电视设计基础
1.电视基础知识-术语

分辨率
通常我们在卖场说的分辨率是指面板的物理分辨率。
1920
1080
面板的物理分辨率,是指画面显示的 点数,是水平和垂直像素值,它是液晶屏 固有的参数,不能调节,其含义是指液晶 屏最高可显示的像素数。一般来讲物理分 辨率的大小可直接决定屏幕的最高分辨率。 兼容分辨率是指电视机允许的输入信 号的分辨率,它和屏幕实际显示的画面没 有必然联系:当输入信号的分辨率大于屏 幕物理分辨率时信号会被压缩到屏幕能显 示的范围,而当输入信号的分辨率小于屏 幕物理分辨率时,通过插值算法也可以被 放大到屏幕物理分辨率的大小,但这时的 图像可能并不清晰。
物理分辨率在720P以下为标清,720P以上--1080i为高清,1080P为全 高清。 p:表示逐行扫描 i:表示隔行扫描
背光类型
目前液晶电视背光类型有CCFL、LED、OLED三种。
CCFL:是采用CCFL(冷阴极荧光灯管)背光。CCFL的背光设计主要有两种:“侧入式”与“直 落式”,不过侧入式因光导设计使得光折损率较高,进而让背光亮度受限,面板尺寸越大时亮度 就越低,仅适合小尺寸的TFT LCD面板,,但在较大尺寸面板用时,侧入式的亮度将难以满足,
OLED:OLED是英文OrganicLight-EmittingDiode的缩写,翻译过来被称为有机发光二极管或 有机发光显示屏。OLED是通过电流驱 动有机薄膜本身来发光的,发的光可为红、绿、蓝、白等 单色,同样也可以达到全彩的效果。目前,全球已经有100多家的研究单位和企业投入到OLED 的研发和生产中,包括目前市场上的显示巨头,如三星,LG,飞利浦,索尼,三菱化学等公 司。
图像帧及扫描
电视的活动画面实际上是由一幅幅静止图像组成。一个完整的画面称之为一帧(Frame)。 每帧图像由许多像素组成,帧是构成活动图象的最小单元。将组成一帧图象的像素,按顺序
电影电视拍摄技术入门及常识理论知识

视音频技术基础课程目的:熟悉并掌握基本影像制作流程与技能能够以团队合作的方式完成时长15分钟的短故事片和记录片的拍摄与后期制作主教材:罗伯特.穆斯伯格《单机拍摄与制作》辅助参考:(美)琳恩.格罗斯等著《拍电影——现代影像制作教程》第一章影视制作概论第一节电影与电视关系总说一、电影与电视:差异从介质开始:赛璐珞胶片磁带蓝光盘数字电影16格-24格25帧高速慢动作数字电影:数字电影是指以数字技术(“0”、“1”信号)和设备摄制、制作存储,并通过卫星、光纤、磁盘、光盘等物理媒体传送,将数字信号还原成符合电影技术标准的影象与声音,放映在银幕上的影视作品。
画框比:电影胶片的标准画框比(宽高比)4:3或者.33:1(标准电视画框比是4:3)美国标准宽银幕为1.85:1 高清电视为16:9 这2个数值比较接近胶片规格:胶片的规格由其宽度来表征,如最常见和通用的35毫米胶片,科教、农村放映的16毫米,以及超8毫米,70毫米胶片等。
胶片越宽,单位成像面积越大,成像越清晰。
关于imax:IMAX(即Image Maximum的缩写,意为“最大影像”)是一种能够放映比传统胶片更大和更高解像度的电影放映系统。
标准的IMAX银幕为22米宽、16米高,但不断有更宽、更高的imax银幕出现,如中国内地最大的imax银幕是东莞万达影城(22米,宽28米,总面积616平方米)IMAX影片的每格画面的感光面积是普通35毫米胶片每格画面的10倍、传统70毫米胶片的3倍。
从而决定了在“巨幕”上投放出的影像比一般电影更清晰、更亮丽。
3D影片:人的视觉之所以能分辨远近,是靠两只眼睛的差距。
人的两眼分开约5公分,两只眼睛除了瞄准正前方以外,看任何一样东西,两眼的角度都不会相同。
虽然差距很小,但经视网膜传到大脑里,脑子就用这微小的差距,产生远近的深度,从而产生立体感。
根据这一原理,如果把同一景像,用两只眼睛视角的差距制造出两个影像,然后让两只眼睛一边一个,各看到自己一边的影像,透过视网膜就可以使大脑产生景深的立体感了。
彩色电视基础知识

全反射法是将三种基色光以不同百分比同 步投射到一块全反射平面上,由此构成了投影 彩电。
三基色原理及应用
相减混色
在彩色印刷、彩色胶片和绘画中旳混色采 用相减混色。
相减混色是利用颜料、染色旳吸色性质来 实现。混合颜料时,每增长一种颜料,都要从 白光中减去更多旳光谱成份,所以,颜料混合 旳过程称为相减混色。
1.1
光旳特征与光源
1.2
光旳度量
1.3
色度学概要
1.4
人眼旳视觉特征
1.5
电视图像旳传送及基本参量
1.6
准彩条信号
1.1光旳特征与光源
光是一种电磁波 。人眼能看见旳可见 光谱只集中在(3.85~7.89) 1014 Hz 频段内。
可见光谱
无线电波
频率/Hz
105
红外线 1010
紫外线 1015
X射线 1020
电视图像基本参量
图像清楚度
电视图像清楚度是人眼能觉察到旳电视 图像细节旳清楚程度。
详细说来,清楚度是指人眼宏观看到旳 图像旳清楚程度,是由系统和设备旳客观性 能旳综合成果造成旳人们对最终图像旳主观 感觉。
按图像和视觉旳特点,图像清楚度一般从水 平和垂直两个方向描述,有时还增长斜向清楚度 指标。
上转变为不同亮度、色度旳光点。
图像分解与顺序传送
电视扫描方式
在电视系统旳接受端,显像管外部都装 有水平和垂直两组偏转线圈。当水平和垂直 偏转线圈中同步加入锯齿波电流时,显像管 中电子束既作水平扫描又作垂直扫描,而在 荧光屏上形成直线扫描光栅,这称为直线扫 描。
电子扫描 = 水平扫描 + 垂直扫描
缺陷:明显旳闪烁感
逐行扫描方式
电视扫描方式
画面节奏设计基础知识点

画面节奏设计基础知识点在电影、电视剧、动画、广告等视听作品中,画面的节奏设计起着至关重要的作用。
它能够影响观众的情绪、注意力和观影体验,因此对于学习影视制作的人来说,掌握画面节奏设计的基础知识点至关重要。
一、节奏感知觉画面的节奏感取决于镜头的使用、镜头切换的速度、场景的布置等因素。
观众通过视觉感知和听觉感知来捕捉到画面的节奏。
视觉感知主要指的是画面的运动速度、镜头运动和镜头切换的速度;而听觉感知则是指音乐的节奏、声音效果的运用等。
视觉和听觉两者的统一可以增强画面的节奏感。
二、镜头运动的节奏镜头运动的节奏对于画面整体的节奏起着决定性的作用。
较慢的镜头运动能够给观众以放松、冷静的感觉,增加画面的稳定感;而较快的镜头运动则能够给观众以紧张、刺激的感觉,增加画面的动感。
通过不同的镜头运动的设计,可以使得画面的节奏有所不同。
三、镜头切换的节奏镜头切换的速度也是影响画面节奏的重要因素之一。
镜头切换速度快可以加快画面的节奏,增加紧张感;而镜头切换速度慢则能够减缓画面的节奏,使观众有更多时间关注画面中的细节。
合理运用镜头的切换,可以使画面的节奏更加丰富多样。
四、音乐的节奏音乐是画面节奏设计中不可或缺的重要因素。
通过音乐的节奏,能够增强画面的冲击力和感染力。
快节奏的音乐能够增加画面的紧张感,让观众更容易感受到画面中的动感;而慢节奏的音乐则能够营造出一种宁静、安详的氛围,增加画面的稳定感。
五、场景的布置场景的布置也是画面节奏设计的重要要素之一。
不同的场景能够给观众带来不同的情感和感受。
例如,狭小的空间可以给人一种压抑感和紧张感,增加画面的紧凑感;而宽敞明亮的场景则会给人一种开放、轻松的感觉,增加画面的活力。
六、色彩的运用色彩的运用也是影响画面节奏的重要因素之一。
明亮的色彩能够使画面充满活力,增加画面的动感;而暗淡的色彩则能够给人一种安静、压抑的感觉,增加画面的稳定感。
通过合理运用色彩,可以增强画面的节奏感。
综上所述,画面节奏设计是影视制作中十分重要的一环。
影视制作的基础知识

影视制作的基础知识影视制作的基础知识1、帧和帧速率20世纪最后十年,无论是广播电视还是电影行业,都在数字化的大潮中驶过。
的确,由于数字技术的发展和广泛应用,不仅使这一领域引入了全新的技术和概念,而且也给这一领域的节目制作、传输和播出都带来了革命性变化。
数字技术的发展速度已经超乎于一般人的预料和想象。
像电影一样,视频是由一系列的单独图像(称之为帧)组成的,并放映到观众面前的屏幕上。
每秒钟放24~30帧/秒,这样才会产生平滑和连续的效果。
在正常情况下,一个或者多个音频轨迹与视频同步,并为影片提供声音。
帧速率也是描述视频信号的一个重要概念,对每秒钟扫描多少帧有一定的要求,这就是帧速率。
对于PAL制式电视系统,帧速率为25帧,而对于NTSC 制式电视系统,帧速率为30帧。
虽然这些帧速率足以提供平滑的运动,但它们还没有高到足以使视频显示避免闪烁的程度。
根据实验,人的眼睛可觉察到以低于1/50秒速度刷新图像中的闪烁。
然而,要求帧速率提高到这种程度,要求显著增加系统的频带宽度,这是相当困难的。
为了避免这样的情况,全部电视系统都采用了隔行扫描方法。
2、Premiere 6.0中常用图像文件格式介绍Premiere 6.0中常用的图像文件格式总共有12种,现在分别对它们进行简单介绍。
1).GIF格式GIF格式(图形交换格式)形成一种压缩的8位图像文件,这种格式的文件目前多用于网络传输,它可以指定透明的区域,以使图像与页背景很好地融为一体。
GIF图像可以随着它下载的过程,从模糊到清晰逐渐演变显示在屏幕上。
Animated GIF(动画GIF)图像可使网页生动活泼,上网的人肯定已经有所体会。
