2021年最新高考数学复习-排列组合二项式定理和概率

2021年最新高考数学复习-排列组合二项式定理和概率
2021年最新高考数学复习-排列组合二项式定理和概率

排列组合二项式定理和概率

一、知识整合

二、考试要求:

1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.

5.了解随机事件的发生存在着规律性和随机事件概率的意义.

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.

8.会计算事件在n次独立重复试验中恰好发生k次的概率. Ⅰ、随机事件的概率

例1 某商业银行为储户提供的密码有0,1,2,…,9中的6个数字组成.

(1)某人随意按下6个数字,按对自己的储蓄卡的密码的概率是多少?

(2)某人忘记了自己储蓄卡的第6位数字,随意按下一个数字

进行试验,按对自己的密码的概率是多少?

解(1)储蓄卡上的数字是可以重复的,每一个6位密码上的每一个数字都有0,1,2,…,9这10种,正确的结果有1

1,随意按下6个数字相当于随意按下610个,种,其概率为

6

10

随意按下6个数字相当于随意按下610个密码之一,其概率是

1.

6

10

(2)以该人记忆自己的储蓄卡上的密码在前5个正确的前提

下,随意按下一个数字,等可能性的结果为0,1,2,…,9

1.

这10种,正确的结果有1种,其概率为

10

例2 一个口袋内有m个白球和n个黑球,从中任取3个球,这3个球恰好是2白1黑的概率是多少?(用组合数表示)

解设事件I是“从m个白球和n个黑球中任选3个球”,要对应集合I1,事件A是“从m个白球中任选2个球,从n个黑球中任选一个球”,本题是等可能性事件问题,且Card(I1)=

12

3

)(,n m n m C C A Card C ?=+,于是P(A)=3121)()(n m n m C C C I Card A Card +?=.

Ⅱ、互斥事件有一个发生的概率

例3在20件产品中有15件正品,5件次品,从中任取3件,求:

(1)恰有1件次品的概率;(2)至少有1件次品的概率.

解 (1)从20件产品中任取3件的取法有320C ,其中恰有1件次

品的取法为15215

C C 。 ∴ 恰有一件次品的概率P=76

3532015215=C C C . (2)法一 从20件产品中任取3件,其中恰有1件次品为事件A 1,恰有2件次品为事件A 2,3件全是次品为事件A 3,则它们的概率

P(A 1)= 320

15215C C C =228105,2282)(320115252==C C C A P ,2282)(320353==C C A P , 而事件A 1、A 2、A 3彼此互斥,因此3件中至少有1件次品的概率

P(A 1+A 2+A 3)=P(A 1)+P(A 2)+P(A 3)= 228

137. 法二 记从20件产品中任取3件,3件全是正品为事件A ,那么任取3件,至少有1件次品为A ,根据对立事件的概率加法公式P(A )=228

1371)(1320315=-=-C C A P 例4 1副扑克牌有红桃、黑桃、梅花、方块4种花色,每种

13张,共52张,从1副洗好的牌中任取4张,求4张中至少有3张黑桃的概率.

解 从52张牌中任取4张,有452C 种取法.“4张中至少有3张黑桃”,

可分为“恰有3张黑桃”和“4张全是黑桃”,共有413139313C C C +?种取法452

413139313C C C C +?∴ 注 研究至少情况时,分类要清楚。

Ⅲ、相互独立事件同时发生的概率

例5 猎人在距离100米处射击一野兔,其命中率为0.5,如果第

一次射击未中,则猎人进行第二次射击,但距离150米. 如果第二次射击又未中,则猎人进行第三次射击,并且在发射瞬间距离为200米. 已知猎人的命中概率与距离的平方成反比,求猎人命中野兔的概率.

