2018年河南中考数学选择第10题

合集下载

2018年河南焦作市中考第一次质量抽测试卷(含答案).doc

2018年河南焦作市中考第一次质量抽测试卷(含答案).doc

焦作市2018年九年级第一次质量抽测试卷数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.在下列各数中,比﹣1小的数是()A.﹣3 B.﹣12C.0 D.12.大型纪录电影《厉害了,我的国》3月2日在全国上映,在上映首日收获了4132万人民币的票房。

数据“4132万”用科学计数法表示为()A.61032.41⨯B.710132.4⨯C.610132.4⨯D.71032.41⨯3.用8个相同的小正方体搭成一个几何体,从上面看它得到的平面图形如图所示,那么从左面看它得到的平面图形一定不是()A.B.C.D.4.下列计算正确的是()A.a+b=ab B.C.a3b÷2ab=a2D.(-2ab2)3=-6a3b55.下列关于x的一元二次方程中,有两个相等实数根的是()A.x2+1=0 B.x2+x﹣1=0C.x2+2x﹣3=0 D.4x2﹣4x+1=06.某中学举行书法比赛,各年龄组的参赛人数如下表所示,则全体参赛选手年龄的平均数和中位数分别为( )A .14.5,14.5B .14,15C .14.5,14D .14,147.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( ) A .AE =EC B .AE =BE C .∠EBC =∠BAC D .∠EBC =∠ABE8.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( ) A . B.C .D .9.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成.为记录寻宝者的行进路线,在BC 的中点M 处放置了一台定位仪器.设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( )A .A →O →B B .B →A →C C .B →O →CD .C →B →O10.如图,AB 为半圆O 的直径,C 为AO 的中点,CD ⊥AB 交半圆于点D ,以C 为圆心,CD 为半径画弧交AB 于E 点,若AB =4,则图中阴影部分的面积是( ) A .23127+π B .π125C .23127-π D .π32 二、填空题(每小题3分,共15分)11.计算:9211-⎪⎭⎫⎝⎛-= .12.不等式组⎩⎨⎧≤-+x x x -81212>的最大整数解是 .13.已知反比例函数y =xk(x ≠0)的图象经过(3,﹣1),则当1<y <3时,自变量x 的取值范围是 .14. 如图,在直角坐标系中,正方形ABCO 的点B 坐标(3,3),点A 、C 分别在y 轴、x 轴上,对角线AC 上一动点E ,连接BE ,过E 作DE ⊥BE 交OC 于点D .若点D 坐标为(2,0),则点E 坐标为 .15. 如图,在Rt △ABC 中,∠A =90°, ∠B =30°,BC =3+1,点E 、F 分别是BC 、AC 边上的动点,沿EF 所在直线折叠∠C ,使点C 的对应点C ′始终落在边AB 上,若△BEC ′是直角三角形时,则BC ′的长为 .CB三、解答题(本大题共8小题,满分75分) 16.(8分)化简并求值:22211y x y x y x y x --÷⎪⎪⎭⎫ ⎝⎛+--,其中x ,y 满足|x +2|+(2x +y ﹣1)2=0.17.(9分)为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t ≤20分钟的学生记为A 类,20分钟<t ≤40分钟的学生记为B 类,40分钟<t ≤60分钟的学生记为C 类,t >60分钟的学生记为D 类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)这次共抽查了 名学生进行调查统计,m = %,n = %; (2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C 类学生约有多少人.18.(9分)如图,△ABC 内接于⊙O ,且AB =AC .延长BC 到点D ,使CD =CA ,连接AD 交⊙O 于点E . (1)求证:△ABE ≌△CDE ; (2)填空:①当∠ABC 的度数为 时,四边形AOCE 是菱形; ②若AE =6,BE =8,则EF 的长为 .19.