利用GIF动画程序,把一系列不同的GIF图像集合在一个文件里,这种文件可以和普通GIF文件一样插入网页中,GIF格式的不足之处在于它只能处理256色,不能用于存储真彩色图像。
6).PCX格式PCX格式最早是Zsoft公司的PC Paintbrush图像软件所支持的图像格式,它的历史较长,是一种基于PC机绘图程序的专用格式。
有线电视基础知识和技术

有线电视基础知识和技术有线电视基础知识和技术.txt⼥⼈谨记:⼀定要吃好玩好睡好喝好。
⼀旦累死了,就别的⼥⼈花咱的钱,住咱的房,睡咱的⽼公,泡咱的男朋友,还打咱的娃。
有线电视基础知识和技术CATV图像质量主观评价表⽤户端图像质量的主观评价是采⽤五级损伤标准,应参照国际GB7401第4.2条五级损伤制标准执⾏,4级图像是CATV系统的设计标准。
对于中国电视制式 C/N=N+6.4dB,图像等级4级(S/N=36.6dB)对应C/N=43dB。
CATV双向系统频率分割配置典型频谱安排建议常⽤电缆相关特性常⽤电缆枝术特性及参数(20℃)常⽤电缆结构特性注:上述-5、-7、-9、-12为物理发泡电缆同轴电缆的频率特征为:L-电缆在某⼀频点的电平损耗,K-系数(-12,k≈0.3;-9,k≈0.38-0.4;-7,k≈0.5-0.55),F-信号频率对同⼀种电缆,有如下近似关系:通过此关系式,可近似求出表中未列出各频点电缆衰减值。
电缆最⼩弯曲半径应⼤于电缆外径10倍,电缆衰减量的温度系数为2‰,电缆环路直流电阻的温度系数为4‰,上表列出的为常温⼀(20℃)电缆的衰减量和电阻值,在温度为t℃电缆衰减和阻值计算公式如下:L衰减=L(20℃)×[1+2‰×(t-20℃)]R电阻=R(20℃)×[1+4‰×(t-20℃)]光缆设计基本数据1、单模光纤损耗1310nm≤0.35dB/㎞(熔接头损耗计⼊后为0.4dB/㎞)1550nm≤0.22dB/㎞(熔接头损耗计⼊后为0.25dB/㎞)2、光连接器损耗0.5dB/个(连接器型号为SC/APC或FC/APC)3、光分路器插⼊损耗:L=10lgλ%(λ-分光⽐)4、光分路器附加损耗⼀般设计按0.5dB计算5、发射机输出光功率mw与dB转换表 dBm=10lg(mw)6、C/N与调制度m的关系:C/N=K1·nm(2次⽅)当光发射功率,光接收功率⼀定时, K为定值常数, m⼀单个频道调制度,当频道数为n时,总调制度为,⼀般总调制度为20%⼀30%。
电视节目制作基础课程数字化学习平台的设计与开发

等建立超 链接 。 三是 脚 注 , 括 设 计 者 姓 包 名、 — i E mal 地址 、 品版 本 、 作 资源 简 介 和发 基础 课 程 数 字 化学 习平 台的 建 设 。 间 的 同 步 或 异 步 交 互 。 信 息 技 术 的 支 持 布时 间等 。 在 下 , 以 通过 基于 文 本 的 电 子 邮 件 、 Q和 可 Q S 3 电视 节 目制 作数 字 化学 习平 台 的制 1 电视 节 目制 作 基础 课 程 数字 化 学 习 BB 等 实 现协 作 交 流 。 作 过 程 平 台 的 设 计 目 的 2. 2设 计 思路
等 , 于缺 乏 形象 化 的资 料 , 多学 生感 到 主 干 内容 、 助 内 容和 扩 展 内 容 , 中主 干 统A cs版 ( 腾C 2 1 AC re , 由 许 辅 其 c es 飞 MS V . F e )作 学起 来 很 难 。 果 我 们 创 设 数 字 化 学 习 平 内 容( 摄 像和 编辑 等 ) 像脊 柱一 样 , 通 为 网 站 管 理 系 统 , 结 合 上 述 的 设 计 思 路 如 如 就 贯 并 主干 内容 通过 按 钮 、 区与 进行 整 体结 构 和 框架 的 建 构 。 次 , 照上 热 其 按 台 能 提 供 一 些 典 型 的 图 解 图 片 或 影 视 片 于课 程 的 始末 。
1 彩色电视的基础知识

1 彩色电视的基础知识
1.5 人眼的视觉特性与电视的基本参数
1.5.1 人眼视力范围与电视机屏幕形状 人眼的视觉最清楚的范围大约是垂直方向15°夹角、水
平方向20°夹角的一个矩形,如图1-14所示,因此电视机屏 幕多设计为宽高比4∶3的矩形。
为配合高清晰度要求增强现 场感与真实感,高清晰度电视 屏幕的宽高比一般为16∶9。
则屏幕上扫描光栅不均匀,会降低图像清晰度,甚至出现并 行现象。要保证隔行扫描准确,选取每帧扫描行数为奇数,
每场均有一个半行。
为了节约电视的传输带宽,我国电视采用隔行扫描。
1 彩色电视的基础知识
(a)隔行扫描光栅
(b)扫描电流波形
图1-6 隔行扫描光栅及 电流波形
1 彩色电视的基础知识
1.3 色度学基础知识
1.3.1 光与彩色 1.光与色
光是一种具有能量的物质,它可以电磁波的形式进行传 播,它是电磁辐射中的一小部分。电磁波的频率范围很宽, 其范围为105~1025Hz。
人眼可以看见的光叫可见光,可见光谱的波长范围在 380~780nm(毫微米)之间。如图1-7所示。
彩色是光作用于人眼而引起的一种视觉反映。不同波长
的光称为复合光。 太阳光可以分解为红、橙、黄、绿、青、蓝、紫的彩色
光带,见图1-9所示。 白色光是由七种单色光复合而成的复合光。 某种颜色的光,可以是单色光,也可以是由几种单色光 混合而成的复合光。 彩色光的混合遵循相 加混色规律。
图1-9 阳光的波谱
1 彩色电视的基础知识
1.3.5 人眼的彩色视觉特性 在可见光的光谱范围内,人眼对不同波长光的敏感程度
通常把色调和色饱和度统称为色度。来自1 彩色电视的基础知识
1.3.3 三基色原理与混色 1.三基色原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Basic TV Course Video and SynchronizationProcessingList of content•Basic Function Block of TV system•Human vision in TV & Interlacing scan•Synchronization processing in TV–Phase-1 loop / Phase-2 loop / Sandcastle•CVBS signal & World conventional color TV standard–NTSC / PAL / SECAM•PAL / NTSC / SECAM Video Signal encoding•PAL/ NTSC/ SECAM System decoding•Luminance Signal processing as picture improvement –Peaking / LTI / CTI–Signal level stretch: Black / Blue / White level–Soft Clipping / Peak White Limiting–HistogramPrepared by: Wang Guo Ji Oct 2000Function Block of Video SystemFig. Basic TV system C prism R/G/B •Gammacorrection/VideoencoderScanningControl Synchro-nizationProcessorVideo Processing Sync Separation Deflection & EHT. GenerationCVBS ScanCurrent H/V Syncpulse Blanking pulse R/G/B Driver H/V pulse EHTScancurrent R/G/B CVBS IF&RFmodulatorTuner&IF Demodulator Source Selection Synchro-nization processor H/V drive TransmissionReceiver•Human visual perception to Red, Green ,BlueThe major light sensing element in the human eye is the retina. The retina consists of the major light receptors ---rods and cones which at the bottom of the retina.Image is formed by the light that reaching the main photoreceptors. Research shows that red, green and blue colors are the primary colors, as "If you mix light of these colors together you can make any color". They lie in the nature of the human eye.Some colors could have by following experiments :Projectorscreen•Understanding of visual persistence