填空题:(5分×4)1、某自然保护区内有几只大熊猫,从中捕捉t 只体检并加上标志再放回保护区,1年后再从这个保护区内捕捉m 只大熊猫(设该区内大熊猫总数不变)则其中有s 只大熊猫是第2次接受体检的概率是 。

2、某企业正常用水(1天24小时用水不超过一定量)的概率为3/4,则在5天内至少有4天用水正常的概率为 。

3、有6群鸽子任意分群放养在甲、乙、丙3片不同的树林里,则甲树林恰有3群鸽子的概率为 。

4、今有标号为1、2、3、4、5的五封信,另有同样标号的五个信封,现将五封信任意地装入五个信封中,每个信封一封信,则恰有两封信与信封标号一致的概率为 。

排列组合概率专题

排列组合概率专题

排列组合概率专题排列组合专题1、若从10,3,2,1 这10个数中任意取3个数,则这三个数互不相邻的取法有种。

2、某⾼中要安排6名实习⽼师到⾼⼆年级的三个⽂科班实习,每班2⼈,则甲在1班、⼄不在1班的不同分配⽅案共有种。

3、有6个⼈站成前后两排,每排3⼈,若甲、⼄两⼈左右、前后均不相邻,则不同的站法有。

4、⽤0,1,2,3,4,5组成没有重复数字的六位数中,相邻两位数字的奇偶性都不同的有个。

5、某农场有如图所⽰的六块⽥地,现有萝⼘、⽟⽶、油菜三类蔬菜可种。

为有利于农作物⽣长,要求每块⽥地种⼀类蔬菜,每类蔬菜种两块⽥地,每⾏、每列的蔬菜种各不相同,则不同的种植⽅法数为。

6、有9名翻译⼈员,其中6⼈只能做英语翻译,2⼈只能做韩语翻译,另外1⼈既可做英语翻译也可做韩语翻译,要从中选5个分别接待5个外国旅游团,其中两个旅游团需要韩语翻译,三个需要英语翻译,则不同的选派⽅法数为。

7、⽤红、黄、蓝三种颜⾊给如图所⽰的六连圆涂⾊,若每种颜⾊只能图两个圆,且相邻两个圆所涂颜⾊不能相同,则不同的涂⾊⽅案共有种。

8、某条道路⼀排共10盏路灯,为节约⽤电,晚上只打开其中的3盏灯。

若要求任何连续三盏路灯中⾄少⼀盏是亮的且⾸尾两盏灯均不打开,则这样的亮灯⽅法有。

9、6名⼤学毕业⽣到3个⽤⼈单位应聘,若每个单位⾄少录⽤其中⼀⼈,则不同的录⽤情况有种。

10、⼀个密码有9位,由4个⾃然数,3个“A ”以及1个“a ”和“b ”组成,其中A 与A 不相邻,a 和b 不相邻,数字可随意排列,且数字之积为6,这样的密码有个。

11、F E D C B A ,,,,,6个同学和1个数学⽼师站成⼀排合影留念,数学⽼师穿⽩⾊⽂化衫,B A ,和D C ,同学分别穿着⽩⾊和⿊⾊⽂化衫,E 和F 分别穿着红⾊和橙⾊⽂化衫。

若⽼师站中间,穿着相同颜⾊⽂化衫的都不相邻,则不同的站法有种。

12、设n a a a ,,21是n ,,2,1 的⼀个排列,把排在i a ⼩的数的个数称为),,2,1(n i a i =的顺序数,如在排列1,2,3,5,4,6中,5的顺序数为1;3的顺序数位0,则在1⾄8这8个数的排列中,满⾜8的顺序数为2, 7的顺序数为3, 5的顺序数为3的不同排列有种。

(完整版)排列组合概率练习题(含答案)

(完整版)排列组合概率练习题(含答案)

