高中数学排列组合概率练习题

合集下载

【高中数学】排列组合概率(排列组合)选择题A

【高中数学】排列组合概率(排列组合)选择题A

YOU WIN 教学帮你会,不留疑问助你赢。

用方法注解效率 用行动助推梦想 用效果诠释责任A1.函数f:|1,2,3|→|1,2,3|满足f(f(x))= f(x),则这样的函数个数共有 ( D )(A)1个 (B)4个 (C)8个 (D)10个2.过平行六面体ABCD-A 1B 1C 1D 1任意两条棱的中点作直线,其中与平面DBB 1D 1平行的直线共有 ( D )A.4条B.6条C.8条D.12条3.某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( D )A.16种B.36种C.42种D.60种4.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有(B)(A )36个 (B )24个(C )18个 (D )6个5 .在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有( C )种.(A )34A (B )34 (C )43 (D )34C6.5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为( B . )(A )480 种 (B )240种 (C )120种 (D )96种 7 . 某交通岗共有3人,从周一到周日的七天中,每天安排一人值班,每人至少值2天,其不同的排法共有( D )种.(A )5040 (B )1260 (C )210 (D )6308. 用数字0,1,2,3,4组成没有重复数字的比1000大的奇数共有(D )(A )36个 (B )48个 (C )66个 (D )72个9.现有1角、2角、5角、1元、2元、5元、10元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是( D )(A)1024种 (B)1023种 (C)1536种 (D)1535种10 .现有8个人排成一排照相,其中有甲、乙、丙三人不能相邻的排法有( B )种.(A )5536A A ⋅ (B )336688A A A ⋅- (C )3335A A ⋅ (D )4688A A -11. 高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( C ).(A )16种 (B )18种 (C )37种 (D )48种。

排列组合二项式定理概率单元测试卷 人教版

排列组合二项式定理概率单元测试卷  人教版

排列组合、二项式定理、概率单元测试卷一、选择题(每题5分,计60分)1.从7人中选派5人到10个不同交通岗的5个中参加交通协管工作,则不同的选派方法有( )A 、5551057A A C 种 B 、5551057P C A 种 C 、57510C C 种 D 、51057A C2.某乒乓球队共有男女队员18人,现从中选出男女队员各一人组成一对双打组合,由于男队员中有两人主攻单打项目,不参与双打组合,这样共有64种组合方式,则此队中男队员的人数有( )A 、10人B 、8人C 、6人D 、12人3.设34)1(6)1(4)1(234-+-+-+-=x x x x S ,则S 等于( )A 、x 4B 、x 4+1C 、(x-2)4D 、x 4+44.学校要选派4名爱好摄影的同学中的3名参加校外摄影小组的3期培训(每期只派1名),由于时间上的冲突,甲、乙两位同学都不能参加第1期培训,则不同的选派方式有( )A 、6种B 、8种C 、10种D 、12种5.甲、乙、丙三个同学在课余时间负责一个计算机房周一至周六的值班工作,每天1人值班,每人值班2天。

如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有( )A 、36种B 、42种C 、50种D 、72种6.现有甲、乙两骰子,从1点到6点出现的概率都是1/6,掷甲、乙两颗骰子,设分别出现的点数为a 、b 时,则满足aa b a 10|2|2<-<的概率为( )A 、181B 、121C 、91D 、617.(1-2x)7展开式中系数最大的项为( )A 、第4项B 、第5项C 、第7项D 、第8项8.在一次足球赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分。

积分多的前两名可出线(积分相等则要比净胜球数或进球总数),赛完后,一个队的积分可出现的不同情况种数为( )A 、22B 、23C 、24D 、259.若n xx )13(3+)(*∈N n 展开式中含有常数项,则n 的最小值是( )A 、4B 、3C 、12D 、1010..n ∈N ,A =(7+2)2n+1,B 为A 的小数部分,则AB 的值应是( ) A.72n+1 B.22n+1 C.32n+1 D.52n+111.若一个m 、n 均为非负整数的有序数对(m ,n ),在做m+n 的加法时,各位均不进位则称(m ,n )为“简单的有序实数对”,m+n 称为有序实数对(m ,n )之值。

