风能资源评估
风能资源评估方法综述

风能资源评估方法综述
随着能源需求的不断增长,风能作为一种清洁、可再生的能源备受关注,有关风能资源评估方法的研究也日益深入。
本文将对当前常用的风能资源评估方法进行综述。
(一)测风塔法
测风塔法是一种常见的风能资源评估方法,通过设置测风塔测量风速、方向和温度等参数,来评估该地区风能资源的适用性和可利用程度。
测风塔一般设置在地面或者离地较近的高度处,同时需要测量一定数量的数据才能得出可靠的结果。
(二)卫星遥感法
卫星遥感法利用卫星遥感数据来获取风能资源信息,是目前应用最广泛的风能资源评估方法之一。
该方法基于遥感技术,通过卫星图像分析、数值模拟等方式,评估不同区域的风能资源分布情况和适用性。
(三)气象资料法
气象资料法是一种常用的风能资源评估方法,通过收集和分析气象观测数据来评估风能资源的潜力和可利用性。
该方法可以通过现有的气象测量数据和历史气象数据来得出相应的风能资源评估结果,是一种较为可靠和简便的方法。
(四)数值模拟法
数值模拟法是一种基于物理和数学原理建立起来的风能资源评估方法。
该方法采用数学模型和计算机技术来模拟风能资源分布和预测风速、风向等参数,较好地解决了测量方法的受限和不确定性问题。
综上所述,不同的风能资源评估方法各有优缺点,应根据实际情况选取合适的方法进行评估,以保障风电项目的成功实施和运营。
风能发电项目的风能资源评估与选址分析

风能发电项目的风能资源评估与选址分析随着能源危机的不断加剧,新能源的开发和利用变得尤为重要。
其中,风能作为一种清洁、可再生的能源,备受关注。
风能发电项目的成功与否,在很大程度上取决于风能资源的评估和选址分析。
本文将探讨风能资源评估的方法和选址分析的要点,以期为风能发电项目的顺利实施提供参考。
一、风能资源评估方法风能资源评估是指对特定区域内的风能资源进行测量、分析和预测的过程。
以下是常用的风能资源评估方法:1. 气象测量法气象测量法是最常见、也是最简单的风能资源评估方法之一。
通过对特定地区的风速、风向和风功率的实测,来评估该地区的风能资源情况。
这种方法的优点是成本低廉、操作简单,但缺点是需要长期连续的测量数据,且受局地气象条件的影响较大。
2. 数值模拟法数值模拟法是通过建立复杂的数学模型,对风场进行模拟和计算,从而评估风能资源。
这种方法可以预测任意地点的风能资源情况,具有较高的准确性。
但缺点是需要大量的计算和高超的数学建模能力。
3. 遥感技术法遥感技术法是通过卫星遥感数据和其他遥感手段,对大范围的风能资源进行评估。
这种方法的优点是覆盖范围广,无需人工操作,但缺点是精度相对较低。
二、选址分析的要点风能发电项目的选址分析是在风能资源评估的基础上进行的,主要考虑以下几个要点:1. 风能资源丰度选择风能资源丰富的地区是风能发电项目成功的关键。
根据风能资源评估结果,选取平均风速较高且风能资源稳定的地区进行建设。
2. 土地条件选址时需要考虑土地的可利用性和稳定性。
避免选择有限制的土地,如农田、水源保护区等。
同时,要确保土地的承载能力能够满足风力发电机组的负荷要求。
3. 周边环境周边环境的影响也是选址的重要考虑因素之一。
要避免选择生态环境敏感的地区,如鸟类迁徙路线、野生动物栖息地等。
同时,要考虑与周边居民的距离,避免对其日常生活造成干扰。
4. 市场需求选址时要考虑当地的电力市场需求。
如果选址地区附近有大量电力需求,将有利于风能电站的建设和电力的销售。
风能发电的风能资源评估和风电场开发

风能发电的风能资源评估和风电场开发风能作为一种可再生能源,日益受到全球范围内的关注,被广泛应用于电力生产。
然而,风能资源评估和风电场开发是实现风能发电的关键步骤。
本文将探讨风能资源评估的方法和风电场的开发过程。
一、风能资源评估风能资源评估是评估特定地区的风能资源潜力和可开发利用程度的过程。
以下将介绍常用的风能资源评估方法。
1. 风速测量风速是风能资源评估的核心指标之一。
通常使用测风杆和风速监测仪器来测量风速。
数据收集期通常为数年,以获取全面的风能资源数据。
2. 风向测量风向指示风来自哪个方向。
