排列组合与二项式定理知识点
排列组合与二项式定理

排列组合与二项式定理排列组合与二项式定理是概率论和组合数学中重要的概念和定理。
它们在数学、统计学、计算机科学等领域中具有广泛的应用。
本文将介绍排列组合和二项式定理的概念、性质和应用,并探讨它们之间的关系。
一、排列组合的概念和性质排列和组合是组合数学中的基本概念,用于计算事物的不同排列和组合方式。
1. 排列:排列是指从若干个元素中选择一部分元素按照一定的顺序进行排列。
设有n个元素,要从中选择r个元素进行排列,有P(n,r)种排列方式。
排列的计算公式为P(n,r) = n! / (n-r)!2. 组合:组合是指从若干个元素中选择一部分元素进行组合,不考虑元素的顺序。
设有n个元素,要从中选择r个元素进行组合,有C(n,r)种组合方式。
组合的计算公式为C(n,r) = n! / (r!(n-r)!)排列和组合的计算公式是基于阶乘的,阶乘表示从1到某个正整数的连乘积。
排列和组合的性质包括交换律、结合律和分配律等。
二、二项式定理的概念和性质二项式定理是代数中的一个重要定理,用于展开二项式的幂。
二项式是两个项的和,形式为 (a + b)^n,其中a和b为实数或变量,n为非负整数。
二项式定理的表达式为:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n其中C(n,r)为组合数,表示从n个元素中选择r个元素进行组合的方式数。
二项式定理的性质包括二项式系数的对称性、二项式系数的递推性和二项式系数与排列组合的关系等。
三、排列组合与二项式定理的应用排列组合和二项式定理在许多领域中有广泛的应用。
1. 概率论:排列组合和二项式定理用于计算事件的可能性和概率。
通过组合数可以计算从一组元素中选择特定数量的元素的概率。
2. 统计学:排列组合和二项式定理用于计算事件的组合和排列数量,从而分析数据的分布和规律。
35:排列组合和二项式定理高三复习数学知识点总结(全)

排列、组合与二项式定理1.两个计数原理(1)分类计数定理(加法原理):如果完成一件事,有n 类方式,在第1类方式中有1m 种不同的方法,在第2类方式中有2m 种不同的方法,......,在第n 类方式中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.(2)分步计数定理(乘法原理):如果完成一件事,需要完成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,......,做第n 步有n m 种不同的方法,那么完成这件事共有n m m m N ⨯⨯⨯= 21种不同的方法.(3)两个计数原理的区别分类计数原理与分步计数原理的区别关键在于看事件能否完成,事件完成了就是分类,分类后要将种数相加;事件必须要连续若干步才能完成的则是分步,分步后要将种数相乘.2.排列(1)排列的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.(3)排列数公式:)1()2)(1()!(!+---=-=m n n n n m n n A m n .特别地:①(全排列).123)2)(1(!⋅⋅--== n n n n A n n ②.1!0=3.组合(1)组合的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:一般地,从n 个不同元素中取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.(3)组合数公式:()()()()121!!!!m m n n m m n n n n m A n C A m m n m ---+===- .特别地:01n C =.(4)组合数的性质:①m n n m n C C -=;②11-++=m n m n m n C C C ;③11--=kn k n nC kC .4.解决排列与组合问题的常用方法通法:先特殊后一般(有限制条件问题),先组合后排列(分组问题),先分类后分步(综合问题).例:某校开设9门课程供学生选修,其中A 、B 、C 三门由于上课时问相同,至多选一门,学校规定,每位同学选修4门,共有多少种不同的选修方案?答:.75461336=+C C C (1)特殊元素、位置优先安排法:对问题中的特殊元素或位置优先考虑排列,然后排列其他一般元素或位置.例4-1:0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有几个?答:.3013131224=+C C C A (2)限制条件排除法:先求出不考虑限制条件的个数,然后减去不符合条件的个数.也适用于解决“至多”“至少”的排列组合问题.例4-2:从7名男同学和5名女同学中选出5人,若至少有2名女同学当选,问有多少种情况?答:.596)(471557512=+-C C C C(3)相邻问题“捆绑法”:将必须相邻的元素“捆绑”在一起,当作一个元素进行排列,待整个问题排好之后再考虑它们内部的排列数,它主要用于解决相邻问题.