(9分)如图,某校教学楼AB 的后面有一建筑物CD ,在距离CD 的正后方30米的观测点P 处,以22°的仰角测得建筑物的顶端C 恰好挡住教学楼的顶端A ,而在建筑物CD 上距离地面3米高的E 处,测得教学楼的顶端A 的仰角为45°,求教学楼AB 的高度.(参考数据:sin22°≈,cos22°≈,tan22°≈)DA20.(9分)如图,一次函数y =-12x +b 与反比例函数y =kx (x >0)的图象交于点A (2,6)和B (m ,1)(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ; (2)点E 为y 轴上一个动点,若S △AEB =5,求点E 的坐标.21.(10分)某文具商店销售功能相同的两种品牌的计算器,购买2个A 品牌和1个B 品牌的计算器共需122元;购买1个A 品牌和2个B 品牌的计算器共需124元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店举行促销活动,具体办法如下:购买A 品牌计算器按原价的九折销售,购买B 品牌计算器超出10个以上超出的部分按原价的八折销售,①设购买x 个A 品牌的计算器需要y 1元,购买x 个B 品牌的计算器需要y 2元,分别求出y 1、y 2关于x 的函数关系式;②小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过10个,问购买哪种品牌的计算器更合算?请说明理由.x22.(10分)如图1:在等边△ABC 中,点D ,E 分别在边AB ,AC 上,AD =AE ,连结BE ,CD ,点M 、N 、P 分别是BE 、CD 、BC 的中点. (1)观察猜想图1中△PMN 的形状是 ; (2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,△PMN 的形状是否发生改变?并说明理由; (3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD =1,AB =3,请直接写出△PMN 的周长的最大值.A BBC图1 图2A23.(11分)如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,过点P作x轴的垂线PQ,过点A作AQ⊥PQ于点Q,连接AP.(1)填空:抛物线的解析式为,点C的坐标;(2)点P在抛物线上运动,若△AQP∽△AOC,求点P的坐标;(3)如图2,当点P位于抛物线,的对称轴的右侧.若将△APQ沿AP对折,点Q 的对应点为点Q’.请直接写出....当点Q’落在坐标轴上时点P的坐标.xx焦作市2018年九年级第一次质量抽测试卷数学参考答案及评分标准一、选择题:(每小题3分,共30分)三、解答题:(本大题共8个小题,满分75分)16.解:(-)÷=()()y x y x yx y x +-+-+•………………………………..……….………….4分=yx y-22 ………………………………….……………………..…………….6分∵|x+2|+(2x+y ﹣1)2=0,∴⎩⎨⎧=-+=+01202y x x 解得:⎩⎨⎧=-=52y x ………….……………..……..……….....………7分∴原式=()91052252-=--⨯⨯ ……………………………………….………8分17. 解:(1)50,26,14; ……………………………………..……….…..3分 (2)补全的条形统计图,频数为10, ………………….…………………..6分 (3)1200×20%=240(人),即该校C 类学生约有240人. ……………………………………....………..9分18.(1)证明:∵AB=AC,CD=CA∴∠ABC=∠ACB,AB=CD …………………………………………….……..….2分 ∵四边形ABCE 是园内接四边形 ∴∠ECD=∠BAE,∠CED=∠ABC ∵∠ABC=∠ACB=∠AEB∴∠CED=∠AEB ……………………………………………………..………....4分 ∴△ABE ≌△CDE …………………………………………..……….…………..5分 (2)①60(填60°不扣分) …………………………………………………7分②29………………………………………………………………..……….9分 19. 解:如图作EF ⊥AB 于F ,则四边形EFBD 是矩形.…………….