解 记三次射击依次为事件A ,B ,C ,其中21)(=A P ,由2100)(21k A P ==,求得k=5000。

8

12005000P(C),921505000P(B)22====∴,∴命中野兔的概率为 .1449581)921)(211(92)211(21)

()()()()()()()A P(P(A)=?--+?-+=++=??+?+C P B P A P B P A P A P C B A P B

例6 要制造一种机器零件,甲机床废品率为0.05,而乙机床废

品率为0.1,而它们的生产是独立的,从它们制造的产品

中,分别任意抽取一件,求:

(1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率.

解:设事件A为“从甲机床抽得的一件是废品”;B为“从乙机床抽得的一件是废品”.

则P(A)=0.05, P(B)=0.1,

(1)至少有一件废品的概率

+

-

=

=

+B

=

?

-

A

P

B

A

-

B

A

P

P

P

.0

1

)

95

.0

?

.0

90

(

145

)

)

(=

(

1

)

1

(

(2)至多有一件废品的概率

+

?

?

?

=

?

+

B

P

P

+

A

A

A

B

=B

)

.0

1.0

95

?

995

.0

95

9.0

?

+

(=

.0

9.0

05

.0

Ⅳ、概率内容的新概念较多,本课时就学生易犯错误作如下归纳总结:

类型一“非等可能”与“等可能”混同

例1 掷两枚骰子,求所得的点数之和为6的概率.

错解掷两枚骰子出现的点数之和2,3,4,…,12共11种基

本事件,所以概率为P=1

11

剖析以上11种基本事件不是等可能的,如点数和2只有(1,

1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、

(5,1)共5种.事实上,掷两枚骰子共有36种基本事件,

且是等可能的,所以“所得点数之和为6”的概率为P=5

36类型二“互斥”与“对立”混同

例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”

是()

A.对立事件B.不可能事件C.互斥但不对立事件D.以上均不对

错解 A

剖析本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在:

(1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概

念适用于多个事件,但对立概念只适用于两个事件;(3)

两个事件互斥只表明这两个事件不能同时发生,即至多只

能发生其中一个,但可以都不发生;而两事件对立则表示

它们有且仅有一个发生.

事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个

事件,这两个事件可能恰有一个发生,一个不发生,可能

两个都不发生,所以应选C.

类型三“互斥”与“独立”混同

例3 甲投篮命中率为O .8,乙投篮命中率为0.7,每人投3次,

两人恰好都命中2次的概率是多少?

错解 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件

B ,则两人都恰好投中两次为事件A+B ,P(A+B)=P(A)+P(B): 2222330.80.20.70.30.825c c ?+?=

剖析 本题错误的原因是把相互独立同时发生的事件当成互斥

事件来考虑,将两人都恰好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.互斥事件是指两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关系是根本不同.

解: 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,

且A ,B 相互独立,

则两人都恰好投中两次为事件A·B ,于是

P(A·B)=P(A)×P(B)= 0.169

四、高考题选讲

1 甲、乙二人参加普法知识竞赛,共有10个不同的题目,其

中选择题6个,判断题4个,甲、乙二人依次各抽一题. (Ⅰ)甲抽到选择题、乙抽到判断题的概率是多少?

(Ⅱ)甲、乙二人中至少有一人抽到选择题的概率是多少?

(2000年新课程卷)

2 如图,用A、B、C三类不同的元件连接成两个系统N1、N2.当

元件A、B、C都正常工作时,系统N1正常工作;当元件A

正常工作且元件B、C至少有一个正常工作时,系统N2正

常工作.已知元件A、B、C正常工作的概率依次为

0.80,0.90,0.90.分别求系统N1、N2正常工作的概率P1、

P2. (2001年新课程卷)

3某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).

(Ⅰ)求至少3人同时上网的概率;

(Ⅱ)至少几人同时上网的概率小于0.3?(2002年新课程卷)

4有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验.

(Ⅰ)求恰有一件不合格的概率;

(Ⅱ)求至少有两件不合格的概率.(精确到0.001)(2003年新课程卷)

5. 从10位同学(其中6女,4男)中随机选出3位参加测验.