排列与组合练习题1.如图,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三个数,则至少有两个数位于同行或同列的概率是(A )37 (B )47 (C )114 (D )1314 答案:D解析:若取出3个数,任意两个不同行也不同列,则只有6种取法;而从9个数中任意取3个的方法是39C .所以39613114C -=. 2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有(A )6种 (B )9种 (C )11种 (D )13种答案:B解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为,,,a b c d ,则甲有三种拿卡片的方法,甲可以拿,,b c d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为,,badc bcda bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法.3.在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有(A )30个 (B )20个 (C )35个 (D )15个答案:A解析:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一的对角线交点,即在第一象限,适合题意.而这样的四边形共有302325=⋅C C 个,于是最多有30个交点.推广1:.在平面直角坐标系中,x 轴正半轴上有m 个点,y 轴正半轴上有n 个点,将x 轴正半轴上这m 个点和y 轴正半轴上这n 个点连成15条线段,这15条线段在第一象限内的交点最多有22m n C C ⋅个变式题:一个圆周上共有12个点,由这些点所连的弦最多有__个交点.答案:412C4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是(A )15 (B )25 (C )35 (D ) 45答案:B111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭解析:由古典概型的概率公式得522155222233232222=+-=A A A A A A A P . 5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34答案:A解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=. 6.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则(|)P B A =A .18B .14C .25D .12答案:B 解析:2()5P A =,1()10P AB =,()1(|)()4P AB P B A P A ==. 7.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为A .12 B .35 C .23 D .34 答案:D解析:由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率11132224P =+⋅=.所以选D . 8.如图,用K 、A 1、A 2三类不同的元件连成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为KA 2A 1A .0.960B .0.864C .0.720D .0.576答案:B解析:系统正常工作概率为120.90.8(10.8)0.90.80.80.864C ⨯⨯⨯-+⨯⨯=,所以选B.9.甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是(A )136 (B )19 (C )536 (D )16 答案:D解析:各自独立地从1到6号景点中任选4个进行游览有1111111166554433C C C C C C C C 种,且等可能,最后一小时他们同在一个景点有11111116554433C C C C C C C 种,则最后一小时他们同在一个景点的概率是11111116554433111111116655443316C C C C C C C p C C C C C C C C ==,故选D . 10.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n =( ) (A )415 (B )13 (C )25 (D )23答案:B解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C ==⨯=从选取个,.其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153m n ==. 11.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14B .13C .12D .23答案:C解析:显然ABE ∆面积为矩形ABCD 面积的一半,故选C .12.在204(3)x y +展开式中,系数为有理数的项共有 项.答案:6解析:二项式展开式的通项公式为20204412020(3)(3)(020)r r r r r r r r T C x y C x y r --+==≤≤要使系数为有理数,则r 必为4的倍数,所以r 可为0.、4、8、12、16、20共6种,故系数为有理数的项共有6项.13.集合{1,2,3,4,5,6,7,8,9,10}M =,从集合M 中取出4个元素构成集合P ,并且集合P 中任意两个元素,x y 满足||2x y -≥,则这样的集合P 的个数为____.答案:35解析:其实就是从1到10这十个自然数中取出不相邻的四个数,共有多少方法的问题.因此这样的集合P 共有4735C =个.14.在一个正六边形的六个区域栽种观赏植物,如右图所示,要求同一块中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,则有___种栽种方案.答案:732解析:共分三类:(1)A 、C 、E 三块种同一种植物;(2)A 、B 、C 三块种两种植物(三块中有两块种相同植物,而与另一块所种植物不同);(3)A 、B 、C 三块种三种不同的植物.将三类相加得732.15.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(I)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X 的期望()E X .解:(I )设A 表示事件“购买甲种保险”,B 表示购买乙种保险. ()A B A A B =并且A 与A B 是互斥事件,所以()()()0.50.30.8P A B P A P A B =+=+=答:该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8. (II )由(I )得任意1位车主两种保险都不购买的概率为()10.80.2p p A B ==-=. 又(3,0.2)XB ,所以()20E X =.所以X 的期望()20E X =.。

利用排列组合计算概率的练习题

利用排列组合计算概率的练习题

利用排列组合计算概率的练习题在数学中,排列组合是一种十分重要的概念,特别是在概率计算中。

通过掌握排列组合的知识和技巧,我们可以解决各种与概率有关的问题。

本文将通过一些练习题来展示如何利用排列组合计算概率。

练习题1:从10个不同的球中,随机取3个,计算取出的球至少有一个是红色的概率。

假设我们用R表示红色球,用B表示蓝色球,那么我们可以列出所有可能的组合:RBB, RBR, RRB, RRR, BBB, BBR, BRB, BRR共有8种可能的组合。