…1分∵∠AEF=45°,∠AFE=90°, ∴∠AEF=∠EAF=45°,∴EF=AF ,设EF=AF=x ,则BD=EF=x ,在Rt △PAB 中,∵AB=x +3,PB=30+x ,……………………………………3分∴tan22°=,∴=,……………………………………………………………………6分∴x=15,经检验:x=15是原方程的根 ……………………………….……………7分 ∴AB=x +3=18m ,……………………………………………………………….8分 答:教学楼AB 的高度为18m . ……………………………………………..9分20. 解:(1)y=﹣x +7,y=. …………………………………………..4分(2)如图,直线AB 与y 轴的交点为P ,设点E 的坐标为(0,m ),连接AE ,BE ,则点P的坐标为(0,7).∴PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=5,………………………………………….…..6分∴×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).………………………………….9分21.解:(1)设A品牌计算器的单价为a元,B品牌计算器的单价为b元,则由题意可知:,解得:,答:A品牌计算器的单价为40元,B品牌计算器的单价为42元.………….3分(2)由题意可知:y1=0.9×40x,即y1=36x,当0<x≤10时,y2=42x;当x>10时,y2=42×10+42(x﹣10)×0.8,即y2=33.6x+84.∴y2=.……………………………………………………….7分(3)当购买数量超过10个时,y2=33.6x+84.①当y1<y2时,36x<33.6x+84,解得:x<35,∴当购买数量超过10个而不足35个时,购买A品牌的计算器更合算;②当y1=y2时,36x=33.6x+84,解得:x=35,∴当购买数量为35个时,购买两种品牌的计算器花费相同;③当y1>y2时,36x>33.6x+84,解得:x>35.∴当购买数量超过35个时,购买B品牌的计算器更合算.……………….10分22.(1)等边三角形 ……………………….2分(2)△PMN 的形状不发生改变,仍为等边三角形.理由如下:………………..3分 连接BD ,CE由旋转可得∠BAD=∠CAE∵△ABC 是等边三角形∴AB=AC ,∠ACB=∠ABC=60°∴△ABD ≌△ACE∴BD=CE ,∠ABD=∠ACE ………………………………..5分∵M 是BE 的中点,P 是BC 的中点∴PM 是△BCE 的中位线∴PM=12CE 且PM ∥BD.同理可证PN=12 BD 且PN ∥BD∴BD=CE ,∠MPB =∠ECB ,∠NPC=∠DBC ……………………………6分 ∴∠MPB+∠NPC=∠ECB+∠DBC=(∠ACB+∠ACE)+(∠ABC-∠ABD)= ∠ACB+∠ABC=120°∴∠MPN=60°∴△PMN 是等边三角形. ……………………..…………………..8分(3)6. …………………………….…………………..10分23. 解:(1)抛物线的解析式为:y =﹣x 2+3x +4. ........................................1分点C 的坐标为(-1,0) ................................................................................2分(2)∵点A 的坐标为(0,4),点C 的坐标为(-1,0) ∴41=OA OC ∵点P 的横坐标为m ,∴P (m , ﹣m 2+3m +4)………………………………3分 ①当点P 在直线AQ 下方时,QP =4-(﹣m 2+3m +4)= m 2-3m由△AQP ∽△AOC 得,OAOC AQ QP =,即:4132=-m m m∴01=m (舍去)或4132=m当413=m 时,﹣m 2+3m +4=1651,此时点P 的坐标为(,)....................5分 ②当点P 在直线AQ 上方时,PQ =﹣m 2+3m +4-4=﹣m 2+3m由△AQP ∽△AOC 得,OAOC AQ QP =,即:4132=+-m m m ∴1m =0(舍去)或2m =,此时P 点坐标为(,). 综上所述:点P 的坐标为(,)或(,)......................................8分(3)()()()6,50,46,221-P P P 或或 .............................................................................11分。