with human visionThe human eye retains an image for a fraction of a second after it views the image. This property (called persistence of vision) is essential to all visual display technologies. The still images are presented at a high enough frame repetition rate so that persistence of vision integrates these still images into motion. For some reason, The motion pictures was found to be unacceptable when image repetition rate is below 48 frames per second.Therefor to realize the repetition rate of 48 frame per second, in the television system one picture frame is splited into two fields, and the field frequency is defined as 50Hz or 60Hz (higher than 48Hz) determined by the video system. 50Hz/60Hz field repetition rate gives normal perception to the image on TV screen. The idea is that a single frame is scanned twice(see Fig. Interlacing lines). The first field scan includes only the odd lines, the next field scan includes only the even lines. With this method, the number of "flashes" per frame is two, and the field rate is just double the frame rate so that 50hz/60hz field rate has their frame rate at 25/30Hz in TV.The 50Hz field scan system contains 625 horizontal lines per frame and each field scans 312.5 lines. The 60Hz field scan system contains 525 lines per frame, each field scans 262.5 lines.•Interlaced Frame ScanScreen framefirst fieldstartsecond field startFig. Interlacing lines•Presentation of interlacing scanning In a TV, the electron beam is used to scan a phosphor screen. The scan is interlaced.For each horizontal line scan the information is always displayed from left to right, after each line is written, the signal is blanked, the beam starts returning back to the left. When the signal reached the bottom it is blanked until it returns to the top to write the first line in next field. the beam does not return directly to the top, but zig-zags route. See Fig. Demonstration of real scanning sequenceScreen framefirst fieldstartsecond field startFig. Demonstration of real scanning sequenceSynchronization components of video signal•Video signals during blanking period Timing of scanning is arranged by the sync pulses. Each field scan starts with a vertical sync, each line scan starts with a horizontal pulse. The horizontal and vertical blanking period are specified around the sync pulses. With blanking period the electron beam complete its fly-back from the right to the left for horizontal scan or from the bottom to the top of screen for field scan. During the period the electron beam is cutoff, so that no scan line is visible on the screen.The combination of horizontal blanking signal and synchronization pulse is defined as illustrated in Fig. Sync Signal during horizontal blanking period. For color signals, a so called …color burst‟ is inserted onto the "back porch”of the H sync, that carries the color system info.for use in color decoder(more on this later). The burst period is about 8-10 cycle time of the sub-carrier (info.)Fig. 50Hz Sync Signal duringhorizontal blanking periodSynchronization components of video signal•Video signal during one line period In time domain,the video signal may be diverted into two period --that is,blanking and scan period. Signal during blanking period is sent to the synchronization processor to re-generate the timing reference (horizontal and vertical drive signals) for picture scanning, the signal during scan period is sent to video processing function block (see Fig. Horizontal video signal),from which the primary color R,G,B are decoded and as the driver signal output topicture tuber. frontporchsyncpulsebackporchblankingimage signalscan periodBlack levelPeak white levelFig. Horizontal video signalSynchronization components of video signal•Video signal during field blanking period Signal during vertical blanking also has a number of synchronization pulses included. It is illustrated in Fig. Horizontal and vertical …mixed-syncs‟ signal. The pre-equalizing and post-equalizing are built to provide the horizontal synchronization during vertical retrace period, in order to have precise starting-point for each scanning field. (info.)For a picture re-production, the horizontal and vertical scan must be in synchronized with the input video signal. This is to re-establish the timing reference for picture scanning from the incoming video signal by the synchronization processor in receiver. It extracts the sync signal from the incomingvideo signal, re-generate the H drive and vertical drive signal with proper display timing incorporated.See Fig. Block diagram of sync processor .System synchronization in TVH.Sync separator 1st PhasecomparatorLow-pass filterH.V.C.OVertical sync separator -divider (625 or 525)-counterCoincidence detectorVertical SAW-tooth OSCCVBS input2nd Phase detectorH.drive outputSandcastle generationV.driveoutputFlyback in/sandcastle outH.driveV.drive Fig. Block diagram of sync processor .System synchronization in TV•Sync separationby applying a slicing level between the top sync and the black level the sync info may be separated from the video signal. The separated sync pulse stream consists of horizontal and vertical sync info. thatintended to control both timing of the horizontal and vertical scan.See Fig. Separation of the horizontal syncCVBS inputBASeparated syncH.Sync separatorSync slicing levelFig. Separation of the horizontal syncFig. A simple single-transistor sync separatorC1R1R2ReRcI_scanCVBSinputpulses output47u47u ABR3composite sync •A simple sync separation circuit -When sync pulses come, T is conducting and C1is charged through the emitter-base of transistor. As result the sync pulse stream are available across Rc at B .-During scan period, I-scan is discharge current from C1, transistor cuts off. C1sees high input-impedance. No signal output at B .-The slicing level may be adjusted by the biasing of Transistor, for which R2,R3,Re may be included.•Sync separation and Sync auto slicing CircuitR A1-+A2A3-+Clamping'low' to blackClampped CVBSabc absync slicing levelseperated syncblack levelc•Separation of Vertical syncThe sync separation outputs composite sync signal that a stream of mixed horizontal and vertical sync pulses.see Fig. Stream of composite sync pulses.Fig. Stream of composite sync pulsesThis sync stream may be used directly for horizontal synchronization after gating (more on later). But for vertical synchronization, It requires further process in order to have a real vertical sync pulse because during the vertical sync pulse period, it sees a double line rate sync pulses in the stream. The vertical sync separation can be carried out by using a simple mono-stable circuit in which the arrival of the broad pulses are detected. Such a circuit is shown in Fig. Vertical sync separated by simple mono-stable circuit,note that the output of separated vertical sync-pulses required to be further processed in order to form the real vertical sync signal.•Vertical sync seperator•Vertical sync pulse is to be separated from the composite syncpulse.•vertical separator circuit.ABSystem synchronization in TV+ Fig. Vertical sync separated by simple mono-stable circuitHorizontal and Vertical scan SynchronizationHorizontal synchronization processing includes two loops control that is, phase1 and phase2 loop control. Phase1 loop control consists of a voltage controlled saw tooth oscillator and a phase comparator. Phase1 loop control is to make the saw-tooth oscillator in synchronized with the incoming horizontal sync pulses, it generates the horizontal reference pulse for sync system usage. see Fig. Function diagram of phase1 loop. Phase2 loop is to control the shift of timing to horizontal drive pulse to adjust display position of picture on screen(more on later).