其中,有3种组合至少有一个红色球,它们是:RBB, RBR和RRR。

因此,取出的球至少有一个是红色的概率为3/8。

练习题2:一副扑克牌共有52张牌,从中随机取5张,计算取到的牌全为黑桃的概率。

在一副扑克牌中,有13张黑桃牌。

我们需要计算从13张黑桃牌中选取5张的可能性,以及从52张牌中选取5张的可能性。

首先,我们计算从13张黑桃牌中选取5张的可能性,即13选5。

这个可以通过排列组合公式来计算:13! / (5! * (13-5)!) = 1287。

接下来,我们计算从52张牌中选取5张的可能性,即52选5。

也可以使用排列组合公式来计算:52! / (5! * (52-5)!) = 2598960。

所以,取到的牌全为黑桃的概率为1287 / 2598960,约为0.000495。

练习题3:一个由0和1组成的4位数,以及一个由1和2组成的3位数,它们的百位、十位、个位各位上的数字都不相同,计算两个数相加等于300的概率。

我们需要计算满足条件的组合有多少种,以及总的组合有多少种。

首先,我们计算满足条件的组合数。

对于由0和1组成的4位数,百位不能为0,但可以为1,十位、个位不能为0或1,所以满足条件的组合数为1 * 2 * 1 * 1 = 2。

对于由1和2组成的3位数,百位和十位不能为1,所以满足条件的组合数为1 * 1 * 1 = 1。

因此,两个数相加等于300且满足条件的概率为2 / (2 * 1) = 1/2。

排列组合知识点归纳总结高考题

排列组合知识点归纳总结高考题

排列组合知识点归纳总结高考题编号一:排列组合基础知识在高考数学中,排列组合是一个重要的考点。

掌握排列组合知识对于解决相关题目至关重要。

本文将对排列组合的基础知识进行归纳总结,并配以高考题进行实例分析。

1. 排列排列是从若干个元素中取出一部分元素,按照一定的顺序进行排列,形成不同的序列。

排列有两种情况:有重复元素的排列和无重复元素的排列。

1.1 有重复元素的排列当从 n 个元素中取出 r 个进行排列时(r ≤ n),若这些元素中有重复元素,则排列的总数为 P(n;r) = n! / (n1! × n2! × ... × nr!),其中 ni 表示第 i 个元素的个数。

【例题1】:某班上有 10 名学生,其中 5 名男生和 5 名女生,现要从这 10 人中选出 3 人组成一支足球队。

求不同的组队方案数。

解:由于男生和女生分别占一定数量,该问题属于有重复元素的排列。

根据公式可知,解法为 P(5;3) = 5! / (2! × 3!) = 10 种。

1.2 无重复元素的排列当从 n 个不同元素中取出 r 个进行排列时(r ≤ n),排列的总数为P(n;r) = n! / (n-r)!。

【例题2】:有 9 个不同的球队参加一场篮球比赛。

其中第一名和第二名分别获得冠军和亚军。

请问这 9 支球队的比赛有多少种可能的结果?解:由于每个球队的位置是不同的,问题属于无重复元素的排列。

根据公式可知,解法为 P(9;2) = 9! / 7! = 72 种。

2. 组合组合是从若干个元素中取出一部分元素,不考虑顺序,形成不同的组合。

同样地,组合也有两种情况:有重复元素的组合和无重复元素的组合。

2.1 有重复元素的组合当从 n 个元素中取出 r 个进行组合时(r ≤ n),若这些元素中有重复元素,则组合的总数为 C(n;r) = (n+r-1)! / (r! × (n-1)!)。

排列组合的试题及答案高中

排列组合的试题及答案高中一、选择题1. 从5个不同的小球中取出3个进行排列,共有多少种不同的排列方式?A. 20种B. 60种C. 120种D. 240种2. 有5个人排成一排,其中甲乙两人必须相邻,共有多少种不同的排法?A. 48种B. 60种C. 120种D. 240种二、填空题3. 用0,1,2,3,4这五个数字组成没有重复数字的三位数,其中个位数字为1的共有多少个?4. 某班有10名同学,需要选出3名代表,有多少种不同的选法?三、解答题5. 某公司有10名员工,需要选出5名员工组成一个工作小组,要求其中至少有1名女性员工。

如果公司中有5名女性员工和5名男性员工,问有多少种不同的组合方式?6. 某校有5个社团,每个学生最多可以参加2个社团,问有多少种不同的参加方式?答案一、选择题1. 答案:B解析:从5个不同的小球中取出3个进行排列,使用排列公式A_{5}^{3} = 5 × 4 × 3 = 60。

2. 答案:A解析:将甲乙两人看作一个整体,有4!种排法,再将甲乙两人内部排列,有2!种排法,所以总共有4! × 2! = 48种排法。

二、填空题3. 答案:18解析:首先确定百位,有4种选择(不能选0和1),然后确定十位,有3种选择(不能与百位相同),最后确定个位为1,所以共有 4 × 3 = 12种。