2018年河南省中考数学试卷含答案解析

2018年河南省中考数学试卷含答案解析

2018年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC 与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x (元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.2018年河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=2.【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S==π.阴【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC 与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x (元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),设直线EM1的解析式为y=﹣x+b,。

第29讲 统计训练题2018年中考数学一轮复习资料.docx

第29讲 统计训练题2018年中考数学一轮复习资料.docx

一、选择题(每题3分,共30分)1.为了调查了解某县七年级男生的身高,有关部门准备对200名七年级男生的身高作调查,以下调查方案中比较合理的是()A,查阅外地200名七年级男生的身高统计资料B,测量该县县城一所中学200名七年级男生的身高C.测量.该,县两所农村中学各100名七年级男生的身高D.在该县县城任选一所中学,农村任选三所中学,每所中学用抽签的方法分别选择50名七年级男生,然后测量他们的身高2.某省有7万名学生参加初中毕业会考,要想了解这7万名学生的数学成绩,从中抽取了 1 000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1 000名考生是总体的一个样本B.每位考生是个体C.7万名考生是总体D.这种调查是抽样调查3.九年级某班在一次考试中对某道单选题的作答情况如图所示,根据统计图,下列判断中错误的是()A.选A的有8人B.选B的有4人C.选C的有26人D.该班共有50人参加考试4.某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()A. 216B.252C.288D.3245.如图,是某工厂2010-2013年的年产值统计图,则年产值在2500万元以上的年份是(A. 2011 年B. 2012 年C. 2013 年D. 2011 年和 2013 年6.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输人汉字的个数统计结果如下表,某同学分析上表后得出如下结论:(1)甲、乙两班学生成绩平均水平相同,(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入N150个汉字为优秀)⑶甲班成绩的波动比乙班大上述结论正确的是()A. (1)⑵(3)B. (1) (2)C. (1) (3)D. (2) (3)7.下表是四川省11个地市5月份某日最高气温(°C)的统计结果:该日最高气温的极差和平均数分别是( )A. 31 °C,28 °CB.. 26 °C, 28 °CC. 5 °C, 27 °CD. 5 °C, 28 °CC 2 c 28.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲=0. 51, S乙=0. 41, S丙%0. 62, S T22=0. 45,则四人中成绩最稳定的是( )A.甲B.乙C.丙D. T9.某次歌唱比赛,最后三名选手的成绩统计如下:若唱功、音乐常识、综合知识按6 : 3 : 1的加权平均分排出冠军、亚军、季军,则冠军、亚军、季军分别A.王飞、李真、林杨B.王飞、林杨、李真C.李真、王飞、林杨D.李真、林杨、王飞10.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生汉字输入的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字的个数不少于150为优,秀);③甲班成绩的波动比乙班■大.上述结论正确的是()A.①②③B.①②C.①③D.②③二、填空题(每题3分,共30分)11.五个数1, 2, 4, 5, -2的极差是.12.已知一组数据3, 4, 4, 2, 5,这组数据的中位数为.13.某工厂共有50名员工,他们的月工资方差*=20,现在给每个员工的月工资增加300元,那么他们新工资的方差是.14.数据3, 2, 1, 5, - 1, 1的众数和中位数之和是.15.已知一组数据10, 9, 8, X, 12, y, 10, 7的平均数是10,又知y比x大2,则x+y= .16.某校九年级(2)班(1)组女生的体重(单位:kg)为:38, 40, 35, 36, 65, 42, 42,则这组数据的中位数是17.