•Operation of PH1 Loop In Fig. Function diagram of phase1 loop, the voltage controlled saw-tooth generator generates the horizontal saw-tooth signal. An error voltage that fed from the phase comparator (through LFP) may control the oscillating frequency higher or lower. Conversion of saw-tooth to horizontal reference pulse is done in the oscillator. In the phase comparator, the reference pulse are comparing to the composite sync pulses with their phase. As result, the error signal in form of current signal passing through the external low pass filter applied to the saw-tooth generator.Fig. Function diagram of phase1 loopRCVH/VL lev el Detector Acurrent sourceswitchabv arible VL input error v oltaget1t2t3t4error voltageVHVLV(a) or V(b)•Principle of voltage controlled horizontal saw-tooth generatorBefore t1, switch is closed and C is charged by the current source. When V(b)=V H is detected, the switch is open. C is discharging via R, till V(a)= V L is detected, the switch is closed, capacitor C is re-charged again. The time constant of RC may be defined in such a way that the charging period equals to the scan period and the discharging period equals to the fly-back period. The error voltage derived from the phase comparator through LPF offsets the V L which determined by the error detected in the phase comparator.•Generating of horizontal reference pulseGenerating of horizontal reference pulse is illustrated in Fig. Generating of horizontal reference pulse . The threshold level as in (b) is about (VH+VL)/2.System synchronization in TVhorizonta syncshorizontal saw-toothhorizontal reference pulses(a)(b)(c)Fig. Generating of horizontal reference pulsesync pulseshoriz. Ref. pulsesgating pulsesIpos.Ineg.ouput current from phase discriminaorDC error voltage outputformed by LPF(a)(b)(c)(d)(e)Fig. Function of Phase comparator System synchronization in TV•Operation of phase comparator In phase comparator, incoming sync pulse is comparing to the horizontal reference pulse, from which the error current is converted to error voltage by means of low-pass filter. the error voltage is fed to the voltage controlled saw-tooth generator to control the oscillator frequency. See Fig. Function of Phase comparator.Example of a phase lock process. See below: in case of fsync > fosc,the error current from phasecomparator outputs asymmetrically in the current waveform which resulting different error voltagelevel.sync pulseshoriz. Ref. pulsesgating pulsesIpos.Ineg.current ouput fromphase comparatorThe increased Ipos periodresults a higher errorvoltage at the LPF output, thenthe saw-tooth frequency willbe increased.fsync > fosc•the negative charging is less than the positive charging time.•The average output current is positive.•The DC voltage at the o/p of LPF increases.•The voltage is fed to the voltage control saw-tooth oscillator as result the frequency will increase correspondingly.VtVFig. Error voltage at LPF outputIn real signal condition the video signal can be easily disturbed by the other signals, especially in off-air. With the disturbance, additional pulses may be added onto the video signal. they also may be mixed in as part of the composite sync. It causes unstable horizontal synchronization, for which gating pulse is formed to get rid of these disturbance. See Fig. Timing of gating pulseVref. 1Vref. 2saw-tooth and ref.flyback pulse of the saw-tooth osc.pulse 1pulse 2gating pulseABCA+B+CFig. Timing diagram of the gating pulseSystem synchronization in TVThe gating pulse is generated around the H. fly-back period.It sets a timing window for the sync pulses. The phasecomparator works only when gating pulse is high.Fig. preventing disturbances from "illegal" pulseshorz. Refincoming sync with 'illegal pulses output w/o gating pulsegating pulseoutput with gatingpulseThe function of gating pulse is illustrated in Fig. Preventing disturbance from “illegal pulses”The illegal pulses mixed in composite sync.Result in …false‟ error current output to LPF.