但是,由于0不能作为百位,所以需要减去3种情况,最终答案为 12 - 3 = 9种。

4. 答案:120解析:从10个人中选出3个人,使用组合公式 C_{10}^{3} = 10! / (3! × (10 - 3)!) = 120。

三、解答题5. 答案:252种解析:首先计算所有可能的组合数,即 C_{10}^{5} = 252。

然后计算没有女性员工的组合数,即 C_{5}^{5} = 1。

所以至少有1名女性员工的组合数为 252 - 1 = 251。

(完整版)排列组合高考真题及答案

1•将标号为1, 2, 3, 4, 5, 6的6张卡片放入3个不同的信圭寸中.若每个 信封放2张,其中标号为1, 2的卡片放入同一信封,则不同的方法共有 【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力 .【解析】标号1,2的卡片放入同一封信有4种方法;其他四封信放入两个信 封,每个信封两个有圧’种方法,共有'M “ 种,故选B.2.某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每 天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日, 则不同的安排方法共有(A ) 30 种 (C ) 42 种 解析:法一:所有排法减去甲值 14日或乙值16日,再加上甲值14日且乙值16日的排法即 C ;C : 2 C ;C : C :C 3=42法二:分两类甲、乙同组,贝y 只能排在15日,有C :=6种排法3.某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天, 若7位员工中的甲、乙排在相邻两天,丙不排在 10月1日,丁不排在10月 7日,则不同的安排方案共有(A 12 种种【答案】B(B ) 18 种 (C ) 36 种 (D )54 (B ) 36种(D ) 48 种A. 504 种B. 960 种C. 1008 种D.1108种解析:分两类:甲乙排1、2号或6、7号共有2 A2A4A:种方法甲乙排中间, 丙排7 号或不排7 号,共有4A22( A44A31A31A33)种方法故共有1008 种不同的排法4.8 名学生和2 位第师站成一排合影,2 位老师不相邻的排法种数为(A)A88A92(B)A88C92(C)A88A72(D)A88C72答案:A5. 由1、2、3、4、5、6 组成没有重复数字且1、3 都不与5 相邻的六位偶数的个数是(A)72 (B)96 (C)108 (D)144解析:先选一个偶数字排个位,有3 种选法①若5在十位或十万位,则1、3有三个位置可排,3A;A; = 24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共3A|A2 =12个算上个位偶数字的排法,共计3(24 + 12)= 108个答案:C6. 如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用(A)288 种(B)264 种(C)240 种(D)168 种【答案】D【解析】本题主要考查排列组合的基础知识与分类讨论思想,属于难题。

高中数学排列组合及概率统计习题

高中数学排列组合及概率统计习题高中数学必修排列组合和概率练习题一、选择题(每小题5分,共60分)⑴ 已知集合A={1,3,5,7,9,】1}, B={1,7,】7}.试以集合A 和B 中各取一个数作为点的坐标,在同一直角坐标系中所确定的不同点的个数是C(A) 32(B) 33(C) 34解分别以{1,3,5,7,9,11}和{1,7,11}的元素为'和y 坐标,不同点的个数为以?厅分别以{1,3,5,7,941)和(1,7,11)的元素为),和x 坐标,不同点的个数为P ;?P ;不同点的个数总数是4'?4'+E :?R'=36,其中重复的数据有(1,7),(7,1),所以只有34个(2)从】,2, 3,9这九个数学中任取两个,其中一个作底数,另一个作直数,则可以得到不同的对数值的个数为(A) 64(B) 56(C) 53(D) 51① 从】,2, 3, 9这九个数学中任取两个的数分别作底数和直数的“对数式”个数为2P ;;② 1不能为底数,以1为底数的“对数式”个数有8个,而应减去;③ 1为直数时,对数为0,以】为直数的“对数式”个数有8个,应减去7个;警拦。

鬼=2 1。

&2 = 1心蓦 1。

&3 = 1。

&9 iog 23 = log 49 所示求不同的对数值的个数为2C, 8 - 7 - 4 = 53(个)四名男生三名女生排成一排,若三名女生中有两名站在一起,但三名女生不能全排在一起,则不同的排法数有(A) 3600(B) 3200(C) 3080①三名女生中有两名站在一起的站法种数是P ;;②将站在一起的二名女生看作1人与其他5人排列的排列种数是段,其中的三名女生排在一起的站法应减去。