高二数学排列组合和概率测试卷

高二数学排列组合和概率测试卷

排列组合和概率测试卷姓名 成绩一、选择题(本大题共10个小题;每小题4分;共40分;每题给出的四个选项中有且只有一个是符合题目要求的)1.把9个人分成前后三排;每排3人;排法种数为 ( )(A )3639A A ⋅ (B )99A (C )33333639A A A A ⋅⋅⋅ (D )以上都不对 2.*,N n m ∈;且它们最大公约数等于60;则n m ,的公约数的个数为 ( )(A )12 (B )14 (C )16 (D )183.用四个数字7542、、、组成没有重复数字的四位数;再将这些四位数按照从小到大的顺序排列成一个数列;则这个数列的第17项是 ( )(A )4527 (B )5724 (C )5742 (D )72454.用五种不同的颜色给如图的四个区域涂色;每个区域涂一种颜色;相邻的区域涂不同的颜色;则涂色的方法共有( ) (A )96种 (B )120种 (C )192种 (D )240种5.,)1()1()1(505022105043x a x a x a a x x x +++=++++++其中3a 是( )(A )451C (B )450C (C )351C (D )3502C6.从集合},,,,{54321a a a a a A =到集合},,,,{54321b b b b b B =作一一映射;若1a 的象不是51,b b 的原象不是5a ;则这样的一一映射有 ( ) (A ))(331355A A A -个 (B ))(334414A A A -个(C ))(441455A A A -个 (D ))2(334455A A A +-个7.若),(*121221421N k C C C k k k ∈<<---则k 的取值范围是 ( )(A )]11,5[ (B )]13,4[ (C )]12,4[ (D )]11,4[8.从全体3位整数中任取一数;则此数以2为底的对数也是正整数的概率为 ( )(A )2251 (B )3001 (C )4501 (D )以上全不对 9.设1510105)(2345++-+-=x x x x x x f ;则)(x f 的反函数)(1x f -等于( )(A )521-+x (B )51x + (C )521-+-x (D )521--x,5,2,1,0,7,9--这6个数中;任取3个不同的数;分别作为函数c bx ax y ++=2中的c b a ,,的值;其中所得的函数恰为偶函数的概率是 ( )(A )61 (B )21 (C )31 (D )73 二、填空题(本大题共5个小题;每小题4分;共20分) 11.制作某种零件;必须经过5道加工工序;若其中甲工序必须排在乙工序之前;丙工序必须排在乙工序之后(都不一定相连);则加工流程共有 种。

数学概率(排列组合)练习题(含答案)

数学概率(排列组合)练习题(含答案)

数学概率(排列组合)练习题(含答案)1.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、文综4科的专题讲座,每科一节课,每节至少有一科,且数学、文综不安排在同一节,则不同的安排方法共有.2.从4名男生4名女生中选3位代表,其中至少两名女生的选法有种.3.用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有个(用数字作答).4.将一个白球,一个红球,三个相同的黄球摆放成一排,则白球与红球不相邻的放法有.5.用1、2、3、4、5、6六个数组成没有重复数字的六位数,其中5、6均排在3的同侧,这样的六位数共有个(用数字作答).6.某工厂将4名新招聘员工分配至三个不同的车间,每个车间至少分配一名员工,甲、乙两名员工必须分配至同一车间,则不同的分配方法总数为(用数字作答).7.用4种颜色给一个正四面体的4个顶点染色,若同一条棱的两个端点不能用相同的颜色,那么不同的染色方法共有_____________种。