例4-3:5个男生3个女生排成一列,要求女生排一起,共有几种排法?答:6363A A =4320(4)不相邻问题“插空法”:先把无位置要求的元素进行排列,再把规定不相邻的元素插入已排列好的元素形成的“空档”中(注意两端).例4-4:5个男生3个女生排成一列,要求女生不相邻且不可排两头,共有几种排法?答:5354A A (5)元素相同“隔板法”:若把n 个不加区分的相同元素分成m 组,可通过n 个相同元素排成一排,在元素之间插入1-m 块隔板来完成分组,共11--+m m n C 种方法.例4-5:10张参观公园的门票分给5个班,每班至少1张,有几种选法?答:.49C (6)元素不多“列举法”:即把符合条件的一一列举出来.例4-6:将数字1、2、3、4填入标号为1、2、3、4的四个方格内,每个方格填一个,则每个方格的标号与所填的数字均不相同的填法种数有种。
排列组合二项式定理概率基础知识点+思维导图练习

;展开
式共有项数为
项.
(2)二项展开式的通项 Tr1
,表示第
项.
(3)二项展开式中的二项式系数为
;项的系数是指
.
11、(1)对称性:与首末两端
的两项的二项式系数相等,即 Cnr
C nr n
(r
0,1, 2,, n)
18
(2)二项式系数最大的项在中间.当幂指数 n 为偶数时,最大的二项式系数为
,
最大二项式系数为第
项;当 n 为奇数时,最大的二项式系数为
,
最大的二项式系数为第
项.
(3)二项式系数之和为
.二项展开式中,各奇数项的二项式系数之和与各偶数
项的二项式系数之和相等,即:
==.源自12、若 (x 1)7 a0 a1x a2 x2 a7 x7 ,令
一、特殊元素特殊位置优先
,得 a0 a1 a2 a7
八、合理分类与分步策略 8、在一次演唱会上共有 10 名演员,其中 8 人能够唱歌,5 人会跳舞,现要演出一个 2
人唱歌 2 人伴舞的节目,有多少种选派方法?
九、构造模型策略 9、马路上有编号为 1,2,3,4,5,6,7,8,9 的九只路灯,现要关掉其中的 3 盏,但不能关掉相
邻的 2 盏或 3 盏,也不能关掉两端的 2 盏,求满足条件的关灯方法有多少种?
; Ann
;规定, 0!
;
7、组合数 Cnm 的含义:
8、计算: Cnm
=
;
9、组合数的性质
(1)Cnm
;(2)Cnm
C m1 n
10、(1)对于 n N * , (a b)n
;(3)Cn0 Cn1 Cn2 Cnn1 Cnn
高中数学排列组合与二项式定理知识

高中数学排列组合与二项式定理知识
排列组合与二项式定理是高中数学的一个重要学习内容。
知识点你都掌握了吗?下面是店铺为你整理的高中数学排列组合与二项式定理知识,一起来看看吧。
高中数学排列组合知识
高中数学二项式定理知识
高中数学排列组合与二项式定理解题技巧
1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5. 了解随机事件的发生存在着规律性和随机事件概率的意义。
6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8. 会计算事件在n次独立重复试验中恰好发生k次的概率.。
高中数学-排列组合二项式定理知识点

排列组合二项式定理知识点2、排列、组合3、二项式定理内容典型题定义①二项式定理:(a+b)n=C 0n a n+C 1n a n-1b1+…+C r n a n-r b r+…+C n n b n=∑=nrrnCa n-rb r(n∈N+)②二项式展开式第r+1项通项公式:Tr-1=C r n a n-r b r其中C r n(r=0,1,2,…,n)叫做二项式系数.8.二项式8)1(-x的展开式中的第5项是( )A. 70x4B. 70x2C. 56x3D. -5623x9.二项式(x-2)12展开式中第3项的系数是( )A.264B.-264C.66D.-176010.(x-2)8 的展开式中, x6的系数是( )A. 56B. -56C. 28D. 22411.(x2+)5展开式中的10x是( )A.第2项B.第3项C.第4项D.第5项12.二项式x-1x6的展开式中常数项是( )A. 1B. 6C. 15D. 2013.设(3-x)n=nnxaxaxaa+⋅⋅⋅+++221,已知naaaa+⋅⋅⋅+++21=64,则n=.14.设二项式(3x+5)10=188991010axaxaxaxa++⋅⋅⋅+++,则18910aaaaa+-⋅⋅⋅-+-=.15.二项式2x-1x6的展开式中二项式系数最大的项是.性质①在二项展开式中,与首末两端“等距离”的两项的二项式系数相等.②如果二项式的幂指数是偶数,则中间一项的二项系数最大;如果二项式的幂指数是奇数,则中间两项的二项式系数相等并且最大.③二项式系数的和为n2,即nC+1nC+…+rnC+…+nnC=n2④奇数项的二项式系数的和等于偶数项的二项式系数的和,即nC+2nC+…=1nC+3nC+…=12-n。
排列、组合与二项式定理(理)

二项式定理的未来发展方向
理论完善
