半导体论文 (1)

合集下载

半导体材料介绍论文

半导体材料介绍论文

半导体材料介绍论文引言:半导体材料是当今电子工业中至关重要的一类材料。

它们具有介于金属和绝缘体之间的电导性质,因而被广泛应用于电子器件的制造。

半导体材料的研究和发展对于电子行业的技术进步和创新起到了关键的作用。

本文将介绍半导体材料的基本特性、分类、制备方法、以及常见的应用领域。

1.基本特性:-可控的电导率:半导体材料的电导率可以通过外加电场或掺杂调节。

这使得半导体材料可以用来制造各种控制电流的电子器件,例如晶体管。

-禁带:半导体材料具有接近禁带(能量带隙)范围的能级,使得它们在常温下既不是导电体也不是绝缘体。

-注入载流子:通过施加特定的电压或电流,碰撞激发半导体中的电子和空穴,形成导电的载流子。

-温度敏感性:半导体材料的导电性质受温度影响较大,温度升高会导致其电导率增加。

2.分类:根据禁带宽度,半导体材料可以分为以下几类:-基础型半导体:禁带宽度较大,难以直接用于电子器件的制造。

例如,硅(Si)和锗(Ge)。

-化合物半导体:由两种或多种元素结合形成的化合物。

其禁带宽度较小,适合用于电子器件的制造。

例如,砷化镓(GaAs)和磷化氮(GaN)。

-合金半导体:由两个或多个基础型半导体材料合成的材料。

通过调节合金组成可以改变其禁带宽度。

例如,锗硅(Ge-Si)合金。

3.制备方法:-材料净化:去除杂质和不纯物质,确保制备的半导体材料具有良好的纯度。

-晶体生长:通过溶液法、气相沉积法、分子束外延等技术,使半导体材料在晶体结构中有序排列。

-掺杂:故意添加少量特定元素(掺杂剂),改变半导体材料的导电性质。

-制造器件:通过光刻、蚀刻、金属沉积等工艺,将半导体材料转化为各种电子器件。

4.应用领域:-电子行业:半导体材料是电子器件的基础材料,例如集成电路、晶体管等。

-光电子学:半导体材料的光学特性使其适用于光电器件的制造,例如激光二极管、太阳能电池等。

-光通信:半导体材料是光纤通信系统的重要组成部分,用于制造光电调制器、光放大器等器件。

半导体发展前景3000字论文范文

半导体发展前景3000字论文范文

半导体发展前景半导体行业一直是科技领域的关键领域之一,它的快速发展影响着整个信息时代的进步。

随着科技的不断进步和社会的变革,人们对半导体行业的发展前景也持续关注和探讨。

本文将从半导体行业的发展现状、未来趋势以及挑战等方面进行探讨,以期揭示半导体行业的发展前景。

一、半导体行业的发展现状当前,半导体行业正处于快速发展的阶段,其在计算机、通信、医疗、汽车、航空航天等领域都发挥着不可替代的作用。

随着5G、人工智能、物联网等新兴技术的发展,对半导体产品的需求也在不断增加。

同时,全球经济的快速增长也为半导体行业带来了更广阔的市场。

二、半导体行业的未来趋势在未来,半导体行业将迎来更多的发展机遇。

首先,随着技术的不断创新,半导体产品的性能将不断提高,功能将不断丰富,应用领域也将进一步扩展。

其次,随着人工智能、云计算、大数据等前沿技术的快速发展,对半导体产品的需求将呈现出持续增长的趋势。

最后,全球范围内的数字化转型和智能化升级也将为半导体行业带来更多的机遇和挑战。

三、半导体行业面临的挑战虽然半导体行业发展前景广阔,但也面临着一些挑战。

首先,随着市场竞争的加剧,半导体行业的整合和重组将进一步加剧。

其次,技术的更新换代速度快,对企业的技术研发实力和创新能力提出了更高要求。