风向测量可以通过风向标和其他测量设备来实现。
准确的风向数据对于风电场的布局和风机定位起着重要作用。
3. 风能密度计算风能密度是评估风能资源丰富程度的指标。
通过风速和风能密度之间的数学关系,可以计算出特定地区的风能资源潜力。
4. 风能气象学分析风能气象学分析是对风能资源的系统评估和分析。
它涉及风速频率分布、风能潜力、气候特征等方面的研究,以帮助确定最佳的风电场布局。
5. 环境评估在进行风能资源评估时,还需要进行环境评估,以确保风电场的建设和运营对环境影响的最小化。
二、风电场开发风电场开发是将风能资源转化为电能的过程。
以下将介绍风电场开发的主要步骤。
1. 地理条件评估首先需要评估风电场建设地的地理条件,包括地貌、土质、地基条件等。
这些条件对风机的安装和运行至关重要。
2. 风电场规划根据风能资源评估的结果和环境影响评估的要求,进行风电场的规划。
包括确定风机布局、电网连接等。
3. 资金筹集风电场的建设需要大量的资金投入。
开发者需要寻找投资者或贷款机构来筹集开发资金。
4. 相关许可和法规审批在进行风电场开发之前,需要获得相关政府部门的许可和审批。
这包括土地使用许可、环保审批等。
5. 风机采购和安装一旦获得所有许可和批准,开发者将购买风机并进行安装。
风机的选择应基于风能资源评估的结果和风电场规划。
6. 联网和运营完成风机安装后,需要将风电场与电网连接起来,以便将产生的电能输送到用户。
风能资源评估

风能资源评估风能是一种清洁、可再生的能源资源,被广泛应用于电力、供暖和机械动力等领域。
评估风能资源的重要性在于为开发利用风能提供科学依据,从而实现可持续发展。
下面就风能资源评估进行一些简要介绍。
风能资源评估可以分为两个方面的内容,一是风能资源潜力评估,二是风能资源具体评估。
风能资源潜力评估是指通过测风、观风以及统计资料分析,评估某地区风能的总体情况。
主要包括风能资源概况、风能资源分布和风能资源量。
首先需要对某地区的气候条件和地形条件进行调查,例如风速、风向、地形起伏等。
然后通过风能测量设备的测风数据、气象学原理和数学模型计算,得出风能资源的总体概况。
最后,结合地理位置和经济条件,对风能资源进行分布评估,找出适合开发的地点和潜力。
风能资源具体评估是指在潜力评估基础上,对某一具体风能项目进行评估。
主要包括风能场地选择、风能项目可行性分析和风能发电量预测。
首先是根据潜力评估的结果,选择适合开发风能项目的场地。
场地选择要考虑风速、地形条件、土地使用和环境保护等因素。
然后进行项目的可行性分析,包括技术可行性、经济可行性和环境可行性等方面。
最后,对风能发电量进行预测,可以使用统计模型、数值模拟和实测数据等方法,来预测风能发电量。
在风能资源评估过程中,需注意以下几点。
一是评估要依据科学、准确的数据和方法进行,不能夸大或低估风能资源的情况。
二是要充分考虑地方实际情况和需求,选择合适的评估指标和参数。
三是要关注风能资源的可再生性和可持续性,确保风能的长期利用。
四是评估结果要综合考虑技术、经济、环境和社会等方面的因素,做出全面的评估。
综上所述,风能资源评估是风能开发利用的重要环节,它对于实现可持续发展具有重要意义。
只有通过科学、准确地评估风能资源,才能合理规划、高效利用风能资源,推动清洁能源发展,减少对传统能源的依赖,实现可持续发展的目标。
风电基础知识培训风能资源评估方法

风电基础知识培训风能资源评估方法风电基础知识培训——风能资源评估方法风能已经成为全球清洁能源发展的重要组成部分,风电作为其中的一个主要载体,对于推动可持续发展具有重要意义。
要充分利用风能资源,对风能资源进行准确评估是至关重要的。
本文将介绍风能资源评估的方法和技术。
一、地面观测法地面观测法是最传统也是最常用的风能资源评估方法之一。
通过在特定地点设立测风塔,利用风速风向仪等设备进行实时观测,得到的数据可用于风能资源评估。
这种方法的优点是直接可靠,数据准确性较高,但其缺点是成本较高,需要长时间的观测,且受地点限制。
二、卫星遥感法卫星遥感法是一种相对较新的风能资源评估方法。