一个班级有40人,一次数学考试中,优秀的有18人.在扇形图中表示优秀的人数所占百分比的扇形的圆心角的度数是.18.某校男子足球队队员的年龄分布如表所示:年龄(岁)13 14 15 16 17人数 2 6 8 3 3则这些队员年龄的中位数是—岁.19.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是_.20.在某次学校安全知识抢答赛中,九年级参赛的10名学生的成绩统计图如图所示.这10名学生的参赛成绩的中位数是—分.85 90 e三、解答题(共60分)21.(本题6分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3: 3: 2: 2计算,那么甲、乙的数学综合素质成绩分别为多少分?22.(本题7分)在开展“好书伴我成长”的读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:册数0 1 2 3 4人数 3 13 16 17 1(1)求这50个样本数据的平均救,众数和中位数.(2)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.23.(本题7分)甲、成绩分别被制成下列两个统计图:乙两名队员参加射击训练,根据以上信息,整理分析数据如下:平均成绩/中位数/环众数/环方差环甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a, b, c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?24.(本题8分)某学校九年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰, 设置一、二、三等奖各进步奖共四个奖项,赛后将九年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)九年级(1)班共有—名学生;(2)将条形图补充完整:在扇形统计图中,“二等奖”对应的扇形的圆心角度数是_(3)如果该九年级共有1250名学生,请估计荣获一、二、三等奖的学生共有多少名.25.(本题8分)了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额, 并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:,诙SX额条以(人)数额(元)(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?被调查的学生每人.一周零花钱数的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?26.(本题8分)随着一部在重庆取景拍摄的电影《火锅英雄》在山城的热播,山城人民又掀起了一股去吃洞子老火锅的热潮.某餐饮公司为了大力宣传和推广该公司的企业文化,准备举办一个火锅美食节.为此,公司派出了若干业务员到几个社区作随机调查,了解市民对火锅的喜爱程度.业务员小王将“喜爱程度”按A、B、C、D进行分类,并将自己的调查结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:“喜爱程度”条形统计图“喜爱程度”扇形统计图(说明:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢)(1)请把条形统计图补充完整.;(2)扇形统计图中A类所在的扇形的圆心角度数是_;(3)若小王调查的社区大概有5000人,请你用小王的调查结果估计“非常喜欢”和“比较喜欢”的人数之和.27.(本题8分)为了降低塑料袋--“白色污染”对环境污染.学校组织了对使用购物袋的情况的调查, 小明同学5月8日到站前市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力分别提供了 0.1元,0.2元,0.3元三种质量不同的塑料袋,下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题:(1)这次调查的购物者总人数是—人;(2)请补全条形统计图,并说明扇形统计图中0.2元部分所对应的圆心角是度,0.3元部分所对应的圆心角是度;(3)若5月8日到该市场购物的人数有3000人次,则该市场应销售塑料购物袋多少个?目备0.1兀28.(本题8分)A, B, C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图1:竞选人 A .B C笔试85 95 90口试80 85■笔试□ 口试B C(1)请将表和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图2 (没有弃权票,每名学生只能推荐一个),则B在扇形统计图中所占的圆心角是度.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4: 3: 3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.。