4,每位男同学能通过测验的每位女同学能通过测验的概率均为

5

3.试求:

概率均为

5

(Ⅰ)选出的3位同学中,至少有一位男同学的概率;

(Ⅱ)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.

(2004年全国卷Ⅰ)

解:本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识

解决实际问题的能力,满分12分.

解:(Ⅰ)随机选出的3位同学中,至少有一位男同学的概率为

1-6531036=C C ;………………6分

(Ⅱ)甲、乙被选中且能通过测验的概率为

.1254535431018=??C C ;………………12分

6. 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:

(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率;

(Ⅱ)A 组中至少有两支弱队的概率. (2004年全国卷Ⅱ) 解:(Ⅰ)解法一:三支弱队在同一组的概率为 .7

148154815=+C C C C 故有一组恰有两支弱队的概率为.7

6711=- 解法二:有一组恰有两支弱队的概率.7648

2523482523=+C C C C C C (Ⅱ)解法一:A 组中至少有两支弱队的概率 2148

1533482523=+C C C C C C 解法二:A 、B 两组有一组至少有两支弱队的概率为1,

由于对A 组和B 组来说,至少有两支弱队的概率是相同的,所以A 组中至少有两支弱队的概率为.2

1 7.某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答

对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分

别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.

(Ⅰ)求这名同学得300分的概率;

(Ⅱ)求这名同学至少得300分的概率. (2004年全国卷Ⅲ)

8. 从4名男生和2名女生中任选3人参加演讲比赛.

(Ⅰ)求所选3人都是男生的概率;

(Ⅱ)求所选3人中恰有1名女生的概率;

(Ⅲ)求所选3人中至少有1名女生的概率. (2004年天津卷)

9. 某地区有5个工厂,由于用电紧缺,规定每个工厂在一周内必须选择某一天停电

(选哪一天是等可能的).假定工厂之间的选择互不影响.

(Ⅰ)求5个工厂均选择星期日停电的概率;

(Ⅱ)求至少有两个工厂选择同一天停电的概率. (2004年浙江卷)

10. 甲、乙两人参加一次英语口语考试,已知在备选的10道试

题中,甲能答对其中的6题,乙能答对其中的8题.规定

每次考试都从备选题中随机抽出3题进行测试,至少答对

2题才算合格.

(Ⅰ)分别求甲、乙两人考试合格的概率;

(Ⅱ)求甲、乙两人至少有一人考试合格的概率. (2004年福建卷)

11. 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机

床加工的零件是一等品而乙机床加工的零件不是一等品的1,乙机床加工的零件是一等品而丙机床加工的零件概率为

4

1,甲、丙两台机床加工的零件都是一等不是一等品的概率为

12

2.

品的概率为

9

(Ⅰ)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;

(Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.

(2004年湖南卷)

12.为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的

预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P)和所需费用如下:

预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前

提下,请确定一个预防方案,使得此突发事件不发生的概率最

大.(2004年湖北卷)

解:方案1:单独采用一种预防措施的费用均不超过120万元.由表可知,采用甲措施,可使此突发事件不发生的概率最大,其概率为0.9.

方案2:联合采用两种预防措施,费用不超过120万元,由表可知.联合甲、丙两种预防措施可使此突发事件不发生的概率最大,其概率为1—(1—0.9)(1—0.7)=0.97.

方法3:联合采用三种预防措施,费用不超过120万元,故只能联合乙、丙、丁三种预防措施,此时突发事件不发生的概率为1—(1—0.8)(1—0.7)(1—0.6)=1—0.024=0.976.

综合上述三种预防方案可知,在总费用不超过120万元的前提下,联合使用乙、丙、丁三种预防措施可使此突发事件不发生的概率最大.

13. 设甲、乙、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5.

(Ⅰ)三人各向目标射击一次,求至少有一人命中目标的概率及恰有两人命中目标概率;(Ⅱ)若甲单独向目标射击三次,求他恰好命中两次的概率. (2004年重庆卷)

14.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为

( D ) A .12513 B .12516 C .12518 D .125

19 15.(本小题满分12分)

一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.