最后,国际贸易摩擦、地缘政治紧张局势等因素也可能影响半导体行业的发展。

四、结语综上所述,半导体行业的发展前景值得期待,但也必须正视其中的挑战。

只有不断提升技术实力,加强创新能力,拓展市场空间,才能在激烈的竞争中立于不败之地,实现长期可持续发展。

以上就是关于半导体发展前景的探讨,希望能对读者有所启发,也期待半导体行业在未来取得更加辉煌的成就。

半导体材料论文

半导体材料论文

半导体材料论文
半导体材料是一种在电学上表现介于导体和绝缘体之间的材料。

它具有在一定
条件下能够导电的特性,但在其他条件下又表现出绝缘体的特性。

半导体材料在现代电子技术中起着至关重要的作用,广泛应用于集成电路、太阳能电池、光电器件等领域。

半导体材料的研究始于20世纪初,随着科学技术的发展,人们对半导体材料
的认识不断深化,材料的种类也在不断扩展。

目前,常见的半导体材料主要包括硅、锗、砷化镓、氮化镓等。

这些材料在电子、光电子等领域都有着重要的应用价值。

半导体材料的性能对于电子器件的性能有着至关重要的影响。

例如,半导体材
料的载流子浓度、迁移率、能隙等参数都会直接影响器件的性能。

因此,对于半导体材料的研究和探索显得尤为重要。

近年来,随着人们对能源、环境等问题的关注,半导体材料在太阳能电池、光
电器件等方面的应用越来越受到重视。

例如,砷化镓材料在光电器件中具有较高的光电转换效率,被广泛应用于激光器、LED等领域。

而氮化镓材料在太阳能电池
中也表现出较高的光电转换效率,成为太阳能电池领域的研究热点之一。

除了在电子器件领域的应用外,半导体材料在生物医学、光通信等领域也有着
广泛的应用前景。

例如,砷化镓材料在激光医疗设备中的应用,氮化镓材料在光通信中的应用等,都展现出了半导体材料在不同领域的巨大潜力。

总的来说,半导体材料作为一种介于导体和绝缘体之间的材料,具有着独特的
电学性能和广泛的应用前景。

随着科学技术的不断进步,相信半导体材料在未来会有更广泛的应用,为人类社会的发展做出更大的贡献。

半导体历史状况及应用论文

半导体历史状况及应用论文

半导体历史状况及应用论文半导体历史状况及应用论文半导体是一类能够在一定条件下既能导电又能绝缘的材料。

半导体技术的发展对现代电子技术、通信技术、信息技术等领域产生了深远的影响。

下面将从半导体的历史状况和应用两个方面展开,进行论述。

一、半导体历史状况半导体的历史可以追溯到19世纪末。

1883年,美国科学家霍尔斯特(Holst)通过对铜砷矿石的研究,首次发现了半导体的性质。

1897年,赖特(Wright)发现了由硒制成的曲面薄膜能够产生电流。

但是,当时对半导体的潜在应用并没有太多认识。

20世纪初,德国科学家恩斯特·约瑟夫·罗素(Ruska)发明了电子显微镜,使得人们可以直接观察到物质的微观结构。

这对于半导体研究起到了重要的推动作用。

此后,人们对半导体材料性质的研究取得了突破性进展。

20世纪50年代,半导体材料的研究进入了一个新的阶段。

德国物理学家布朗(Georg von Bogdanovich Brown)首次提出“掺杂”这个概念,通过在半导体材料中引入杂质元素,改变了材料的导电性质。

这一发现使半导体材料的应用领域得到了极大的拓展。

1951年,美国贝尔实验室的三位科学家肖克利(William Shockley)、巴丁(John Bardeen)和布瑞顿(Walter H. Brattain)合作发明了第一台晶体管,这一发明被认为是半导体技术的重要里程碑。