站在一起的二名女生和另一女生看作1人与4名男生作全排列,排列数为P ;,站在一起的二名女生和另一女生可互换位置的排列,故三名女生排在一起的种数是P ;P ; o 符合题设的排列数为:/>2(A>6-/>1^5) = 6x(6x5x4x3x2-2x5x4x3x2) = 24x5x4x3x2 = 2880(#)我的做法用插空法,先将4个男生全排再用插空=2880 (4)由(妊+扼严展开所得x 多项式中,系数为有理项的共有(A) 50 项(B) 17 项 (C)】6 项(D) 15 项解(屈+扼),00=(4)(屈)M 扁Mx )g (*)「+.? M'SSy 00__100-r r3(】()0-r) 2r300-r可见通项式为:%(屈严 >-'(咨)「== %6一^+*岫"=%6 W 00-'旦当^,6,12,18,...,96时,相应项的系数为有理数,这些项共有17个,故系数为有理项的共有17个.(5) 设有甲、乙两把不相同的锁,甲锁配有2把钥匙,乙锁配有2把钥匙,这4把钥匙与不能开这两把锁的2把钥匙混在一起,从中任取2把钥匙能打开2把锁的概率是(A) 4/15(B) 2/5(C) 1/3(D) 2/3解从6把钥匙中任取2把的组合数为P :,若从中任取的2把钥匙能打开2把锁,则取出的必是甲锁(D) 36(D) 2880. 资料. ...的2把钥匙之一和乙锁的2把钥匙之一。

多省事业单位联考---排列组合概率题历年真题汇总解析

多省事业单位联考---排列组合概率题历年真题汇总知识点:1.概率=满足条件的情况➗总的情况2.排列组合公式:历年真题:1.某单位派甲、乙两名选手组队参加乒乓球比赛,其中甲每场比赛均有40%的可能性获胜,乙每场比赛均有70%的可能性获胜。

现安排甲参加1场比赛,乙参加2场比赛,总计获胜2场及以上即可出线。

问该单位代表队出线的概率为:A.48.8%B.56.4%C.61.4%D.65.8%2.某论坛上午举办甲会议,下午举办乙会议。

报名参加甲会议和乙会议的人次之和正好为520。

已知甲会议共报名240人。

且报名参加甲会议的人中有一半报名参加乙会议,问仅报名参加乙会议的人数约占至少报名参加2个会议之一总人数的:A.30%B.40%C.50%D.60%3.五一劳动节将至,某单位为表彰劳模,特准备了6种奖品用于表彰先进个人,已知每种奖品都足够多,劳模们可以选择任意三种奖品,问两位劳模拿到的奖品种类完全一样的概率是多少?A.5%B.2.5%C.0.5%D.0.25%4.某企业排班调休,每名职工在下个星期的七天内随机安排两天休息,问职工小韩和小李被安排的休息日完全相同的概率为()。

1/71/141/151/215.某公司推出4款杯子,分别为陶瓷杯、玻璃杯、木质杯和不锈钢杯。

现将4个杯子放进展柜排成一排展示,要求玻璃杯不能放在两端,木质杯和不锈钢杯不能相邻,那么可能会出现多少种排列方式?()A.8B.12C.16D.206.企业安排6名技术专家负责5个数据中心的网络安全工作,其中每个数据中心均安排至少1人负责,问有多少种不同的安排方式?()A.900B.1800C.3600D.72007.某事业单位阅览室书架上有党建类书籍11本。