解:本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.

解:P(ξ=0)=0.52×0.62=0.09.

P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3

P(ξ=2)=

22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C

×0.52×0.42=0.37.

P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.04

于是得到随机变量ξ的概率分布列为:

所以E ξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.

16.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是(C )

A .95

B .94

C .2111

D .21

10 17.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521

的数共有 ( C ) A .56个 B .57个 C .58个 D .60个

18.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依

次为5:3:2,现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n= .(答案: 80)

19.标号为1,2,…,10的10个球放入标号为1,2,…,10

的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有 240 种.(以数字作答)

20.某校有老师200人,男学生1200人,女学生1000人.现用分

层抽样的方法从所有师生中抽取一个容量为n 的样本;已知从女学生中抽取的人数为80人,则n= 192 .

排列组合与二项式定理知识点

排列组合与二项式定理知识点

第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: ) ,,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10 ==n n n C C

2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排 列个数等于! !...!!2 1 k n n n n n =. 例如:已知数字3、2、2,求其排列个数3 ! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列 个数1!3!3==n . 三、组合. 1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. ⑵组合数公式: )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -= +--==Λ ⑶两个公式:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合. (或者从n+1个编号不同的小球中,n 个白球一

排列组合与二项式定理精华总结

排列组合 知识点 一、两个原理. 1. 乘法原理、加法原理:分类相加,分步相乘。 二、排列:元素是有顺序的 (1):对排列定义.:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (2):排列数公式: ),,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10==n n n C C (3): 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中有限重复数为n 1、n 2……n k ,且 n = n 1+n 2+……n k , 则S 的排列个数等于! !...!! 21k n n n n n = . 三、组合:元素没有顺序之分 (1):组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. (2):组合数公式:)! (!!! )1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ (3):两个性质:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ (4):常用的证明组合等式方法例. i. 裂项求和法. 如: )!1(11)!1(!43!32!21+-=++++n n n Λ(利用! 1 )!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法. v. 递推法(即用m n m n m n C C C 11+-=+递推)如:4 13353433+=+++n n C C C C C Λ. vi. 构造二项式. 如:n n n n n n C C C C 222120)()()(=+++Λ 证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为 2 2120022110) ()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=?++?+?+?--ΛΛ,而右边n n C 2= 四、排列、组合综合 (1)直接法 (2)间接法 (3)捆绑法 (4)插空法 (5)占位法 (6)调序法 (7)平均法 (8)隔板法 (9)定位问题 (10)指定元素排列组合问题 五、二项式定理. 1. ⑴二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+--ΛΛ. 展开式具有以下特点:

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = C 14A 34C 13 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

排列组合二项式定理知识点

排列组合项定理考试内容:分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以.有.重.复.元.素.的排列. 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以 从m个不同元素中,每次取出n个元素可重复排列数m- m?…m = m n..例

3! 1 . 3! 如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: m n 种) 二、排列. 1.(1)对排列定义的理解. 定义:从n 个不同的元素中任取 m (贰n )个元素,按照一定顺序 排成一列, 叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺 序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (mcn)个元素排成一列,称为从n 个不同元素中取 出 m 个元素的一个排列.从n 个不同元素中取出m 个元素的一个排列数,用 符号表 示. ⑷排列数公式: 注意:n n! (n 1)! n!规定 0! = 1 m m m m 1 m m 1 m m 1 On, A n 1 A n A m C n A n mA n A n nA n 1 /规^定 C n C n 1 2.含有可重元素的排列问题. 对含有相同元素求排列个数的方法是:设重集 S 有k 个不同元素a 1, a 2,……a n 其中限重复数为n 1、n ..... n k ,且n = n 计尊+ .. n k ,则S 的排列 例如:已知数字3、2、2,求其排列个数n 喈3又例如:数字5、5、5、 求其排列个数?其排列个数 个数等于n n! n !n 2!...n k