晶体管的发明使得电子技术进入了一个新时代,开启了半导体技术的广泛应用。

二、半导体应用半导体技术的应用广泛涉及到电子技术、通信技术、信息技术等多个领域。

1. 电子技术领域:半导体是电子器件的重要组成部分。

从最早的晶体管到如今的集成电路,半导体技术在电子技术领域得到了广泛应用。

半导体材料的导电性能可以通过不同掺杂方式进行调控,从而实现不同类型的电子器件。

2. 通信技术领域:半导体技术在通信领域的应用主要体现在光通信领域。

光通信是一种通过光信号进行数据传输的技术,而半导体激光器就是其中的关键设备。

半导体技术论文

半导体技术论文

半导体技术论文[摘要]半导体器件封装技术是一种将芯片用绝缘的塑料、陶瓷、金属材料外壳打包的技术。

封装技术对于芯片来说是必须的,也是非常重要的。

[关键词]半导体器件封装技术“半导体器件封装技术”是一种将芯片用绝缘的塑料、陶瓷、金属材料外壳打包的技术。

以大功率晶体三极管为例,实际看到的体积和外观并不是真正的三极管内核的大小和面貌,而是三极管芯片经过封装后的产品。

封装技术对于芯片来说是必须的,也是非常重要的。

因为芯片必须与外界隔离,以防止空气中的杂质对芯片电路的腐蚀而造成电气性能下降。

另一方面,封装后的芯片也更便于安装和运输。

由于封装技术的好坏直接影响到芯片自身性能的发挥和与之连接的PCB印制电路板的设计和制造,因此它是至关重要。

封装也可以说是指安装半导体芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强导热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁――芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件建立连接。

因此,对于大功率器件产品而言,封装技术是非常关键的一环。

半导体器件有许多封装形式,按封装的外形、尺寸、结构分类可分为引脚插入型、表面贴装型和高级封装三类。

从DIP、SOP、QFP、PGA、BGA到CSP再到SIP,技术指标一代比一代先进。

总体说来,半导体封装经历了三次重大革新:第一次是在上世纪80年代从引脚插入式封装到表面贴片封装,它极大地提高了印刷电路板上的组装密度;第二次是在上世纪90年代球型矩阵封装的出现,满足了市场对高引脚的需求,改善了半导体器件的性能;芯片级封装、系统封装等是现在第三次革新的产物,其目的就是将封装面积减到最小。