“illegal” pulses is outside the window of gating.The “illegal pulses are rejected by window gating, no influence from disturbance.HH/22.5HH/22.5H 2.35us4.7us4.7ustop s yncblack leveleven field25HCan be removed by gating.Disturbance to the phase 1 control loop•The disturbance due to the vertical sync pulse will upset the oscillator.•The effect on screen if w/o gating/horizontal sync during Vertical blanking period:flutterTop flutter or top bendingTop bendingsync processor Hor.driv estorage delayTdHorizontal f ly -back pulseFig. Horizontal .drive and Horizontal .output•Principle of Phase2 loopthe phase 1 loop synchronizes the horizontal oscillator with the incoming video signal. The phase 2 is to provide a right timing and stable picture position. This is necessary because due to beam current variations that the storage time of the line output transistor varies See Fig. Horizontal drive and Horizontal output.,and the horizontal fly-back pulse required for the blanking purpose. In-correct timing of fly-back results in missing of picture contents.See Fig. Missing picture content by wrong blanking timing.System synchronization in TV•If directly use horizontal drive generated during phase1 loop (no timingcompensation to horizontal drive pulse). In worse case, fly-back pulse from LOT will goes into the picture scanning period.•As the Hor. Fly-back pulse is use to be a horizontal blanking pulse in the signal processing, at the beginning of each line some a small portion of picture content will be blanked.System synchronization in TVon offphase 2 comparatorline output stageHor. drive phase compensator+Vloop filterflyback from LOTPhase 2 Hor. ref. pulseH.dirve pulseHor.saw-toothFig. Function diagram of Phase 2To avoid wrong blanking timing. Phase 2 loop is to coordinate the timing adjustment between the H-drive and sync info. See Fig. Function diagram of phase 2 loop The phase 2 loop compares the horizontal reference with the horizontal fly-back pulse, which intend to compensate the time delay by re-generating the horizontal drive with the delay compensated. the error signal from phase 2 comparator is fed to timing compensator of horizontal drive for proper timing to horizontal drive.System synchronization in TVSystem synchronization in TVH.saw-tooth/ PH2 referenceVideo InputH. fly-backfrom LOTH-Drive pulse timingshifting by resultfrom PH2Vertical synchDirect synchronization--the vertical oscillator is triggered (synchronization) by the vertical syncpulses. The vertical sync pulse starts the vertical fly-back. When no sync, the vertical oscillator is in free running mode, at a lower frequency than the actual vertical frequency. see below for example of vertical direct synchronization.Where no vertical sync pulse, the vertical saw-tooth frequency f0is lower than the vertical frequency fv . When vertical sync pulse comes, it turns to start the vertical fly-back and bring f0 = fv .T1T2V+C T3vertical syncscan vertical syncA BA Bfree runningSystem synchronization in TV•The sandcastle pulse and its applicationduring the process of video processing, some operation such as clamping, burst gating, blanking...etc need timing reference signal, for which a so called …sandcastle‟ signal is generated in the synchronization processor. The sandcastle signal gets its name from the shape of the pulse. Its upper portion is taken from the incoming sync, lower portion from the horizontal fly-back pulse. See Fig.application of the sandcastle pulse andFig. Sandcastle pulseSystem synchronization in TVSystem synchronization in TVFig. Sandcastle pulseSystem synchronization in TV•Vertical dividerThe vertical divider system has a full integrated functionality of the vertical synchronization. It can handle both 50Hz or 60Hz standard system, or can be forced to desired system by IIC bus control. When in the searching mode the divider can catch between about 45 and 65HZ, in case of RGB input mode, the catching range is enlarged and ranges from 44 to 72Hz.Formation of CVBS video signal•Gamma Correction Because of the receiver CRT does not emit the light in direct proportion to the voltage applied between its grid and cathode,which may be expressed:L is the luminance on screen, V g is the grid/cathode voltage.To compensate for the non-linear CRT characteristic, an opposite law must be introduced at the studio source. If E is the camera voltage that resulting from a given light input L , then the gammacorrection may be expressed:The gamma standard used is 2.8 , which is close to a modern color display beam current/grid voltage characteristic and the drive circuit arrangement.