(最新经营)排列组合二项式定理与概率及统计

主讲人:黄冈中学高级教师汤彩仙 一、复习策略 排列与组合是高中数学中从内容到方法均比较独特的一个组成部分,是进一步学习概率论的基础知识,该部分内容,不论其思想方法和解题均有特殊性,概念性强,抽象性强,思维方法新颖,解题过程极易犯“重复”或“遗漏”的错误,且且结果数目较大,无法一一检验,因此给考生带来一定困难.解决问题的关键是加深对概念的理解,掌握知识的内于联系和区别,科学周全的思考、分析问题. 二项式定理是进一步学习概率论和数理统计的基础知识,把握二项展开式及其通项公式的相互联系和应用是重点. 概率则是概率论入门,目前的概率知识只是为进一步学习概率和统计打好基础,做好铺垫.学习中要注意基本概念的理解,要注意与其他数学知识的联系,要通过一些典型问题的分析,总结运用知识解决问题的思维规律. 纵观近几年高考,排列、组合、二项式定理几乎每年必考,考题多以选择题、填空题出现,题小而灵活,涉及知识点均于两三个左右,综合运用排列组合知识,分类计数和分步计数原理;二项式定理及二项式系数的性质计算或论证一些较简单而有趣的小题也于高考题中常见,概率及概率统计的内容,从近几年新课程卷高考来看,每年均有一道解答题,占12分左右. 排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)

以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.(4)某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;(5)某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”; 于求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答. 二、典例剖析 题型一:排列组合应用题 解决此类问题的方法是:直接法,先考虑特殊元素(或特殊位置),再考虑其他元素(或位置);间接法,所有排法中减去不合要求的排法数;对于复杂的应用题,要合理设计解题步骤,一般是先分组,后分步,要求不重不漏,符合条件. 例1、(08安徽理12)12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.B.C.D.

排列组合二项式定理与概率统计

排列组合二项式定理与概率统计 重点知识回顾 1. 排列与组合 ⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关, 分类计数原理与分类有关 ⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合, ⑶排列与组合的主要公式 _ r — r+1 项是 T r+1 =C n a n r b r . ⑵二项展开式的通项公式 二项展开式的第r+1项T r+1=c n a n —r b r (r=0,1,…叫)做二项展开式的通项公式。 ⑶二项式系数的性质 ① 在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, 即 c n = c n r (r=0,1,2,…,n ). 项和第n 3项)的二项式系数相等,并且最大,其值为 2 A n = n! =n(n — 1)(n — 2) ....... 2 ? 1. ②组合数公式: c m n! n(n 1) (n m 1) (m < n) m!( n m)! m (m 1) 2 1 ③组合数性质: ①c m ㈡ m (m < n) ② c 0 c ; c n 2 c ; 2n ③ Cn Cn c 4 C n c 1 c 3 C n C n 2n 1 2.二项式定理 ⑴二项式定理 (a +b)n =C 0a n +c n a n — 1 r b+ …+C n a n r b r +… + c n b n ,其中各项系数就是组合数c n ,展开式共有n+1项,第 问题?区别排列问题与组合问题要看是否与顺序有关, 与顺序有关的属于排列问题, 与顺序无关的属于组合问题 求共有多少种方法的 ①排列数公式: A m n! (n m)! n(n 1) (n m 1) (m