高级封装实现封装面积最小化。

一、封装材料封装的基材有陶瓷、金属和塑料三种。

从数量上看,塑料封装占绝大部分,半导体塑料封装用的材料是环氧塑封料,七十年代起源于美国,后发扬光大于日本,现在我国是快速掘起的世界环氧塑封料制造大国。

半导体 毕业论文

半导体 毕业论文

半导体毕业论文半导体:探索未来科技的基石引言:在当今科技发展迅猛的时代,半导体作为一种关键材料,已经成为现代生活和工业生产的基石。

它的应用范围广泛,从电子设备到通讯技术,从能源领域到医疗科学,无不离开半导体的支持。

本文将探讨半导体的基本原理、应用领域以及未来的发展趋势,旨在展示半导体技术对于人类社会的巨大影响和潜力。

一、半导体的基本原理半导体是一种介于导体和绝缘体之间的材料,其电导率介于两者之间。

这种特性源于半导体晶体中的电子能级结构。

通过控制材料中的杂质浓度和制造工艺,可以调节半导体的电导率,从而实现对电流的控制。

半导体的基本原理为现代电子学的发展提供了坚实的基础。

二、半导体的应用领域1. 电子设备半导体是电子设备中最重要的组成部分。

从智能手机到电脑、电视,几乎所有现代电子产品都离不开半导体芯片。

半导体的微小尺寸和高度集成的特点,使得电子设备越来越小型化、高效化和功能强大化。

2. 通讯技术半导体在通讯技术中扮演着重要角色。

无线通信、光纤通信、卫星通信等都依赖于半导体器件。

半导体的高速开关特性和信号放大能力,使得信息传输更加快速和稳定。

3. 能源领域半导体技术在能源领域的应用也日益重要。

太阳能电池板、LED灯、电动汽车等都离不开半导体器件。

半导体的光电转换效率高和能量损耗小的特点,为可再生能源的发展提供了强有力的支持。

4. 医疗科学半导体技术在医疗科学中的应用也日益广泛。

例如,生物芯片可以用于基因检测和疾病诊断,人工智能和机器学习可以应用于医学影像处理和疾病预测。

这些应用将大大提高医疗水平和人类生活质量。

三、半导体的未来发展趋势1. 三维集成电路随着电子设备的不断发展,对于更高性能和更小尺寸的需求也越来越迫切。

三维集成电路技术可以将多个晶体管层叠在一起,大大提高芯片的集成度和性能。

这一技术的发展将推动电子设备的进一步革新。

2. 新型材料除了传统的硅材料,新型半导体材料也在不断涌现。

例如,石墨烯、氮化镓等材料具有优异的电子特性,有望在未来取代硅材料,推动半导体技术的进一步发展。

半导体论文——精选推荐

半导体论文——精选推荐

一、半导体物理发展史简介半导体物理学是研究半导体原子状态和电子状态以及各种半导体器件内部电子过程的学科。

是固体物理学的一个分支。

研究半导体中的原子状态是以晶体结构学和点阵动力学为基础,主要研究半导体的晶体结构、晶体生长,以及晶体中的杂质和各种类型的缺陷。

研究半导体中的电子状态是以固体电子论和能带理论为基础,主要研究半导体的电子状态,半导体的光电和热电效应、半导体的表面结构和性质、半导体与金属或不同类型半导体接触时界面的性质和所发生的过程、各种半导体器件的作用机理和制造工艺等。

半导体物理学的发展不仅使人们对半导体有了深入的了解,而且由此而产生的各种半导体器件、集成电路和半导体激光器等已得到广泛的应用。

能带理论的建立为半导体物理的研究提供了理论基础,晶体管的发明激发起人们对半导体物理研究的兴趣,使得半导体物理的研究蓬勃展开,并对半导体的能带结构、各种工艺引起的半导体能带的变化、半导体载流子的平衡及输运、半导体的光电特性等作出理论解释,继而发展成为一个完整的理论体系——半导体物理学。

1947年,美国贝尔实验室发明了半导体点接触式晶体管,从而开创了人类的硅文明时代。

1、半导体的起源法拉第在1833年发现硫化银,它的电阻随着温度上升而降低。

对半导体而言,温度上升使自由载子的浓度增加,反而有助于导电,这也是半导体一个非常重要的物理性质。

1874年,德国的布劳恩注意到硫化物的电导率与所加电压的方向有关,这就是半导体的整流作用。

1906年,美国发明家匹卡发明了第一个固态电子元件:无线电波侦测器,它使用金属与硅或硫化铅相接触所产生的整流功能,来侦测无线电波。

整流理论能带理论2、电晶体的发明3、积体电路:积体电路就是把许多分立元件制作在同一个半导体晶片上所形成的电路4、超大型积体电路二、半导体和集成电路的现状及发展趋势半导体材料的发展,现状和趋势第一代的半导体材料:以硅(包括锗)材料为主元素半导体第二代半导体材料:以砷化镓(GaAs)为代表的第二代化合物半导体材料第三代半导体材料:氮化物(包括SiC、ZnO等宽禁带半导体)第三代半导体器件由于它们的独特的优点,在国防建设和国民经济上有很重要的应用,前景无限。

半导体材料论文范文

半导体材料论文范文

半导体材料论文范文
标题:半导体材料的研究与应用
摘要:
本论文主要介绍半导体材料及其在电子技术中的应用。

首先概述了半导体材料的基本概念和独特的物理性质,然后详细介绍了几种常见的半导体材料,包括硅、锗和化合物半导体等。

接着讨论了半导体材料在电子器件中的应用,如PN结、MOSFET等。

最后对未来半导体材料的发展进行了展望,并提出了一些问题供深入研究。

关键词:半导体材料;物理性质;电子器件;发展趋势
1.引言
2.半导体材料的基本概念和性质
2.1半导体材料的定义和分类
2.2半导体材料的能带结构
2.3半导体材料的载流子类型
2.4半导体材料的禁带宽度
3.常见的半导体材料
3.1硅
3.1.1硅的基本性质
3.1.2硅的制备方法
3.2锗
3.2.1锗的基本性质
3.2.2锗的制备方法
3.3化合物半导体
3.3.1GaAs
3.3.2InP
4.半导体材料在电子器件中的应用
4.1PN结
4.1.1PN结的结构和特点
4.1.2PN结的应用:二极管和锗石榴石激光器4.2MOSFET
4.2.1MOSFET的基本结构和工作原理
4.2.2MOSFET的应用:集成电路和场效应晶体管
5.半导体材料的发展趋势和前景
5.1新材料的研究与应用
5.2高效能源的开发
5.3环境保护和可持续发展
6.结论
本论文全面介绍了半导体材料的基本概念、性质、常见种类以及在电子器件中的应用。

同时,对半导体材料未来的发展趋势进行了展望,并提出了一些问题供深入研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