专业书籍8本,内部学习材料汇编7本。

现从中任取3本,三种类型图书恰好各一本的概率为:A.33/520B.77/325C.88/325D.99/6508.某单位有甲、乙、丙三个办公室,分别有3名,2名和1名党员,现每天从党员中随机选出1人参加志愿者服务,但相邻两天选出的党员不能来自同一办公室,问第一天和第三天参加志愿者服务的党员来自同一办公室或为同一人的概率为()A.小于0.3B.0.3--0.5C.0.5--0.7之间D.大于0.7h。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近年排列组合、概率高考题(选择填空题)排列组合2006年全国Ⅰ卷理(12)设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有(B)(A)50种(B)49种(C)48种(D)47种2006年全国Ⅱ卷文(12)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有(A )(A)150种(B)180种(C)200种(D)280种2006年北京卷理(3)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有B(A)36个(B)24个(C)18个(D)6个2006年北京卷文(4)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有A(A)36个(B)24个(C)18个(D)6个2006年天津卷理5、将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有(A)A.10种B.20种C.36种D.52种2006年湖南卷理6. 某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有DA.16种B.36种C.42种D.60种2006年湖南卷文6.在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是B(A)6 (B)12 (C)18(D)242006年山东卷理9.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为A(A) 33 (B) 34 (C) 35 (D) 362006年重庆卷文(9)高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是B(A)1800 (B)3600 (C)4320 (D)50402006年全国Ⅰ卷理(15)安排7位工作人员5月1日至5月7日值班,每人值班一天,其中甲、乙两人不安排在5月1日和5月2日,不同的安排方法数共有____.24002006年湖北卷理14.某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,又工程丁必须在工程丙完成后立即进行,那么安排这6项工程的不同排法种数是_____________.(用数字作答) 20 2006年湖北卷文14.安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的种数是 .(用数字作答) 78 2006年江苏卷13.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有1260种不同的方法(用数字作答). 2006年辽宁卷理15.5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1,2号中至少有1名新队员的排法有________种. 48 2006年辽宁卷文(16)5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员至少有1名老队员,且1、2号中至少有1名新队员的排法有__________种.(以数作答) 48 2006年山东卷文(13)某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是 . 150 2006年陕西卷理16.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有__600_种(用数字作答). 2005年北京理(7)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为A(A )484121214C C C (B )484121214A A C (C )33484121214A C C C (D )33484121214A C C C 2005年北京文(8)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有B(A )4414C C 种 (B )4414A C 种 (C )44C 种 (D )44A 种 2005年福建理9.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( B ) A .300种 B .240种C .144种D .96种2005年江苏(12)四棱锥的8条棱代表8种不同的化工产品,有公共顶点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为B(A ) 96 (B ) 48 (C ) 24 (D ) 0 2005年湖南理9.4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是( B ) A .48 B .36C .24D .182005年湖南文7.设直线的方程是0=+By Ax ,从1,2,3,4,5这五个数中每次取两个不同的数作为A 、B 的值,则所得不同直线的条数是 ( C ) A .20 B .19C .18D .162005年湖北文9.把同一排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少1张,至多2张,且这两张票具有连续的编号,那么不同的分法种数是DA .168B .96C .72D .144 2005年江西文7.将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为(A )A .70B .140C .280D .8402005年全国乙理(15) 在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有___192__个. 2005年全国丙文(15)从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有 100 种. 2005年广东(14)设平面内有n条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三角形不过同一点.若用f (n )表示这n条直线交点的个数,则f (4) _____________;当n >4时,f (n )=_____________.5, )1)(2(21+-n n 2005年浙江理(14) 从集合{O ,P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O 、Q 和数字0至多只出现一个的不同排法种数是 8424 (用数字作答). 2005年辽宁15.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不.相邻,这样的八位数共有 576 个.(用数字作答) 2005年北京春季理(13)从-1,0,1,2这四个数中选三个不同的数作为函数f (x )=ax 2+bx +c 的系数,可组成不同的二次函数共有____ 18 ____个,其中不同的偶函数共有___6____个.(用数字作答) 2004年全国西理文(12)在由数字1、2、3、4、5组成的所有没有重复数字的五位数中,大于23145且小于43521的数共有 C(A)56个 (B)57个 (C)58个 (D)60个 2004年新甘宁理9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 B(A)210种(B)420种(C)630种(D)840种2004年现行理(12) 4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( C )(A) 12 种 (B) 24 种 (C) 36 种 (D) 48 种2004年现行文(12) 将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有(C )(A) 12 种 (B) 24 种 (C) 36 种 (D) 48 种2004年北京理(7)从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n 种.在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m ,则nm等于 B (A)101 (B)51 (C)103 (D)52 2004年北京文(5)从长度分别为1,2,3,4的四条线段中,任取三条的不同取法共有n 种.在这些取法中,以取出的三条线段为边可组成的三角形的个数为m ,则nm等于 B (A)0 (B)41 (C)21 (D)43 2004年北京春季理文(9)在100件产品中有6件次品.