随着数学的发展,二项式定理的理论体系将不断完善,新的证明方 法和技巧将不断涌现。
应用拓展
随着各学科的发展,二项式定理的应用领域将不断拓展,特别是在 大数据处理、人工智能和量子计算等领域。
排列数的计算
01
二项式定理也可以用来计算排列数,特别是当排列数的上标和
下标较大时,使用二项式定理可以简化计算过程。
排列数的性质
02
通过二项式定理,我们可以推导出排列数的性质,如排列数的
增减性等。
排列数的递推关系
03
利用二项式定理,我们可以得到排列数的递推关系,从而更方
便地计算排列数。
利用二项式定理解决实际问题
互异性
有序性
排列中的元素顺序是确定的,不能随 意调换。
排列中的元素没有重复出现的情况。
组合的定义与性质
组合的定义
从n个不同元素中取出m个元素 (0<m≤n),不考虑顺序,称为 从n个不同元素中取出m个元素的
一个组合。
互异性
组合中的元素没有重复出现的情况。
无序性
组合中的元素顺序不影响其组合结 果。
排列与组合的关系
利用组合数的性质,通过数学推导推导出二项式定理的展开式。
利用多项式乘法推导
将$(a+b)^n$展开成多项式,然后利用多项式乘法的性质推导出二 项式定理的展开式。
利用幂的性质推导
利用幂的性质,将$(a+b)^n$展开成幂的形式,然后通过数学推导 推导出二项式定理的展开式。
04 二项式定理的应用举例
利用二项式定理计算组合数
高中数学排列组合与二项式定理

高中数学排列组合与二项式定理第一篇:高中数学排列组合与二项式定理排列组合与二项式定理1.(西城区)在(2x2-A.-5 1x)的展开式常数项是 6 D.60()B.15 C.-602.(东城区)8名运动员参加男子100米的决赛.已知运动场有从内到外编号依次为1,2,3,4,5,6,7,8的八条跑道,若指定的3名运动员所在的跑道编号必须是三个连续数字(如:4,5,6),则参加比赛的这8名运动员安排跑道的方式共有()A.360种 B.4320种 C.720种 D.2160种3.(海淀区)从3名男生和3名女生中,选出2名女生1名男生分别担任语文、数学、英语的课代表,则选派方案共有()A.18种B.36种C.54种D.72种4.(崇文区)某运动队从5名男运动员和6名女运动员中选出两名男运动员和两名女运动员举行乒乓球混合双打比赛,对阵双方各有一名男运动员和一名女运动员,则不同的选法共有A.50种B.150种C.300种 D.600种()5.(丰台区)把编号为1、2、3、4的4位运动员排在编号为1、2、3、4的4条跑道中,要求有且只有两位运动员的编号与其所在跑道的编号相同,共有不同的排法种数是()A. 3B.6C.12D.246.(朝阳区)从4位男教师和3位女教师中选出3位教师,派往郊区3所学校支教,每校1人.要求这3位教师中男、女教师都要有,则不同的选派方案共有()A.210种x6B.186种 7C.180种 D.90种 7.(东城区)已知(x-)展开式的第4项的值等于5,则x= 48.(海淀区)在(ax-1)的展开式中x的系数是240,则正实数a9.(宣武区)设二项式(33x+1x)的展开式的各项系数的和为P,所有二项式系数的和为S,n若P+S=272,则n=,其展开式中的常数项为.210.(崇文区)若(x+1x2)展开式中只有第四项的系数最大,则,展开式中的第五n项为11.(丰台区).在(x+1a)的展开式中,含x与x项的系数相等,则a的值是 75412.(朝阳区)若(1-ax)6的展开式中x4的系数是240,则实数a的值是13.(宣武区)现有A、B、C、D、E、F、共6位同学站成一排照像,要求同学A、B相邻,C、D不相邻,这样的排队照像方式有DBCCBC7.-1715x411.53;12.±213.144第二篇:高中数学排列组合与二项式定理知识点总结排列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)2.排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)!Ann =n!Cnm = n!/(n-m)!m!Cnm= Cnn-mCnm+Cnm+1= Cn+1m+1 k•k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。
高中数学排列组合及二项式定理知识点

高中数学排列组合及二项式定理知识点高中数学之排列组合二项式定理一、分类计数原理和分步计数原理:分类计数原理:完成某事有多种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。
分步计数原理:完成某事必须分成几个步骤,每个步骤都有不同的方法,而每个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。
区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。
二、排列与组合:1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n个元素的问题;区别:前者有顺序,后者无顺序。