制备P型氧化锌薄膜的方法
摘要近年来随着光电器件的发展,对于短波长光电材料的需求也日益提高,而氧化锌(ZnO)作为直接宽带隙半导体材料,有着高达 60 meV 的激子束缚能,是下一代短波长光电材料的潜在材料。

有效的p 型氧化锌薄膜掺杂是实现氧化锌基光电器件的基础,但是氧化锌p型掺杂非常难以实现。

本文主要是简述制备氧化锌p型的五种方法及其每种方法的制备机制并为氧化锌p型的发展稍作展望。

关键词
氧化锌(ZnO)薄膜、p型、制备方法
正文
一、p型氧化锌薄膜的重要性
首先,我们来说一下,为什么现在都在大力研发制备p型氧化膜。

氧化锌是一种新型的Ⅱ-Ⅵ族直接带隙宽禁带化合物半导体材料,具有优异的光学和电学特性,具备了发射蓝光或近紫外光的优越条件,有望开发出紫外、绿光、蓝光等多种发光器件。

实现氧化锌基光电器件的关键技术是制备出优质的p型氧化锌薄膜。

本征氧化锌是一种n 型半导体,必须通过受主掺杂才能实现p型转变。

但是由于氧化锌中存在较多本征施主缺陷,对受主掺杂产生高度自补偿作用,并且受主杂质固溶度很低,难以实现p型转变,导致无法制得半导体器件的核心——氧化锌p-n结结构,极大地限制了氧化锌基光电器件的开发应用。

只有掌握了p型氧化锌薄膜的制备,才能实现上述的一切。

二、制备p型氧化锌薄膜的几种方法
下面我将给大家介绍几种氧化锌p型掺杂的方法。

1.第一种,叫做共掺杂法。

此方法利用了受主间的静电排斥与施主和受主的静电吸引形成的亚稳定A-D-A复合体。

复合体导致强烈的离子特性,引起马德隆能减小,同时,两种掺杂元素不同的原子半径引起晶格松弛,使得固溶度有较大增加。

另外施主和受主波函数的强烈杂化导致施主能级向高能量方向移动,而受主能级向低能量方向移动,即由杂质深能级向浅能级变化,其结果是载流子的激活率有较大增加。

这种复合体产生短程类偶极子散射,而非单独受主存在时的长程库仑散射,提高了载流子的迁移率。

氧化锌掺杂后会引起晶格马德隆能的变化,施主元素的掺入引起马德隆能下降,而受主元素的掺入则引起马德隆能上升,将会影响 p 型氧化锌的形成,而采用施主和受主按 1∶2 进行共掺杂的方法,不仅能够增加固溶度,而且能够降低马德隆能。

以单晶氧化锌为衬底,利用真空蒸发在其上沉积一层 Zn3P2薄膜,然后置于KrF激光下进行紫外照射,Zn3P2分解为Zn和P原子,并扩散进入氧化锌晶体,P取代O,得到p型氧化锌,N2/O2分压为4×10 Pa,以防止原子的反蒸发。

2.第二种是磁控溅射法。

直流(射频)磁控溅射是利用惰性气体离子高速轰击阴极的靶材,靶材中的原子逸出并沉积到基体的表面形成薄膜。

磁控溅射可以在较低工作压强下得到较高的沉积速率,并且可以在较低基片温度下获得高质量薄膜。

具有膜层均匀、致密、纯度高、附着牢、沉积速率高等优点。

第一次用直流反应磁控溅射制备c 轴取向的p型氧化锌薄膜,以α-Al2O3和p型Si为衬底材料,纯锌
为靶材,真空室的真空度为10 -3Pa,N3和O2通过分离的质量流控制器引入,金属有机化学气相沉积技术(MOCVD)技术的进步引发的,在光电材料制备领域中处于主导地位。

还可以使用NO和N2O共同作为氧源,且NO同时作为氮源,二乙基锌作为锌源,生长室压力133 Pa,温度360~480℃,锌源流量为4.0~8.5μmol/min,于玻璃衬底上生长了p型氧化锌薄膜,最高空穴浓度为1.97×1018 cm-3,电阻率为3.02 Ω cm,霍尔迁移率为 1.05 cm2/(V /s )。