8.数字1,2,3,4,5,6按如图形式随机排列,设第一行的数为N1,其中N2,N3分别表示第二、三行中的最大数,则满足N1&lt;N2&lt;N3的所有排列的个数是________.9. 4名男生和2名女生站成一排照相,要求男生甲不站在最左端,女生乙不站在最右端,有种不同的站法.(用数字作答)10.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有种(用数字作答)122名女生中选派4人参加社区服务,如果要求至少有1名女11生,那么不同的选派方案种数为.(用数字作答)13.将7个市三好学生名额分配给5个不同的学校,其中甲、乙两校至少各有两个名额,则不同的分配方案种数有 _________ .xx2x?214.方程C17-C16=C16的解集是________.15.从4名男生、3名女生中任选3人参加一次公益活动,其中男生、女生均不少于1人的组合种数为(用数字作答).16.从4名同学中选出3人,参加一项活动,则不同的选方法有种(用数据作答);17.从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有________种.18.将6位志愿者分配到甲、已、丙3个志愿者工作站,每个工作站2人,由于志愿者特长不同,A不能去甲工作站,B只能去丙工作站,则不同的分配方法共有__________种.19.现有一大批种子,其中优良种占30℅,从中任取8粒,记X为8粒种子中的优质试卷第1页,总9页。

(完整版)排列组合概率练习题(含答案)

(完整版)排列组合概率练习题(含答案)

排列与组合练习题1.如图,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三个数,则至少有两个数位于同行或同列的概率是(A )37 (B )47 (C )114 (D )1314 答案:D解析:若取出3个数,任意两个不同行也不同列,则只有6种取法;而从9个数中任意取3个的方法是39C .所以39613114C -=. 2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有(A )6种 (B )9种 (C )11种 (D )13种答案:B解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为,,,a b c d ,则甲有三种拿卡片的方法,甲可以拿,,b c d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为,,badc bcda bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法.3.在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有(A )30个 (B )20个 (C )35个 (D )15个答案:A解析:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一的对角线交点,即在第一象限,适合题意.而这样的四边形共有302325=⋅C C 个,于是最多有30个交点.推广1:.在平面直角坐标系中,x 轴正半轴上有m 个点,y 轴正半轴上有n 个点,将x 轴正半轴上这m 个点和y 轴正半轴上这n 个点连成15条线段,这15条线段在第一象限内的交点最多有22m n C C ⋅个变式题:一个圆周上共有12个点,由这些点所连的弦最多有__个交点.答案:412C4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是(A )15 (B )25 (C )35 (D ) 45答案:B111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭解析:由古典概型的概率公式得522155222233232222=+-=A A A A A A A P . 5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34答案:A解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=. 6.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则(|)P B A =A .18B .14C .25D .12答案:B 解析:2()5P A =,1()10P AB =,()1(|)()4P AB P B A P A ==. 7.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为A .12 B .35 C .23 D .34 答案:D解析:由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率11132224P =+⋅=.所以选D . 8.如图,用K 、A 1、A 2三类不同的元件连成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为KA 2A 1A .0.960B .0.864C .0.720D .0.576答案:B解析:系统正常工作概率为120.90.8(10.8)0.90.80.80.864C ⨯⨯⨯-+⨯⨯=,所以选B.9.甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是(A )136 (B )19 (C )536 (D )16 答案:D解析:各自独立地从1到6号景点中任选4个进行游览有1111111166554433C C C C C C C C 种,且等可能,最后一小时他们同在一个景点有11111116554433C C C C C C C 种,则最后一小时他们同在一个景点的概率是11111116554433111111116655443316C C C C C C C p C C C C C C C C ==,故选D . 10.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n =( ) (A )415 (B )13 (C )25 (D )23答案:B解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C ==⨯=从选取个,.其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153m n ==. 11.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14B .13C .12D .23答案:C解析:显然ABE ∆面积为矩形ABCD 面积的一半,故选C .12.在204(3)x y +展开式中,系数为有理数的项共有 项.答案:6解析:二项式展开式的通项公式为20204412020(3)(3)(020)r r r r r r r r T C x y C x y r --+==≤≤要使系数为有理数,则r 必为4的倍数,所以r 可为0.、4、8、12、16、20共6种,故系数为有理数的项共有6项.13.集合{1,2,3,4,5,6,7,8,9,10}M =,从集合M 中取出4个元素构成集合P ,并且集合P 中任意两个元素,x y 满足||2x y -≥,则这样的集合P 的个数为____.答案:35解析:其实就是从1到10这十个自然数中取出不相邻的四个数,共有多少方法的问题.因此这样的集合P 共有4735C =个.14.在一个正六边形的六个区域栽种观赏植物,如右图所示,要求同一块中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,则有___种栽种方案.答案:732解析:共分三类:(1)A 、C 、E 三块种同一种植物;(2)A 、B 、C 三块种两种植物(三块中有两块种相同植物,而与另一块所种植物不同);(3)A 、B 、C 三块种三种不同的植物.将三类相加得732.15.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(I)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X 的期望()E X .解:(I )设A 表示事件“购买甲种保险”,B 表示购买乙种保险. ()A B A A B =并且A 与A B 是互斥事件,所以()()()0.50.30.8P A B P A P A B =+=+=答:该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8. (II )由(I )得任意1位车主两种保险都不购买的概率为()10.80.2p p A B ==-=. 又(3,0.2)XB ,所以()20E X =.所以X 的期望()20E X =.。