()γgV L ∝()EE V L g ∝⎪⎪⎭⎫ ⎝⎛∝∝γγγ1•In studio the R,G,B signals are corrected with characteristics of γ=1/2.8.•Gamma correction in Studio and ReceiverGrey scale patternVin VinVin 0Bd BdBd+•On screen the CRT will emit the linear light to the eyes( γ= 1).•In TV receiver the gamma corrected R,G,B signalsare applied to drive the cathode of CRT by the grid/cathode modulation. γ==2.8•Normal view on screenFormation of CVBS video signalFormation of CVBS video signal•Color-Difference signalThe signal Y which represents the brightness information, was used in the monochrome television transmission service before color TV. But in color TV the RGB primary signals are required to drive CRT. In color TV, additional color-difference signals (R-Y) and (B-Y) were created to provide the color information. It is added to the Y signal after its modulation to the sub-carrier. In the receiver the (R-Y) and (B-Y) will be first demodulated from sub-carrier and sent to the matrix network with Y signal, thus recovers the primary R, G and B. This method of coding reduces redundancy in the combined signal and also remained compatible with black and white television. In a non-colored scene, color-difference signals are zero.As can seen:R=( R-Y ) + YB =( B-Y ) + Yfor G signal, may be recovered from these two color-difference signals by applying expression below: Y=0.299R + 0.587G + 0.114BWeighting factor for Color-Difference Signal To avoid over-modulation in RF modulation. The full-amplitude color difference component must be scaled down by weighting factors in coding and scale up in the decoding. Thus we have:V = 0.877( R-Y )U = 0.493( B-Y )V and U are the weighted color difference signal used in the encoder as a standard.•Formation of CVBS signalFormation of CVBS video signalFormation of CVBS video signal•chrominance phasor position expression as known,the U and V signal are created to carry the chrominance information. They may can be expressed in a coordinate U-V. See Fig. 100% color bar phasor expressionFig. 100% color bar phasor expression The dotted phasor position iscorresponding to the PAL line.In the coordinate, magnitude of vector may be expressed:that mainly determines the saturation of the color.Angle of the vector may be expressed as:that mainly determine the tone of a color.()22V U C +=U V arc tg =θ•Color television world standards There are three major TV standards used in the world today. These are the American NTSC(National Television Systems Committee) color television system, the European PAL (PhaseAlternation Line rate) and the French-Former Soviet Union SECAM (Sequential Couleur avecMemoire). All three systems use the same definition for luminance. The largest differencebetween the three systems is the vertical lines. NTSC uses 525 lines (interlaced) while both PALand SECAM use 625 lines. NTSC frame rates are slightly less than 1/2 the 60 Hz power linefrequency, while PAL and SECAM frame rates are exactly 1/2 the 50 Hz power line frequency.lines active vertical aspect horizontal frame ratelines resolution ratio resolutionNTSC 525 484 242 4/3 427 29.94PAL 625 575 290 4/3 425 25SECAM 625 575 290 4/3 465 25 •Chrominance signal of Color television world standardsin PAL and NTSC standards, U and V color difference signals are using amplitude modulation to the sub-carrier(AM) ,in SECAM U and V signal are using frequency