2)排列数、组合数:排列数的公式:Ann(n-1)(n-2)。
(n-m+1)=n。
注意:①全排列:Ann。
②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①AnnAn-1将从n个不同的元素中取出m(m≤n)个元素,分两步完成:第一步从n个元素中选出1个排在指定的一个位置上;第二步从余下n-1个元素中选出m-1个排在余下的m-1个位置上)②AnmAn-1An-1将从n个不同的元素中取出m(m≤n)个元素,分两类完成:第一类:m个元素中含有a,分两步完成:第一步将a排在某一位置上,有m不同的方法。
第二步从余下n-1个元素中选出m-1个排在余下的m-1个位置上)即有mAn-1种不同的方法。
第二类:m个元素中不含有a,从n-1个元素中取出m个元素排在m个位置上,有An-1种方法。
组合数的公式:Cmnmm!(n-m)!/m!组合数的性质:CnCn从n个不同的元素中取出m个元素后,剩下n-m个元素,也就是说。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学第十章-排列组合二项定理考试内容:分类计数原理与分步计数原理. 排列.排列数公式.组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求:(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.§10. 排列组合二项定理 知识要点一、两个原理.1. 乘法原理、加法原理.2. 可.以有..重复..元素..的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种)二、排列.1. ⑴对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑶排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号mn A 表示.⑷排列数公式: ),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑵组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C mn mmm n mn-=+--== ⑶两个公式:①;m n n mn CC -= ②m n m n m n C C C11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn 种,依分类原理有mn m n m n C C C11+-=+.⑷排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑸①几个常用组合数公式n n nn n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C②常用的证明组合等式方法例.i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C . vi. 构造二项式. 如:nn n n n n C C C C 222120)()()(=+++证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而m m A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-. ②有n 件不同商品,若其中A 、B 排在一起有2211A A n n ⋅--. ③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?mm n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法)mm nn A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有kkn nn n k n kn AC C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? (!2/102022818C C C P =)注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有mm mm n mn m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义.⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某r 个指定位置则有rk r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有mn A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的) ⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。