通过利用卫星图像和遥感技术,可以对大范围的风能资源进行评估。
该方法具有广覆盖、快速获取数据的优势,但其缺点是数据准确性相对较低,需要进行一定的校正和验证。
三、数值模拟法数值模拟法是一种基于大气动力学原理的风能资源评估方法。
通过建立大气模型,模拟风场的分布情况,可以得到地理区域内不同高度、不同时间段的风能资源数据。
该方法的优点是高效、可模拟多种复杂情况,但其缺点是对模型参数和初始条件要求较高。
四、GIS技术GIS技术是一种将地理信息与风能资源评估相结合的方法。
通过将地理数据与风能资源数据进行综合分析,可以准确评估风能资源的分布情况、潜力等。
该方法的优点是数据处理和可视化效果好,但其缺点是对数据的获取和处理需求较高。
五、测量仪器和装置除了以上几种方法外,还可以利用各种测量仪器和装置进行风能资源评估。
例如,利用声音传感器可以测量风的速度和方向,利用红外线传感器可以测量风的温度和湿度等。
这些测量仪器和装置的选择取决于具体评估的需求和条件。
综上所述,风能资源评估是风电项目开发的重要环节。
地面观测法、卫星遥感法、数值模拟法、GIS技术以及测量仪器和装置都是常用的评估方法。
在实际应用中,可以根据具体情况选择适合的方法进行评估,以确保最终评估结果的准确性和可靠性。
风能资源的评估和开发潜力分析

风能资源的评估和开发潜力分析1. 风能资源的现状及重要性风能作为一种清洁、可再生的能源资源,具有巨大的开发潜力。
随着全球能源需求的增长和环境问题的日益突出,风能作为一种替代传统化石能源的能源形式备受重视。
通过对风能资源的评估和开发潜力分析,可以更好地利用这一资源,推动可持续能源的发展。
2. 风能资源评估的方法评估风能资源的方法主要有风速测量、气象资料分析、数值模拟等。
其中,风速测量是最直接的方法,通过设置风速测量塔或利用无人机等技术获取实时风速数据。
而气象资料分析则是通过历史气象数据和地理信息系统技术,对不同地区的风能资源进行量化分析。
另外,数值模拟则可以通过建立数学模型,模拟不同地区的风能资源分布情况。
3. 风能资源的空间分布风能资源的空间分布主要受到地球自转、地形地貌、气候环境等因素的影响。
一般来说,海岸线、山脉、平原等地形地貌复杂的地区风能资源更为丰富。
此外,气候环境也会对风能资源的分布产生影响,例如温带季风气候和大陆性季风气候的地区风能资源更为丰富。
4. 风能资源的经济价值评估风能资源的开发潜力不仅需要考虑其技术可行性,更需要考虑其经济价值。
随着风力发电技术的不断成熟和普及,风能资源的经济性也越来越受到重视。
与传统化石能源相比,风能资源具有成本低廉、无排放、可再生等优势,因此在整个能源结构调整中具有重要的地位。
5. 风能资源的开发潜力分析通过对不同地区风能资源的评估和开发潜力分析,可以为风电行业的发展提供重要的参考依据。
一些国家和地区已经建立了相关的风能资源数据库,通过这些数据库可以更加准确地评估风能资源的分布情况和开发潜力。
同时,利用先进的风力发电技术和智能化管理手段,可以提高风能资源的开发利用效率。
6. 风能资源的可持续利用在评估风能资源的开发潜力时,需要充分考虑其可持续利用性。
风能作为一种可再生资源,具有无限的潜力,但在开发利用过程中也需要考虑与环境的协调。
保护生态环境、减少对动植物的影响、合理配置风电场等都是实现风能资源可持续利用的重要手段。
风力发电场中的风能资源评估

风力发电场中的风能资源评估风力发电作为可再生能源的重要组成部分,已经在全球范围内得到广泛的应用。
而风能资源评估作为风力发电场建设的第一步,对于风电项目的可行性和运营效益具有至关重要的意义。
本文将从风能资源的含义、评估方法和应用前景等方面进行论述。
一、风能资源的含义和特点风能资源指的是利用风的力量转化成机械能或电能的自然资源。
风能作为一种清洁且可再生的能源,具有广阔的可再生潜力。
与传统能源相比,风能具有免费、充足、分布广泛、无污染等诸多优势,被视为可替代传统能源的重要选择。
二、风能资源评估的方法1. 现场观测法现场观测法是在风电项目选址的早期阶段进行的,通过在潜在风电场周围设置气象测量塔、风速风向探测器等设备,对风场进行实时、连续的观测,以获取风能资源的相关数据。