全解八年级数学上第二章 实数检测题及答案解析

全解八年级数学上第二章 实数检测题及答案解析

第二章 实数检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1.(2018·天津中考)估计的值在( ) A .1和2之间 B .2和3之间 C .3和4之间D .4和5之间2.(2018·安徽中考)与1+最接近的整数是( )A .4B .3C .2D .1 3.(2018·南京中考)估计介于( )A .0.4与0.5之间B .0.5与0.6之间C .0.6与0.7之间D .0.7与0.8之间 4.( 2018·湖北宜昌中考)下列式子没有意义的是( ) A .B .C .D .5.(2018 )A. B. C. D.6. 若a ,b 为实数,且满足|a -2|+,则b -a 的值为( )A .2B .0C .-2D .以上都不对7.若a ,b 均为正整数,且a b a +b 的最小值是( ) A.3 B.4 C.5 D.68.11,212c ⎛⎫- ⎪⎝⎭=0,则abc 的值为( )A.0 B .-1 C.-12 D.129.(2018·福州中考)若(m -1)20,则m +n 的值是( )A .-1B .0C .1D .210. 有一个数值转换器,原理如图所示:当输入的x =64时,输出的y 等于( )是有理数A .2B .8C .D .二、填空题(每小题3分,共24分)11.(2018·南京中考)4的平方根是_________;4的算术平方根是__________. 12.(2018·河北中考)若|a |=,则a =___________.13.已知: 1.910 6.042,≈ ,≈ . 14.绝对值小于π的整数有 .15.已知|a -5|=0,那么a -b = .16.已知a ,b 为两个连续的整数,且a b ,则a +b = .17.(2018·福州中考)计算:1)1)=________.18.(2018·贵州遵义中考) += .三、解答题(共46分) 19.(6分)已知,求的值.21.(6分)先阅读下面的解题过程,然后再解答: 形如n m 2±的化简,只要我们找到两个数a ,b ,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+. 解:首先把347+化为1227+,这里7=m ,12=n ,因为,,即7)3()4(22=+,1234=⨯, 所以347+1227+32)34(2+=+.根据上述方法化简:42213-.22.(6分)比较大小,并说明理由: (1)与6; (2)与.23.(6分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部写出来,于是小平用-1来表示的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分. 请解答:已知:5+的小数部分是,5-的整数部分是b ,求+b 的值.24.(8分)计算:(1)862⨯-82734⨯+;(2))62)(31(-+-2)132(-. 25.(8分)阅读下面计算过程:12)12)(12()12(1121-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)nn ++11(n 为正整数)的值;(3++的值.第二章 实数检测题参考答案一、选择题1.C 解析:11介于9和16之间,即9<11<16,则利用不等式的性质可以求得介于3和4之间.即∵ 9<11<16,∴ <<,∴ 3<<4,∴的值在3和4之间.故选C .2.B 解析:∵ 4.84<5<5.29,∴<即2.22.3,∴ 1+2.2<11+2.3,即3.2<13.3,∴ 与13.3.C 解析:22 2.25 2.3, 2.2 2.3, 1.21 1.3,<<∴<<∴<<0.60.65∴<<,故选C . 4.A 解析:根据二次根式有意义的条件,当被开方数a ≥0时,二次根式有意义;当a <0时,在实数范围内没有意义.由于-3<0,所以没有意义.5.B ==6.C 解析:∵ |a -2|0,∴ a =2,b =0,∴ b -a =0-2=-2.故选C .7.C 解析:∵ a ,b 均为正整数,且a b ∴ a 的最小值是3,b 的最小值是2,则a +b 的最小值是5.故选C . 8.C解析:∵ 11,212c ⎛⎫- ⎪⎝⎭=0,∴ a =-1,b =1,c =12,∴ abc =-12.故选C .9.A 解析:根据偶次方、算术平方根的非负性,由(m -1)20,得m -1=0,n +2=0,解得m =1,n =-2,∴ m +n =1+(-2)=-1.10.D解析:由图得64的算术平方根是8,8的算术平方根是故选D .二、填空题11.2± 2 解析:∵ ()2224,24,=-=∴ 4的平方根是2±,4的算术平方根是2.12.1± 解析:因为02 0151=,所以1=a ,所以.1±=a13.604.2 ±0.019 1 ≈604.2; ≈±0.019 1. 14.±3,±2,±1,0 解析:π≈3.14,大于-π的负整数有:-3,-2,-1,小于π的正整数有:3,2,1,0的绝对值也小于π.15.8 解析:由|a -5|=0,得a =5,b =-3,所以a -b =5-(-3) =8.16.11 解析:∵ a b , a ,b 为两个连续的整数,a =6,b =5,∴ a +b =11.17.1 解析:根据平方差公式进行计算,1)(2-1)=()22-12=2-1=1.18. ==三、解答题19.解:因为,,即,所以.故,从而,所以,X|k | B| 1 . c |O |所以.20.解:∵ 2<7<3,∴ 7<5+7<8,∴a=7-2.又可得2<5-7<3,∴b=3-7.将a=7-2,b=3-7代入ab+5b中,得ab+5b=(7-2)(3-7)+5(3-7)=37-7-6+27+15-57=2.21.解:根据题意,可知,因为,所以.22.分析:(1)可把6转化成带根号的形式,再比较它们的被开方数,即可比较大小;(2)可采用近似求值的方法来比较大小.解:(1)∵35<36,∴ 6.(2)∵1≈-2.236+1=-1.236≈-0.707,1.236>0.707,∴1.23. 解:∵ 4<5<9,∴ 2<<3,∴ 7<5+<8,∴=-2.又∵-2>->-3,∴ 5-2>5->5-3,∴ 2<5-<3,∴b=2,∴+b=-2+2=.(2(13-24.解:(1=13.25.1=解:((2==(3+=-11+10=9.。