先C 后A 策略,排列k k r k r n r r A C C --;组合r k r n r r C C --.ii. 从n 个不同元素中每次取出k 个不同元素作排列(或组合),规定某r 个元素都不包含在内。
先C 后A 策略,排列k k k r n A C -;组合k r n C -.iii 从n 个不同元素中每次取出k 个不同元素作排列(或组合),规定每个排列(或组合)都x 24只包含某r 个元素中的s 个元素。
先C 后A 策略,排列kk s k r n s r A C C --;组合sk r n s r C C --. II. 排列组合常见解题策略:①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(处理排列组合综合性问题一般是先选元素,后排列);④正难则反,等价转化策略;⑤相邻问题插空处理策略; ⑥不相邻问题插空处理策略;⑦定序问题除法处理策略;⑧分排问题直排处理的策略;⑨“小集团”排列问题中先整体后局部的策略;⑩构造模型的策略. 2. 组合问题中分组问题和分配问题.①均匀不编号分组:将n 个不同元素分成不编号的m 组,假定其中r 组元素个数相等,不管是否分尽,其分法种数为r r A A /(其中A 为非均匀不编号分组中分法数).如果再有K 组均匀分组应再除以k kA . 例:10人分成三组,各组元素个数为2、4、4,其分法种数为1575/224448210=A C C C .若分成六组,各组人数分别为1、1、2、2、2、2,其分法种数为44222224262819110/A A C C C C C C ⋅ ②非均匀编号分组: n 个不同元素分组,各组元素数目均不相等,且考虑各组间的顺序,其分法种数为m mA A ⋅ 例:10人分成三组,各组人数分别为2、3、5,去参加不同的劳动,其安排方法为:335538210A C C C ⋅⋅⋅种.若从10人中选9人分成三组,人数分别为2、3、4,参加不同的劳动,则安排方法有334538210A C C C ⋅种③均匀编号分组:n 个不同元素分成m 组,其中r 组元素个数相同且考虑各组间的顺序,其分法种数为m mr r A A A ⋅/. 例:10人分成三组,人数分别为2、4、4,参加三种不同劳动,分法种数为33224448210A A C C C ⋅ ④非均匀不编号分组:将n 个不同元素分成不编号的m 组,每组元素数目均不相同,且不考虑各组间顺序,不管是否分尽,其分法种数为1m nC A=21m m -n C …k m )m ...m (m -n 1-k 21C +++ 例:10人分成三组,每组人数分别为2、3、5,其分法种数为25205538210=C C C 若从10人中选出6人分成三组,各组人数分别为1、2、3,其分法种数为126003729110=C C C .五、二项式定理.1. ⑴二项式定理:nn n r r n r n n n n nn b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T rr n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n 是偶数时,中间项是第12+n项,它的二项式系数2nn C 最大; II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C最大.③系数和:1314201022-=++=+++=+++n n n n n n n n n n n C C C C C C C C附:一般来说b a by ax n ,()(+为常数)在求系数最大的项或最小的项...........时均可直接根据性质二求解. 当11≠≠b a 或时,一般采用解不等式组11111(,+-+-+⎩⎨⎧≤≤⎩⎨⎧≥≥k k k kk k k k k k T A A A A A A A A A 为或的系数或系数的绝对值)的办法来求解.⑷如何来求n c b a )(++展开式中含r q p c b a 的系数呢?其中,,,N r q p ∈且n r q p =++把n n c b a c b a ])[()(++=++视为二项式,先找出含有r C 的项r r n rn C b a C -+)(,另一方面在r n b a -+)(中含有q b 的项为q p q r n q q r n q r n b a C b a C ----=,故在n c b a )(++中含r q p c b a 的项为r q p q r n r n c b a C C -.其系数为rr q p n p n q r n r n C C C p q r n q r n q r n r n r n C C --==---⋅-=!!!!)!(!)!()!(!!.2. 近似计算的处理方法.当a 的绝对值与1相比很小且n 不大时,常用近似公式na a n +≈+1)1(,因为这时展开式的后面部分nn n n na C a C a C +++ 3322很小,可以忽略不计。