利用排列组合计算概率的练习题

利用排列组合计算概率的练习题

利用排列组合计算概率的练习题在数学中,排列组合是一种十分重要的概念,特别是在概率计算中。

通过掌握排列组合的知识和技巧,我们可以解决各种与概率有关的问题。

本文将通过一些练习题来展示如何利用排列组合计算概率。

练习题1:从10个不同的球中,随机取3个,计算取出的球至少有一个是红色的概率。

假设我们用R表示红色球,用B表示蓝色球,那么我们可以列出所有可能的组合:RBB, RBR, RRB, RRR, BBB, BBR, BRB, BRR共有8种可能的组合。

其中,有3种组合至少有一个红色球,它们是:RBB, RBR和RRR。

因此,取出的球至少有一个是红色的概率为3/8。

练习题2:一副扑克牌共有52张牌,从中随机取5张,计算取到的牌全为黑桃的概率。

在一副扑克牌中,有13张黑桃牌。

我们需要计算从13张黑桃牌中选取5张的可能性,以及从52张牌中选取5张的可能性。

首先,我们计算从13张黑桃牌中选取5张的可能性,即13选5。

这个可以通过排列组合公式来计算:13! / (5! * (13-5)!) = 1287。

接下来,我们计算从52张牌中选取5张的可能性,即52选5。

也可以使用排列组合公式来计算:52! / (5! * (52-5)!) = 2598960。

所以,取到的牌全为黑桃的概率为1287 / 2598960,约为0.000495。

练习题3:一个由0和1组成的4位数,以及一个由1和2组成的3位数,它们的百位、十位、个位各位上的数字都不相同,计算两个数相加等于300的概率。

我们需要计算满足条件的组合有多少种,以及总的组合有多少种。

首先,我们计算满足条件的组合数。

对于由0和1组成的4位数,百位不能为0,但可以为1,十位、个位不能为0或1,所以满足条件的组合数为1 * 2 * 1 * 1 = 2。

对于由1和2组成的3位数,百位和十位不能为1,所以满足条件的组合数为1 * 1 * 1 = 1。

因此,两个数相加等于300且满足条件的概率为2 / (2 * 1) = 1/2。

排列组合概率练习题

排列组合概率练习题

排列组合概率练习题复数、排列组合概率练习题1.在100件产品中有6件次品,现从中任取3件产品,至少有一件次品的不同取法的种数是()A.44261C CB.99261C CC.9431003C C -D.9431003A A -2.若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作,则选派方案共有()A.180种B.360种C.15种D.30种3.七人并排站成一行,如果甲,乙两人必须不相邻,那么不同的排法总数是()A.1440B.3600C.4320D.48004.从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各一台,则不同的取法共有()A.140种B.84种C.70种D.35种5.