2023年河南省中考数学试卷含答案

2023年河南省中考数学试卷含答案

2023年河南省中考数学试卷含答案第一部分:选择题1. (A) 42. (B) 93. (C) 24. (D) 65. (A) 56. (B) 37. (C) 88. (D) 79. (A) 110. (B) 5第二部分:填空题11. 1612. 10813. 1814. 7215. 2第三部分:解答题16. 解:设正方形边长为x,根据题意,x + 3 = 12,解得x = 9。

17. 解:设等腰三角形的腰长为x,根据题意,2x + 3x = 30,解得x = 6。

那么等腰三角形的底长为2x = 12。

18. 解:根据题意,750 ÷10 = 75,所以75是750的十分之一。

第四部分:应用题19. 解:首先计算小明所用的时间:$8 \times 60 + 30 = 510$分钟。

然后计算小红所用的时间:$7 \times 60 + 40 = 460$分钟。

最后,计算小明所用的时间减去小红所用的时间:$510 - 460 = 50$分钟。

20. 解:根据题意,10年后张三的年龄是李四的年龄的2倍。

设张三的年龄为x,李四的年龄为y。

那么我们可以得到两个方程:- $x + 10 = 2(y + 10)$- $x = y - 10$解以上方程组,得到$x = 30$,$y = 40$。

所以10年后张三的年龄是30岁,李四的年龄是40岁。

第五部分:证明题证明:不等式$3x^2 + 2x + 1 > 0$对任意实数x成立。

证明过程略。

第六部分:附加题21. (A) 1622. (B) 923. (C) 424. (D) 525. (A) 3以上是2023年河南省中考数学试卷的答案。

祝你考试顺利!。

2019年河南中考数学之选择、填空重难点题型:专题四 几何图形的折叠与动点问题

2019年河南中考数学之选择、填空重难点题型:专题四  几何图形的折叠与动点问题

折叠后点位置的不确定
8.(2018· 达州)如图,Rt△ABC 中,∠C=90° ,AC=2,BC=5,点 D 是 BC 边上 一点,且 CD=1,点 P 是线段 DB 上一动点,连接 AP,以 AP 为斜边在 AP 的下方作等 腰直角三角形 AOP.在点 P 从点 D 运动至点 B 的过程中, 点 O 的运动路径长为 2 2 .
4.如图,在直角坐标系中,点 A(4,0),B(0,2),过点 A 的直线 l⊥AB,点 P 是 直线 l 上一动点,过点 P 作 PC⊥x 轴,垂足为点 C,把△ACP 沿 AP 翻折,使点 C 落在 点 D 处,且以点 A,D,P 为顶点的三角形与△ABP 相似,则所有满足条件的点 P 的坐 标是 (5,2)或(8,8)或(0,-8)或(3,-2) .
12.(2018· 安阳一模改编)在矩形 ABCD 中,AB=4,BC=9,点 E 是 AD 边上一动 点, 将△ABE 折叠, 点 A 的对应点为 A′, 若点 A′到矩形较长两对边的距离之比为 1∶3, 4 4 则线段 AE 的长为 5 15或7 7或 4 3 . 13.如图,在矩形 ABCD 中,AB=3,AD=6,点 E 为 AD 边上一点,将△ABE 沿 BE 折叠,点 A 落在点 A′处,取 BE 的中点 F,连接 A′F,当 A′F 平行于矩形的某条边 时,AE 的长为
折叠后特殊三角形的判定
1.(2018· 宜宾)如图,在矩形 ABCD 中,AB=3,CB=2,点 E 为线段 AB 上的动点, 将△CBE 沿 CE 折叠,使点 B 落在矩形内点 F 处,下列结论正确的是 ①②③ 所有正确结论的序号) .(写出
①当 E 为线段 AB 中点时,AF∥CE; 9 ②当 E 为线段 AB 中点时,AF= ; 5 13-2 13 ③当 A,F,C 三点共线时,AE= ; 3 ④当 A,F,C 三点共线时,△CEF≌△AEF.

2018年河南省郑州市中考数学二模试卷

2018年河南省郑州市中考数学二模试卷

第1页(共19页)2018年河南省郑州市中考数学二模试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。

)1、下列各数中最小的数是……………………()A .2p- B B..2- C C..0 D 0 D..12、2015年河南省参加高考的考生数量为772325人,比2014年增加了4.8万人。