现从中任取3件产品,至少有1件次品的不同取法的种数是 A(A)29416C C(B)29916C C(C)29416P P (D)3943100C C 2004年福建理(6)某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为 B(A)2426C A (B)242621C A (C)2426A A (D)262A 2004年湖北理(14)将标号为1,2,…10的10个放入标号为1,2,…10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入的方法共有 种.(以数字作答) 240 2004年湖北文(11)将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒子放一个球,恰好有3个球的标号与其所在盒子的标号不一致的放入方法种数为 B (A)120 (B)240(C)360(D)7202004年江苏3.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( D )(A )140种 (B )120种 (C )35种 (D )34种 2004年辽宁12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不.左右相邻,那么不同排法的种数是 B (A)234(B)346(C)350(D)3632004年天津文16. 从0,1,2,3,4,5中任取3个数字,组成没有重复数字的三位数,其中能被5整除的三位数共有 个.(用数字作答)36 1992年理科(21)设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则ST的值为___________________________.12815 1993年理科(17)将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不相同的填法有(B) (A) 6种 (B) 9种(C) 11种(D) 23种1993年理科(20)从1,2,…,10这十个数中取出四个数,使它们的和为奇数,共有______________种取法(用数字作答).100 1994年理科(10)有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担.从10人中选派4人承担这三项任务,不同的选法共有( C ) (A) 1260种 (B) 2025种(C) 2520种(D) 5040种1995年13.用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共( A )(A) 24个 (B) 30个(C) 40个(D) 60个1995年20.四个不同的小球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法共有 种(用数字作答).144 1996年(17)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个(用数字作答).32 1997年15.四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有 (D)(A) 150种 (B) 147种(C) 144种(D) 141种1998年(11)3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( D )(A) 90种 (B) 180种(C) 270种(D) 540种1999年14.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有 C (A) 5种 (B) 6种 (C) 7种 (D) 8种 1999年16.在一块并排10垄的田地中,选择2垄分别种植A 、B 两种作物,每种作物种植一垄,为有利于作物生长,要求A 、B 两种作物的间隔不小于6垄,则不同的选垄方法共有___________种(用数字作答). 12 2000年(6)《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表分段累进计算:某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得介于 C (A) 800~900元 (B) 900~1200元 (C) 1200~1500元 (D) 1500~2800元2000年(13)乒乓球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_____种(用数字作答). 252 2001年(12) 如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为 D(A) 26 (B) 24 (C) 20(D) 192001年(16)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为 .2n (n -1) 2002年北京(9)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有(A)4448412C C C 种(B)34448412C C C 种(C)3348412P C C 种(D)334448412P C C C 种2002年全国(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A)8种 (B)12种(C)16种(D)20种2003年北京春季(9)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 A(A)42 (B)30 (C)20 (D)12 2003年安徽春季9.某校刊设有9门文化课专栏,由甲、乙、丙三位同学每人负责3个专栏,其中数学专栏由甲负责,则不同的分工方法共有( B ) A .1680种 B .560种C .280种D .140种2003年北京理文8.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有 B A .24种B .18种C .12种D .6种2003年必修理(15)、必修文、广东(16)如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 72 种.(以数字作答)2003年新课程理、江苏、辽宁 (15)某城市在中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有___120__种.(以数字作答)穷举 ,分析后才用乘法原理 2003年文(16)将3种作物种植在如图5块试验田里,每块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有______42________种.(以数字作答)● ● ●● 概率和统计2006年安徽卷文(12)在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰..三角形的概率为C A .17B .27 C .37 D .472006年福建卷理(6)在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于AA .72 B .83 C .73 D .289 2006年湖北卷文5. 甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件. 那么BA .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件 2006年江苏卷3.某人5次上班途中所花时间(单位:分钟)分别为x 、y 、10、11、9.已知这组数据的平均数为10,方差为2,则∣x −y ∣的值为(D )(A )1 (B )2 (C )3 (D )4 2006年江苏卷10.右图中有一个信号源和5个接收器,接收器与信号源在同一个串联线路中时,就能接收到123456信号,否则就不能收到信号.若将图中左端的六个接线点随机地平均分成三组,再把所得六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是(D ) (A )454 (B )361 (C )154 (D )158 2006年江西卷理10. 将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a 、p的值分别为(A ) A.a =105 521p = B .a =105 421p = C .a =210 521p = D .a =210 421p = 2006年江西卷文8.袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为(A )A .12344812161040C C C C C B.21344812161040C C C C C C.23144812161040C C C C C D.13424812161040C C C C C 2006年四川卷理12. 从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,这个数不能被3整除的概率为 B(A )1954(B )3554 (C )3854 (D )41602006年四川卷文5.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生B (A )30人,30人,30人 (B )30人,45人,15人 (C )20人,30人,10人 (D )30人,50人,10人 2006年重庆卷理(6)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁--18岁的男生体重(kg ) ,得到频率分布直方图如下:C根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是 (A )20 (B )30 (C )40 D )50 2006年重庆卷文(7)某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家为了掌握各商店的营业情况,要从中抽取一个容量为20的样本若采用分层抽样的方法,抽取的中型商店数是C体重(kg)(A )2 (B )3 (C )5 (D )13 2006年全国Ⅱ卷理(16)一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出 人.252006年上海卷理9.