modulation to the sub-carrier. After modulation, U and V are added to form chrominance signal. The modulation method differentials the difference of system between NTSC , PAL and SECAM system. The chrominance signal defines the difference between a color area and a neutral Grey of the same luminance, and the chromiance information embraces that part of the video signal which enables a color receiver to describe an area in color rather than in monochrome.NTSC chrominace signal:()()())33cos()33sin()(cos sin )(cos )(sin )()(︒++︒+=+=-+-=t t I t t Q t t V t t U t e tY R t Y B t e sc sc sc sc c sc sc c ωωωωωωMhzf s c 57954506.3=s c f πω2=In following fig. The positive polarity of Q is purple, the negative is green. The positive polarity of I isorange, the negative is cyan. Thus, Q is often called the "green-purple" or "purple-green" axisinformation and I is often called the "orange-cyan" or "cyan-orange" axis information.:Formation of CVBS video signalIt turns out that the human eye is more sensitive to spatial variations in the "orange-cyan" than it is for the "green purple". Thus, the "orange-cyan" or I signal has a maximum bandwidth of 1.5 MHz and the "green purple" only has a maximum bandwidth of 0.5 MHz. The Q and I signals are both modulated by a 3.58 MHz carrier wave. These two signals are then summed together to make the C or chrominance signal. this new chrominance signal (formed by I and Q) has the interesting property that the magnitude of the signal represents the color saturation, and the phase of the signal represents the hue.In the color decoder, the burst signal that carrys the phase reference information of chroma must besupplied with the chrominance signal. The burst is transmitted at “back porch”of each horizontal sync pulse during field scan.•Phase error of NTSC System the phase of the chrominance signal may be shifting according to the luminance level, if non-linear transmission characteristics happen to the system, it is so called …differential phase error ‟.As in the color decoder the reference sub-carrier is lock to the burst, a phase shifted chrominance signal after decoding will have phase error. Phase Shifted color difference signal resulting in a different color tone(hue ). In NTSC receiver a user controlled …TINT ‟ is required to correct hue manually.•Spectrum characteristics of NTSC signalChrominance signal of PAL may be expressed:()()()()()[]t t t C t ec tt V t t t U t e t Y R t K t Y B t e s c s c K s c c s c s c c θωωωωω+=Φ+=-Φ+-=sin co s )(sin )(co s ))((sin )()(s c f πω2=Mhzf sc 4296875.4=t3T H 2T H T H 0+1-1ΦK(t)•PAL chrominance signalIn PAL system, phase of the V signal is reversed by 180 degrees line by line. It is to reduce …differential phase error ‟ that causes distorted color tone.The V signal shifts its phase with 180 degree alternative line. Bandwidth for both U and V are approximately 1.3MHz.•Color Burst-Chrominance Sync The burst of sub-carrier is modulated on the back porch of each line-blanking period. It contains both the reference of frequency and phase information for usage in color decoder. In each burst, 10±1cycles of sub-carrier are transmitted.•Burst for NTSC system :()180)()(+=t Sin t K t e sc b ωThe burst in NTSC has fixed phase 180°.Formation of CVBS video signalNTSC linePAL lineNTSC line•Burst for PAL system :⎪⎭⎫ ⎝⎛Φ-︒+=4)(180)()(πωt K t Sin t K t e s c b The burst in PAL has phase shifting in alternative line. Magnitude of bust is 300mV .NTSC line: 135°,PAL line 225°.The difference of phase shifting is 90°line from line.•CVBS signal encoder for NTSC and PAL systemCVBS signal carries full information for a color television needs. It includes sync pulses and horizontal and vertical blanking information, luminance signaland chrominance signal(including burst and system information).•NTSC video encodersee Fig. Function diagram of NTSC encoderFormation of CVBS video signalColor system encoding•NTSC system encodingAB C D EF Gburst Hx2。