在)1(2x x+6的展开中,3x 的系数和常数项依次是()A.20,20 B.15,20C.20,15D.15,156.从正方体的6个面中选去3个面,其中有2个面不相邻的选法共有()A.8种B.12种C.16种D.20种7.6名同学排成一排,其中甲,乙两人必须排在一起的不同排法有()A.720种B.360种C.240种D.120种8.用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有()A.24个B.30个C.40个D.60个9.在5名学生(3名男生,2名女生)中安排2名学生值日,其中至少有1名女生的概率是。

10.)21(2xx -9展开式中x 9的系数是。

11.六位身高全不相同的同学排照留念,摄影师要前后两排各三人,则后排每人均无前排同学高的概率为。

12.正六边型的中心和顶点共7个点,以其中3个点的为顶点的三角形共有个。

13.三个互不重合的平面,能把空间分成n 个部分,n 的所有可能值为()A.4,6,7B.4,5,6,8C.4,7,8D.4,6,7,814.在)1(x +n 的展开式中,若第三项和第六项的系数相等,则n= .15.已知(7722107......)21x a x a x a a x ++++=-,那么=+++721......a a a 。

高二数学排列组合与概率题库

高二数学排列组合与概率题库

高二数学排列组合与概率题库在高二数学学习中,排列组合与概率是一个重要的知识点,它们在数学的实际应用中扮演着重要的角色。

本文将为大家提供一个高二数学排列组合与概率题库,帮助大家更好地理解和掌握这一知识点。

题库题目一:排列问题
1. 有5个人要排成一排,问有多少种不同的排法?
2. 一家六口人坐在一排电影院的座位上,问有多少种不同的座位安排方法?
3. 一位音乐老师要从6个学生中选出3人组成一个小合唱团,问一共有多少种不同的选择方法?
题库题目二:组合问题
1. 在字母A、B、C、D、E中,任选3个字母,问一共有多少种不同的组合方式?
2. 某班级有10个男生和8个女生,要从中选出5个人组成一个团队,其中至少要有2个女生,问一共有多少种不同的选择方式?
题库题目三:概率问题
1. 一副牌共有52张,从中随机抽取2张,问抽到两张红心的概率是多少?
2. 甲、乙、丙三个人按顺序抛掷一枚硬币,问乙抛到正面的概率是多少?
3. 一只箱子里有5个红球和3个蓝球,盲目摸出3个球,问其中至少有一个红球的概率是多少?
题库题目四:综合问题
1. 一位数学老师将一本题集分发给8名学生,其中有4个题目,每人得到其中的一个题目,问有多少种不同的分发方式?
2. 一支乐队有6名成员,其中有2名吉他手、2名鼓手和2名键盘手,问该乐队进行一次演出,乐手的排列方式有多少种?
通过以上题库的练习,相信大家对高二数学中的排列组合与概率问题有了更深入的了解。