将数据772325精确到千位用科学记数法表示为……………()A .41023.77´B B..51072.7´C C..5107.7´D D..4102.77´3、将一个螺栓按如右下图放置,则螺栓的左视图可能是………………()4、某小组5名同学一周内参加家务劳动的时间如下表所示,关于劳动时间这组数据,下列说法正确的是……………………………………()劳动时间(小时) 1 2 3 4人数 1 1 2 1 A .众数是2,平均数是,平均数是 2.6 2.6 2.6;;B .中位数是3,平均数是2;C .众数和中位数都是3; D D.众数是.众数是2,中位数是3.5、不等式组的解集在数轴上表示正确的是……()6、如图,已知0361=Ð,0362=Ð,01403=Ð,则4Ð的度数等于……()A.040. B.036. C . C..044. D.0100.7、已知关于x 的一元二次方程0142=+-x ax 有两个不相等的实数根,则a 的非负整数值的个数是……………………………………()(A )5;(B )4;(C )3; (D) 2 (D) 2..8、如图,四边形ABCD 是⊙是⊙O O 的内接四边形,AC 是⊙O 直径直径,,点P 在AC 的延长线上,延长线上,PD PD 是⊙是⊙O O 的切线,延长BC 交PD 于点E .则下列说法不正确的是……………………………………………………()A .PDO ADC Ð=Ð;B B..DAB DCE Ð=Ð;2-2x ≥6,2x -1≤5DCB A NMPQ43211EO PDCBAC .B Ð=Ð1;D D.. PDA PCD Ð=Ð.二、填空题(每小题3分,共21分)9. =______.10.如图,已知直线AB ∥CD ,直线EG 垂直于AB ,垂足为G ,直线EF 交CD 于点F ,∠1=50°,则∠2=______.11.微信根据移动ID 所带来的数据,发布了“微信用户春节迁徙数据报告”.该报告显示,2016年1月24日春运首日至2月4日期间,人口流入最多的省份是河南,作为劳务输出大省,河南约有313万微信用户在春节期间返乡,313万用科学记数法可表示为______. 12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为______.13.反比例函数y=经过点A (﹣3,1),设B (x 1,y 1),C (x 2,y 2)是该函数图象上的两点,且x 1<x 2<0,那么y 1与y 2的大小关系是______(填“y 1>y 2”,“y 1=y 2”或“y 1<y 2”). 14.如图,在△ABC 中,∠C=90°,AC=BC ,斜边AB=4,O 是AB 的中点,以O 为圆心,线段OC 的长为半径画圆心角为90°的扇形OEF ,弧EF 经过点C ,则图中阴影部分的面积为______平方单位.15.已知一个矩形纸片OACB ,OB=6,OA=11,点P 为BC 边上的动点(点P 不与点B ,C 重合),经过点O 折叠该纸片,得折痕OP 和点B ʹ,经过点P 再次折叠纸片,使点C 落在直线PB ʹ上,得折痕PQ 和点C ʹ,当点C ʹ恰好落在边OA 上时BP 的长为 ______.三、解答题(共75分)16.先化简(+),再求值.a为整数且﹣2≤a≤2,请你从中选取一个合适的数代入求值.17.今年3月12日,某校九年级部分学生参加植树节活动,以下是根据本次植树活动的有关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:关数据制作的统计图的一部分.请根据统计图所提供的有关信息,完成下列问题:(1)参加植树的学生共有______ 人;)请将该条形统计图补充完整;(2)请将该条形统计图补充完整;(3)参加植树的学生平均每人植树______棵.(保留整数)18.如图,已知⊙A的半径为4,EC是圆的直径,点B是⊙A的切线CB上的一个动点,连接AB交⊙A于点D,弦EF平行于AB,连接DF,AF.(1)求证:△ABC≌△ABF;(2)当∠CAB=______时,四边形ADFE为菱形;为正方形.(3)当AB=______时,四边形ACBF为正方形.19.已知:关于x的一元二次方程x2+2x+k=0有两个不相等的实数根.有两个不相等的实数根.(1)求k的取值范围;取最大整数值时,用合适的方法求该方程的解.(2)当k取最大整数值时,用合适的方法求该方程的解.20.图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM位置运动到与地面垂直的EN位置时的示意图.已知BC=0.64米,AD=0.24米,α=18°.(sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)(1)求AB的长(精确到0.01米);(2)若测得EN=0.8米,试计算小明头顶由M点运动到N点的路径弧MN的长度(结果保留π)21.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:其中方案一所示图形是顶点在原点的抛物线的一部分,方案二所示的图形是射线.设推销员销售产品的数量为x(件),付给推销员的月报酬为y(元).的函数关系式;(1)分别求两种方案中y关于x的函数关系式;(2)当销售量达到多少件时,两种方案的月报酬差额将达到3 800元?(3)若公司决定改进“方案二”:基本工资1 200元,每销售一件产品再增加报酬m元,当推销员销售量达到40件时,方案二的月报酬不低于方案一的月报酬.求m至少增加多少元?22.如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE 交AC于点G,DF经过点C.(1)求∠ADE的度数;(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求的值;(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断的值是否为定值?;如果不是,请说明理由.如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.23.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、三点.点C三点.(1)试求抛物线的解析式;)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△BʹOʹCʹ.在平移过程中,△BʹOʹCʹ与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?之间的函数关系式?2018年河南省郑州市中考数学二模试卷参考答案与试题解析一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。

2018年河南省中考数学试卷及答案解析

2018年河南省中考数学试卷及答案解析

2018年河南省中招考试数学试卷及答案解析一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-3答案:D解析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.解:∵﹣3<-13<0<13,∴最小的数是﹣3,故选A.2. 据统计,2018年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).13答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3875.5亿=3.8755×1011,故选B.3.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350 (B). 450 (C) .550(D). 650答案:C解析:根据角的平分线的性质及直角的性质,即可求解.∠CON=900-350=550,故选C.4.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B解析:根据同底数幂的乘法;幂的乘方;完全平方公式;同类项加法即可求得;(-a3)2=a6计算正确,故选B5.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(C)神州飞船发射前需要对零部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误。

(B)某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B)错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档