这种方法具有较高的准确性,但需要较长的观测周期和大量的人力物力投入。
2. 数值模拟法数值模拟法是通过建立复杂的气象数值模型,对目标地点的风能资源进行模拟和预测。
这种方法可以根据不同地理条件和气象参数,对风能资源的空间分布和时间变化进行详细的分析。
数值模拟法相对于现场观测法来说,具有成本较低、时间周期较短的优势。
3. 卫星遥感法卫星遥感法是利用卫星数据和遥感技术,获取地表风场的空间分布和风速风向的信息。
通过对卫星数据的处理和分析,可以得到风能资源的精确评估结果。
而且卫星遥感法可以避免现场观测对环境的干扰,并且具有可重复和定量化的特点。
三、风能资源评估的应用前景随着风力发电技术的不断发展,风能资源评估的精确性和准确性也在不断提高。
准确评估风能资源的优劣势,对于提高风力发电场的发电效益、优化风电项目的规划布局具有重要意义。
因此,风能资源评估不仅在风力发电场建设前起着至关重要的作用,而且在风电站后续的运维和管理过程中也具有积极的应用前景。
在实际应用中,风能资源评估还可以结合地形、气候环境、电网接入等因素,进行综合分析和评估。
通过利用多种方法和技术手段,不断提高评估结果的准确性和可靠性,可以为风力发电场的规划、设计和运营提供有力的支持。
风电项目的风能资源评估与风机选型

风电项目的风能资源评估与风机选型风能已经成为全球可再生能源发展中的重要组成部分,而风电项目的成功与否很大程度上取决于对风能资源评估的准确性以及合适的风机选型。
本文将介绍风能资源评估的方法,并探讨风机选型的关键因素。
首先,进行风能资源评估是风电项目的第一步,也是最为重要的一步。
风能资源评估旨在确定指定地区的风能潜力及其可利用性。
一般而言,风能资源评估可以通过以下几个步骤来完成:1. 测量和收集风能数据:风能资源评估需要收集地表风速、风向和密度等相关数据。
这些数据可以通过气象站、测风塔或者卫星遥感等技术手段来获取。
2. 数据分析和计算:在收集到足够的风能数据之后,需要对数据进行分析和计算。
常用的方法包括频率分析、时序分析以及小波分析等。
3. 编制风能资源地图:在数据分析和计算的基础上,可以绘制风能资源地图,以标示出不同地区的风能丰富程度。
这对于确定风电项目的建设位置至关重要。
4. 风能资源评估报告:最后,根据收集到的数据、分析结果以及风能资源地图,编制风能资源评估报告。
这份报告将为风电项目的可行性研究和风机选型提供重要依据。
风机选型是风电项目中的另一项重要任务。
风机的选型决定了风电项目的电量产能、可靠性和经济效益。
在进行风机选型时,需要考虑以下几个关键因素:1. 风能资源匹配性:选用的风机应与地区的风能资源匹配,以确保风机能够在长期运行中充分利用可用的风能。
2. 风机容量选择:风机的容量应能满足当地电力需求,并需要结合风能资源评估结果和项目预算来确定风机容量。
3. 技术可行性和可靠性:风机的技术参数和可靠性是选型的重要考虑因素。
需要考虑风机的额定功率、切入风速、切出风速等参数,并选择具有较高可靠性和稳定性的风机型号。
4. 经济可行性:风电项目的经济可行性是选型的重要依据。
需要综合考虑风机的采购成本、运维成本以及预计的发电收益,并进行经济评估和成本效益分析。
除了以上关键因素外,还需要考虑风机制造商的信誉度、售后服务以及项目实施周期等因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
40
YOUR SITE HERE
5.5 全年有效风速小时数
高度(m)
70m 60m 40m 30m 10m
3~25m/s
8083 8085 8053 8102 7997
4~25m/s
7408 7425 7382 7430 7234
5~25m/s
6686 6685 6632 6663 6152
总数
8784 8784 8784 8784 8784
风速:单位时间内空气移动的距离。通常指单位时间内空气的水平位 移,空气运动速度的取值,一般有以下两种:瞬时风速,相对于无限 小的时段,即某一瞬间的阵风速度;平均风速,相对于有限时段,通 常指2、10分钟等的平均情况。