排列组合与二项式定理及概率应用综合

第一讲 排列组合概念及简单应用 排列和排列数公式 A m n =n (n -1)(n -2)…(n -m +1)=n ! (n -m )!(m ,n ∈N *,并且m ≤n ) A n n =n !=n ×(n -1)×(n -2)×…×3×2×1. 规定:0!=1. 组合与组合数公式 1.组合数公式 C m n =A m n A m m =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!(m ,n ∈N *,并且 m ≤n ) 2.组合数的性质 (1)C m n =C n -m n (2)C m n +1=C m n +C m - 1n 常规题型 一、投信问题 1、个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同. (1)从两个口袋里各取一封信,有多少种不同的取法? (2)把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的放法? 2、五位旅客到一个城市出差,这个城市有6家旅馆,有多少种住宿方法? 3、12名旅客在一辆火车上,共有六个车站,有多少种下车方案? 4、3个同学在一座只有两个楼梯的楼上下楼,有几种下楼方案? 二、染色问题 1、如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数. 2. 如图所示,用五种不同的颜色分别给A ,B ,C ,D 四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种. 3.用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.

高中数学排列组合与二项式定理知识点总结

排列组合与二项式定理知识点 1.计数原理知识点 ①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类) 2.排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m! Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置. 捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑) 插空法(解决相间问题)间接法和去杂法等等 在求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答. 经常运用的数学思想是: ①分类讨论思想;②转化思想;③对称思想. 4.二项式定理知识点: ①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn 特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn ②主要性质和主要结论:对称性Cnm=Cnn-m 最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项) 所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1 ③通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。 5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。 6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

排列组合 二项式定理知识点

排列组合二项定理考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有 ..重复 ..的排列. ..元素 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·… m = m n.. 例

如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于! !...!! 21k n n n n n = . 例如:已知数字3、2、2,求其排列个数3! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1! 3!3==n .

高中数学排列组合专题

排列组合 一.选择题(共5小题) 1.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有() A.36种B.42种C.50种D.72种 2.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有() A.8种 B.10种C.12种D.32种 3.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是() A.72 B.120 C.144 D.168 4.现将甲乙丙丁4个不同的小球放入A、B、C三个盒子中,要求每个盒子至少放1个小球,且小球甲不能放在A盒中,则不同的放法有() A.12种B.24种C.36种D.72种 5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有() A.300种B.240种C.144种D.96种 二.填空题(共3小题) 6.某排有10个座位,若4人就坐,每人左右两边都有空位,则不同的坐法有种. 7.四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法共有种(用数字作答). 8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的

插法共有种. 三.解答题(共8小题) 9.一批零件有9个合格品,3个不合格品,组装机器时,从中任取一个零件,若取出不合格品不再放回,求在取得合格品前已取出的不合格品数的分布列10.已知展开式的前三项系数成等差数列. (1)求n的值; (2)求展开式中二项式系数最大的项; (3)求展开式中系数最大的项. 11.设f(x)=(x2+x﹣1)9(2x+1)6,试求f(x)的展开式中: (1)所有项的系数和; (2)所有偶次项的系数和及所有奇次项的系数和. 12.求(x2+﹣2)5的展开式中的常数项. 13.求值C n5﹣n+C n+19﹣n. 14.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的种数.(1)选5名同学排成一行; (2)全体站成一排,其中甲只能在中间或两端; (3)全体站成一排,其中甲、乙必须在两端; (4)全体站成一排,其中甲不在最左端,乙不在最右端; (5)全体站成一排,男、女各站在一起; (6)全体站成一排,男生必须排在一起; (7)全体站成一排,男生不能排在一起; (8)全体站成一排,男、女生各不相邻; (9)全体站成一排,甲、乙中间必须有2人; (10)全体站成一排,甲必须在乙的右边; (11)全体站成一排,甲、乙、丙三人自左向右顺序不变; (12)排成前后两排,前排3人,后排4人. 15.用1、2、3、4、5、6共6个数字,按要求组成无重复数字的自然数(用排列数表示).