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是(结果用分数表示)________.3512006年上海卷文10、在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是______(结果用分数表示).3314 2006年福建卷理(15) 一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是 942006年湖北卷理12. 接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为_______________.(精确到0.01) 0.94 2006年湖南卷文12. 某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是 分. 85 2006年四川卷理14. 设离散型随机变量ξ可能取的值为1,2,3,4.P (ξ=k )=ak +b (k =1,2,3,4),又ξ的数学期望E ξ=3,则a +b =______________.1102005年天津理7、某人射击一次击中的概率是0.6,经过3次射击,此人至少有两次击中目标的概率为AA 、12581 B 、 12554C 、12536D 、12527 2005年广东(8)先后抛掷两枚均匀的正方体股子(它们的六个面分别标有点数1、2、3、4、5、6),股子朝上的面的点数分别为x ,y ,则log 2x y =1的概率为C (A )16 (B )536(C)112 (D )12 2005年浙江文(6) 从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到的号码为奇数的频率是A (A ) 0.53(B ) 0.5(C ) 0.47(D ) 0.372005年江苏(7)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.48.49.49.99.69.49.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差为:D(A ) 9.4,0.484 (B ) 9.4,0.016 (C ) 9.5,0.04 (D ) 9.5,0.016 2005年湖北理11.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:① 7,34,61,88,115,142,169,196,223,250; ② 5,9,100,107,111,121,180,195,200,265; ③ 11,38,65,92,119,146,173,200,227,254; ④ 30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 (D ) A .②、③都不能为系统抽样 B .②、④都不能为分层抽样 C .①、④都可能为系统抽样 D .①、③都可能为分层抽样2005年湖北理12.以平行六面体ABCD —A 'B 'C 'D '的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率p 为 (A ) A .385367B .385376C .385192D .385182005年江西理12.将1,2,…,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为(A )A .561 B .701 C .3361 D .4201 2005年江西文12.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a , b 的值分别为(A )A .0,27,78B .0,27,83C .2.7,78D .2.7,83 2005年山东理(9) 10张奖券中只有3张有奖,5个人购买,每人1张,至少有1人中奖的概率是D(A )103 (B )121 (C )21 (D )12112005年辽宁3.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为(D )A .10100610480C C C ⋅ B .10100410680C C C ⋅ C .10100620480C C C ⋅ D .10100420680C C C ⋅ 2005年全国甲理(15)设l 为平面上过(0,1)的直线, l 的斜率等可能地取,25,3,22---22,3,25,0,用ξ表示坐标原点到l 的距离,由随机变量ξ的数学期望E ξ=__74__. 2005年全国甲文(13)经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多 3 人. 2005年上海理8、某班有50名学生,其中15人选修A 课程,另外35人选修B 课程.从班级中任选两名学生,他们是选修不同课程的学生的概率是__________.(结果用分数表示) 73 2005年天津理15、某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%,一旦失败,一年后将丧失全部资金的50%,下表是过去200例类似项目开发的实施结果:则该公司一年后估计可获收益的期望是___4760__(元). 2005年天津文(16)在三角形的每条边上各取三个分点(如图).以这9个分点为顶点可画出若干个三角形.若从中任意抽取一个三角形,则其三个顶点分别落在原三角形的三条不同边上的概率为____________(用数字作答).31 2005年重庆理15.某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为 12845. 2005年重庆文15.若10把钥匙中只有2把能打开某锁,则从中任取2把能将该锁打开的概率为4517.2005年湖南理11.一工厂生产了某种产品16800件,它们来自甲.乙.丙3条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲.乙.丙三条生产线抽取的个体数组成一个等差数列,则乙生产线生产了 5600 件产品. 2005年山东文(13)某学校共教师490人,其中不到40岁的有350人,40岁及以上的有140人.为了解普通话在该校教师中的推广普及情况,用分层抽样方法,从全体教师中抽取一个容量为70人的样本进行普通话水平测试,其中在不到40岁都中应抽取的人数是__50______. 2005年上海春季6. 某班共有40名学生,其中只有一对双胞胎,若从中一次随机抽查三位学生的作业,则这对双胞胎的作业同时被抽中的概率是 2601(结果用最简分数表示). 04年全国东理(11)从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 DA .13125B .12516C .12518D .1251904年全国东、新甘宁文(11)从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是 CA .95 B .94 C .2111 D .211004年全国西理13. 从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为: 0.1,0.6,0.304年福建文15.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =6,则在第7组中抽取的号码是 63 . 04年广东(6)一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是 D(A)0.1536 (B)0.1808 (C)0.5632 (D)0.9728 04年广东(13)某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是75(用分数作答) 04年湖北理(13)设随机变量ξ的概率分布为ka k P 5)(==ξ,a 为常数,则k =1,2…,则a = 4 .04年湖北文(15)某校有教师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本;已时间(小时)知从女学生中抽取的人数为80人,则n = 192 . 04年湖南理文(5)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①:在丙地区中有20个特大型销焦点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为,则完成①、②这两项调查宜采用的抽样方法依次是 B (A)分层抽样法,系统抽样法 (B)分层抽样法,简单随机抽样法 (C)系统抽样法,分层抽样法 (D)简单随机抽样法,分层抽样法 04年湖南理文(11)农民收入由工资性收入和其它收入两部分构成.2003年某地区农民人均收入为3150元(其中工资性收入为1800元,其它收入为1350元), 预计该地区自2004年起的5 年内,农民的工资性收入将以每年6%的年增长率增长,其它收入每年增加160元。

相关文档
最新文档