风向:风的来向为风向。风向观测是用16个方位或0°—360°数值来 表示。静风用“C”表示。
37
YOUR SITE HERE
5.2 各高度风速和风功率密度月、日变化及其平均状况
注:风功率密度蕴含风速、风速频率分布和空气密度的影响,是风电场风能资源的综合指标。 风功率密度等级达到或超过 3 级风况的风电场才具有开发价值。
38
YOUR SITE HERE
5.3 风向频率和风能密度的方向分布
3. 测风塔数据检验与补全
26
YOUR SITE HERE
3.1 数据检验
数据检验包括完整性、合理性、合理相关性和合理变化趋势检验。 《风电场风能资源评估方法》(GB/T 18710.2002):风电场测风有效数据 完整率应≥90%,有效数据完整率计算公式:
有效数据完整率=(应测数目-缺测数目-无效数据数目)/应测数目×100%
<2.0 m/s
50m/10m高度小时平均风速差值
<4.0 m/s
50m/30m高度风向差值
<22.5°
表3 主要参数的合理变化趋势参考值
主要参数 1小时平均风速变化 1小时平均温度变化 3小时平均气压变化
合理变化趋势 <6 m/s <5℃ <1 kPa
注:各地气候条件和风况变化很大,表中所列参数范围供检验时参考,在数据超出范围时应根据当地风况特点加以分析判断。
27
YOUR SITE HERE
3.1 数据检验
表1 主要参数合理范围参考值
主要参数 平均风速
风向 平均气压(海平面)
合理范围 0≤小时平均值<40m/s 0°≤小时平均值<360° 94 kPa<小时平均值<106 kPa
表2 主要参数的合理相关性参考值
主要参数
合理相关性
50m/30m高度小时平均风速差值
5.7 50年一遇最大风速
气象站
测风塔风速(m/s)
测风塔10m与气象站大风相关
25 y = 0.9195x + 1.4311 R2 = 0.7699
29
YOUR SITE HERE
4. 代表年订正
30
YOUR SITE HERE
4.1 目的与方法
目的:将验证补全后的风电场测风年数据订正为一套反映 风电场长期平均水平的代表性数据。
代表年确定方法:根据气象站近30年各年(各月)平均风 速,选择年平均风速等于或接近30年年平均风速的年份, 定义为平均风速年。
35
YOUR SITE HERE
5.2 各高度风速和风功率密度日、年变化及其平均状况
W/m2
70m
风功率密度 风速
m/s
600
10
500
8
400 6
300 4
200
100
2
0
0
01 02 03 04 05 06 07 08 09 10 11 12 月份
W/m2
70m
风功率密度 风速
m/s
500
9
450
3)测量位置应选择在风场主方向的上风向位置。
2 测风塔数量应满足风能资源评估要求,并依据风场地形复杂程度而定。
22
YOUR SITE HERE
2.1 测风塔定位
地形
简单地形,如:非常平坦,只 有一些粗糙的变化 较复杂的地形,如:起伏的山 峦或者粗糙的表面(如森林) 非常复杂的地形,如:山脊
在风机位置和最近的测风塔 之间建议的最大距离 2公里
至少连续一年完整的逐时测风数据
2
气象站探测环境实地勘察报告
气象站历史、地理位置、地形、障碍物、迁址记 录以及所使用测风仪器变更情况
✓ 气温、气压、水气压、湿度、多年极端最高/最低
气温、年均沙尘暴日数、平均雷暴日数、多年最
大风速(极大风速)、多年平均降水量、多年平
均蒸发量、最大降雨量、最大冻土深度、最大积
8
400
7
350
6
300
5
250
200
4
150
3
100
2
50
1
0
0
00 02 04 06 08 10 12 14 16 18 20 22 时间h
季节变化明显:冬春季较大,夏秋季较小 日变化:白天较小,晚上较大 (不同地方,变化规律不同)
36
YOUR SITE HERE
5.2 各高度风速和风功率密度月、日变化及其平均状况
6
YOUR SITE HERE
粗糙度等级 表
7