排列组合与二项式定理知识点

高中数学第十章-排列组合二项定理 考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. §10. 排列组合二项定理 知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有..重复..元素.. 的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ?对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ?相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ?排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的 一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ?排列数公式: ),,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--= 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11 --=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

(完整版)排列组合二项式定理知识总结,推荐文档

n n +1n n n 排列组合、二项式定理总结复习 1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情) 分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的 方法 n 个不同元素中取出 m 个元素的一个组合 组合数 从 n 个不同元素中,任取 m (m ≤n )个元素的所有组合个数 m n m = n ! n m !(n - m )! 性质 C m = C n -m C m = C m + C m -1 排列组合题型总结 一. 直接法 1 .特殊元素法 例 1 用 1,2,3,4,5,6 这 6 个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 C C

(1)数字 1 不排在个位和千位 (2)数字 1 不在个位,数字 6 不在千位。 分析:(1)个位和千位有 5 个数字可供选择A2 ,其余 2 位有四个可供选择A2 ,由乘法原理: 5 4 A2 A2 =240 5 4 2.特殊位置法 (2)当 1 在千位时余下三位有A3 =60,1 不在千位时,千位有A1 种选法,个位有A1 种,余下 5 4 4 的有A2 ,共有A1 A1 A2 =192 所以总共有 192+60=252 4 4 4 4 二间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法A4 - 2 A3 +A2 =252 6 5 4 Eg 有五张卡片,它的正反面分别写 0 与 1,2 与 3,4 与 5,6 与 7,8 与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数? 分析::任取三张卡片可以组成不同的三位数C 3 ? 23 ?A3 个,其中 0 在 5 3 百位的有C 2 ? 22 ?A2 个,这是不合题意的。故共可组成不同的三位数 4 2 C 3 ? 23 ?A3 - C 2 ? 22 ?A2 =432 5 3 4 2 Eg 三个女生和五个男生排成一排 (1)女生必须全排在一起有多少种排法(捆绑法) (2)女生必须全分开(插空法须排的元素必须相邻) (3)两端不能排女生 (4)两端不能全排女生 (5)如果三个女生占前排,五个男生站后排,有多少种不同的排法

高中数学排列组合难题十一种方法

~ 高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2 步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 … 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 两个位置 . 先排末位共有1 3C 然后排首位共有1 4C / 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 443

、 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不 种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一 个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A 种不同的排法 练习题1.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个 解:把1,5,2,4当作一个小集团与3排队共有22A 种排法, 再排小集团内部共有2222A A 种排法,由分步计数原理共有222 222A A A 种排法. : 2.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那 么共有陈列方式的种数为254 254A A A 3. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255 255A A A 种 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场, 则节目的出场顺序有多少种 ( 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插 入第一步排好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法, 由分步计数原理,节目的不同顺序共有5456A A 种 小集团排列问题中,先整体后局部,再结合其它策略进行处理。

高中数学-排列组合二项式定理知识点

排列组合二项式定理知识点 2、排列、组合

3、二项式定理 内容典型题 定义①二项式定理: (a+b)n=C 0n a n+C 1n a n-1b1+…+C r n a n-r b r+…+C n n b n =∑ = n r r n C a n-r b r(n∈N+) ②二项式展开式第r+1项通项公式: T r-1 =C r n a n-r b r 其中C r n(r=0,1,2,…,n)叫做二项式系数. 8.二项式8)1 (- x的展开式中的第5项是( ) A. 70x4 B. 70x2 C. 56x3 D. -562 3 x 9.二项式(x-2)12展开式中第3项的系数是( ) A.264 B.-264 C.66 D.-1760 10.(x-2)8 的展开式中, x6的系数是( ) A. 56 B. -56 C. 28 D. 224 11.(x2+)5展开式中的10x是( ) A.第2项 B.第3项 C.第4项 D.第5项 12.二项式x-1 x 6 的展开式中常数项是( ) A. 1 B. 6 C. 15 D. 20 13.设(3-x)n=n n x a x a x a a+???+ + +2 2 1 ,已知 n a a a a+???+ + + 2 1 =64,则n=. 14.设二项式(3x+5)10= 1 8 8 9 9 10 10 a x a x a x a x a+ +???+ + +,则 1 8 9 10 a a a a a+ -???- + -=. 15.二项式2x-1 x 6 的展开式中二项式系数最大的项是. 性质①在二项展开式中,与首末两端“等距离”的两项的二项式系数相等. ②如果二项式的幂指数是偶数,则中间一项的二项系数最大;如果二项式的幂指数是奇数,则中间两项的二项式系数相等并且最大. ③二项式系数的和为n2,即 n C+1 n C+…+r n C+…+n n C=n2 ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即 n C+2 n C+…=1 n C+3 n C+…=1 2-n