希望大家能够灵活运用这些知识,解决实际问题。

同时也希望大家能够进一步扩充题库,增加自己的练习量,提高数学水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学排列组合概率练习题
1.如图,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三
个数,则至少有两个数位于同行或同列的概率是
(A )37 (B )47 (C )114 (D )1314 答案:D
解析:若取出3个数,任意两个不同行也不同列,则只有6种取法;而从9个数中任意取3个的方法是39C .所以39613114
C -=. 2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有
(A )6种 (B )9种 (C )11种 (D )13种
答案:B
解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为,,,a b c d ,则甲有三种拿卡片的方法,甲可以拿,,b c d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为,,badc bcda bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法.
3.在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有
(A )30个 (B )20个 (C )35个 (D )15个
答案:A
解析:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一
的对角线交点,即在第一象限,适合题意.而这样的四边形共有302325=⋅C C 个,于是最
多有30个交点.
推广1:.在平面直角坐标系中,x 轴正半轴上有m 个点,y 轴正半轴上有n 个点,将x 轴正半轴上这m 个点和y 轴正半轴上这n 个点连成15条线段,这15条线段在第一象限内的
交点最多有22m n C C ⋅个
变式题:一个圆周上共有12个点,由这些点所连的弦最多有__个交点.
答案:412C
4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是
(A )15 (B )25 (C )35 (D ) 45
111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭
答案:B 解析:由古典概型的概率公式得522155222233232222=+-=A A A A A A A P . 5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为
(A )13 (B )12 (C )23 (D )34
答案:A
解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193
=. 6.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则(|)P B A =
A .18
B .14
C .25
D .12
答案:B 解析:2()5P A =
,1()10P AB =,()1(|)()4P AB P B A P A ==. 7.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为
A .
12 B .35 C .23 D .34 答案:D
解析:由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率11132224
P =
+⋅=.所以选D .
8.如图,用K 、A 1、A 2三类不同的元件连成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为 K
A 2
A 1
A .0.960
B .0.864
C .0.720
D .0.576
答案:B
解析:系统正常工作概率为12
0.90.8(10.8)0.90.80.80.864C ⨯⨯⨯-+⨯⨯=,所以选B. 9.甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是
(A )136 (B )19 (C )536 (D )16 答案:D
解析:各自独立地从1到6号景点中任选4个进行游览有11111111
66554433C C C C C C C C 种,且等可能,最后一小时他们同在一个景点有11111116554433C C C C C C C 种,则最后一小时他们同在一个景
点的概率是11111116554433111111116655443316C C C C C C C p C C C C C C C C ==,故选D . 10.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,
则m n =( ) (A )415 (B )13 (C )25 (D )23
答案:B
解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C ==⨯=从选取个,.其
中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153
m n ==. 11.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于
A .14
B .13
C .12
D .23
答案:C
解析:显然ABE ∆面积为矩形ABCD 面积的一半,故选C .
12.在204(3)x y +展开式中,系数为有理数的项共有 项.
答案:6
解析:二项式展开式的通项公式为202044120
20(3)(3)(020)r r r r r r r r T C x C x y r --+==≤≤要使系数为有理数,则r 必为4的倍数,所以r 可为0.、4、8、12、16、20共6种,故系数为有理数的项共有6项.
13.集合{1,2,3,4,5,6,7,8,9,10}M =,从集合M 中取出4个元素构成集合P ,并且集合P 中任意两个元素,x y 满足||2x y -≥,则这样的集合P 的个数为____.
答案:35
解析:其实就是从1到10这十个自然数中取出不相邻的四个数,共有多少方法的问题.因
此这样的集合P 共有4735C =个.
14.在一个正六边形的六个区域栽种观赏植物,如右图所示,要求同一块中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,则有___种栽种方案.
答案:732
解析:共分三类:(1)A 、C 、E 三块种同一种植物;(2)A 、B 、C 三块种两种植物(三块中有两块种相同植物,而与另一块所种植物不同);(3)A 、B 、C 三块种三种不同的植物.将三类相加得732.
15.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.
(I)求该地1位车主至少购买甲、乙两种保险中的1种的概率;
(Ⅱ)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X 的期望()E X .
解:(I )设A 表示事件“购买甲种保险”,B 表示购买乙种保险. ()A B A A B =并且A 与A B 是互斥事件,所以
()()()0.50.30.8P A B P A P A B =+=+=
答:该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8.
(II )由(I )得任意1位车主两种保险都不购买的概率为()10.80.2p p A B ==-=. 又(3,0.2)X B ,所以()20E X =.所以X 的期望()20E X =.。

相关文档
最新文档