YOUR SITE HERE
1.2 风速变化
风速日变化 一般,近地层白天午后最大,夜间和清晨最小; 上层白天午后风小,夜间风大; 风的日变化幅度,晴天比阴天大,夏天比冬天大,陆地比海洋大。
风速年变化 一般,北半球中纬度地区,冬季最大,夏季最小;我国大部 份地区春季是冷暖空气交替时期,所以春季风最大。
值。它是度量相对于风速平均值而起伏的湍流的强弱。
12
YOUR SITE HERE
1.5 风能资源评价
风能资源评价:通过对某一区域的风速、风向观测时间 序列进行分析,估算出该区域的风能资源储量,并对其 风能资源多寡、质量和分布状况作出判断、评价。
13
YOUR SITE HERE
全国风能区划
14
YOUR SITE HERE
其中,应测数目表示测量期间的小时数; 缺测数目表示没有记录到的小时平均值数目; 无效数据数目表示确认为不合理的小时平均值数目。
《风电场风能资源测量方法》(GB/T 18709.2002):现场测风应连续进且
不少于一年,现场采集的测风数据完整率应在98%以上。
缺测率小于2%
数据合理性、合理相关性和合理变化趋势参考值见表1~表3
风电场内机组位置的排列取决于风能密度的方向分布和 地形的影响。在风能玫瑰图上最好有一个明显的主导风向, 或两个方向接近相反的主风向。在山区主风向与山脊走向垂 直为最好。
39
YOUR SITE HERE
5.4 风速和风能频率分布
频率%
70m
16
风功率密度 风速
14
12
10
8
6
4
2
0 0 2 4 6 8 10 12 14 16 18 20 22 24 风速区间m/s
1.3 风速分布
风速v的威布尔分布概率密度函数表达为:
f(v)k(v)k1ex p v k
cc
c
10
YOUR SITE HERE
11
YOUR 流强度
湍流强度:脉动风速的均方根与平均风速的比值,即 I u2 U
u为脉动风速值(采样时间间隔≦3s),U 为平均风速
41
YOUR SITE HERE
5.6 全年不同高度的风速频率Weibull分布
由于地理、气候特点的不同,威布尔分布的参数也截然不同。
k值一般在1和3之间变化,在欧洲k值一般都取2,k值越大说明风 速的波动越小,越适合风力发电。
另外,k值会随着高度的增加而微量的增大。
42
YOUR SITE HERE
28
YOUR SITE HERE
3.2 数据补全
数据补全包括:缺测数据和不合理数据的处理。 目的:整理出一套连续一年完整的风场逐小时测风数据。 方法与步骤:
✓经检验后挑出符合实际情况的有效数据,回归原始数据组。 ✓相关性不合理数据处理:采用测风塔实测风切变幂律公式进行计算,替换 各高度风速相关性不合理数据。对比同一测风塔不同高度风向,综合分析后 替换风向相关性不合理数据。 ✓缺测数据处理:采用相邻测风塔或者参考气象站同期数据与之进行相关分 析,用得到的相关方程对缺测数据进行补全。 ✓不合理气温、气压数据处理:分析实测气温、气压数据,对比参考气象站 相应观测资料,替换气温、气压趋势性不合理数据。
雪深度等数据(涉及最大/小值均需提供对应出现
3 气象站多年(近30年)气象要素
时间)
✓ 气象站多年平均风向玫瑰图(16扇区)
✓ 气象站近30年逐月平均风速表
✓ 气象站近30年历年最大风速记录(包括风速、风
向数据及其发生时间)
4
气象站同期测风数据
与测风塔同期的逐时风向风速资料
25
YOUR SITE HERE
全国风能区划
15
YOUR SITE HERE
内蒙自治区风速年变化类 型
16
YOUR SITE HERE
内蒙自治区风能区划图
17
YOUR SITE HERE
内蒙自治区风能区划
18
YOUR SITE HERE
内蒙自治区风能区划
19
YOUR SITE HERE
内蒙自治区风能区划
20
YOUR SITE HERE
1公里
0.5公里
23
YOUR SITE HERE
2.2 参考站点选择
要求: 具有30年以上规范的测风记录,且连续性较好 有同期的测风数据,且与测风塔同期数据相关性较好 靠近风场,且与风场地形条件相似 四周较开阔