高考题汇编排列组合与二项式定理

2010年高考数学试题分类汇编——排列组合与二项式定理 (2010全国卷2理数)(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 (A )12种 (B )18种 (C )36种 (D )54种 【答案】B 【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力. 【解析】标号1,2的卡片放入同一封信有 种方法;其他四封信放入两个信封,每个信封两个有 种方法,共有种,故选B. (2010全国卷2文数)(9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 (A ) 12种 (B) 18种 (C) 36种 (D) 54种 【解析】B :本题考查了排列组合的知识 ∵先从3个信封中选一个放1,2有3种不同的选法,再从剩下的4个数中选两个放一个信封有 246C =,余下放入最后一个信封,∴共有24318C = (2010江西理数)6. (8 2展开式中不含..4 x 项的系数的和为( ) A.-1 B.0 C.1 D.2 【答案】B 【解析】考查对二项式定理和二项展开式的性质,重点考查实践意识和创新能力,体现正难则反。 采用赋值法,令x=1得:系数和为1,减去4 x 项系数80882(1)1C -=即为所求,答案为0. (2010重庆文数)(10)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有 (A )30种 (B )36种 (C )42种 (D )48种 解析:法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法 即221211 6454432C C C C C C -?+=42 法二:分两类 甲、乙同组,则只能排在15日,有2 4C =6种排法

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1. 分类计数原理(加法原理) 完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有: N = mi + m2 j + m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有: N = mi江m2汇川X m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进 行,确定分多少步及多少类。 3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有 然后排首位共有 最后排其它位置共有 由分步计数原理得 练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有种不同的排法 练习题1.用1,2,3,4,5 组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个? 解:把1,5,2,4当作一个小集团与3排队共有种排法,再排小集团内部共有种排法,由分步计数原理共有种排法. 1524

高中数学排列组合及二项式定理知识点

高中数学之排列组合二项式定理 一、分类计数原理和分步计数原理: 分类计数原理:如果完成某事有几种不同的方法,这些方法间是彼此独立的,任选其中一种 方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。 分步计数原理:如果完成某事,必须分成几个步骤,每个步骤都有不同的方法,而—个步骤 中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各 步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。 区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类 与类之间是相互独立的,即“分类完成”;如果只有当n 个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。 二、排列与组合: (1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n 个元素的问题; 区别:前者有顺序,后者无顺序。 (2)排列数、组合数: 排列数的公式:)()! (!)1()2)(1(n m m n n m n n n n A m n ≤-= +---= 注意:①全排列:!n A n n =; ②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720; 排列数的性质: ①11--=m n m n nA A (将从n 个不同的元素中取出)(n m m ≤个元素,分两步完成: 第一步从n 个元素中选出1个排在指定的一个位置上; 第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置 上) ②m n m n m n A mA A 111---+=(将从n 个不同的元素中取出)(n m m ≤个元素,分两类完成: 第一类:m 个元素中含有a ,分两步完成: 第一步将a 排在某一位置上,有m 不同的方法。 第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置 上) 即有11--m n mA 种不同的方法。 第二类:m 个元素中不含有a ,从1-n 个元素中取出m 个元素排在m 个 位置上,有m n A 1-种方法。 组合数的公式:)()!(!!!)1()2)(1(n m m n m n m m n n n n A A C m m n m n ≤-=+---== 组合数的性质: ①m n n m n C C -=(从n 个不同的元素中取出m 个元素后,剩下m n -个元素,也就是说,

相关文档
最新文档