在 MOCVD 中也可以利用射频等离子体退火技术,将氮掺杂的氧化锌在氮的氧化物进行高温退火,由于在气氛中形成高激活性的氮与氧,可以防止氮掺杂的氧化锌中的氮逸出,同时也防止了氧化锌中氧的脱附,又同时进行了氮掺杂氧化锌中氮受主的激活,从而获得高效稳定的p型氧化锌掺杂方法。

薄膜的电阻率在 0.1~1 000 ·Ω cm之间,载流子浓度在1015~1018 cm-3之间。

3.第三种制备p型氧化锌薄膜的方法是分子束外延法。

分子束外延(MBE)是在超高真空环境的一种薄膜沉淀技术。

与其它的技术相比有如下突出优点:能用NH3/NH3+O2中氨的浓度在0~67%范围内变化,衬底温度在400~550℃,32W的功率下溅射30分钟制得薄膜。

得出50%的氨浓度和500℃的衬底温度下,制得的薄膜具有最好的特性,载流子浓度为 3.2×1017 cm-3,电阻率为35Ω,霍尔迁移率为1.8cm2/(V/s),并第一次实现了氧化锌同质结p-ZnO :N/n-ZnO/p-Si,但性能有待进一步提高。

用重掺杂P的n+-Si衬底,通过P扩散实现了p型转变,空穴浓度在1.78×1018 cm-3到1.34×1019cm-3之间,
霍尔迁移率为13.1~ 6.08 cm2/(V/s),p-ZnO/n+-Si异质结和n-ZnO/p-ZnOs同质结具有整流特性,PL谱显示p型薄膜在378.4nm 处具有很强的紫外发射峰。

通过对薄膜的生长作原位的监测,超高真空环境使得所生长的薄膜具有很好的单晶质量,可以通过控制束流来调节生长速率,从而生长出超薄膜。

4.第四种是脉冲激光沉积法。

脉冲激光沉积(PLD)是利用准分子脉冲激光器所产生的高功率脉冲激光束聚焦作用于靶材表面,使靶材表面产生高温及熔蚀,并进一步产生高温高压等离子体,这种等离子体定向局域膨胀发射并在基体表面沉积形成薄膜。

与其他工艺相比,PLD 有下述的优点和特点:同组分沉积,能在气氛中实现反应沉积,高能等离子沉积,多层外延异质结的生长,适用范围广。

因而特别适合p型氧化锌的生长和p-n结的制作,能够制成避免对本征氧化锌边带发射衰减的高能隙的p型Zn1-xMgxO薄膜。

5.最后给大家介绍的方法是喷雾热解法。

前驱体溶液一般用醋酸锌溶于有机溶剂或含醋酸的去离子水中形成,溶液的雾化可采用超声雾化法或载气流喷射雾化法。

以气溶胶形式导入反应腔,在加热过程中依次经过溶剂的挥发、醋酸锌的分解等过程,最终残余物质为氧化锌。

喷雾热解法在常压下进行,设备与工艺简单,可以减少真空环境下生长的氧化锌薄膜中的VO,从而弱化施主补偿作用,有利于P型掺杂的实现。

喷雾热解法是一种经济的制膜方法,工艺简便,有望实现规模化工业生产,有较高的工业价值。

采用常压超声喷雾热解法、通过氮和铟共掺杂,成功地制备出p型ZnO薄膜,电阻率降低了2个
数量级,达到1.73×10-2 Ω cm,霍尔迁移率提高了2~3个数量级达到155 cm2/(V/s)。

在此基础上,又制备出具有 p-ZnO/n-ZnO 双层结构的ZnO同质p-n结。

三、结束语
上面就是本文对p型氧化锌的几种制备方法做出的介绍,随着科学技术的发展,制备方法越来越多,工艺水平也越来越高,但是在制备p型氧化锌薄膜的道路上,我们还有许多路要走。

我们还要在提高载流子迁移率和工艺重复性发面多努力,为下一代短波长光电材料的发展奠定好基础。

【参考文献】
1、罗豪苏等《新型热释电材料及其在高性能红外探测器中的应
用》2008 ,37 ;
2、吴欣(译)《非制冷红外的发展》 2003;
3、雷亚贵等《国外非制冷红外焦平面阵列探测器进展》2007;
4、章炜巍,朱大中,沈相国《氧化锌中的本征点缺陷对材料光电
性能的影响》材料导报,2004;
5、郭瑞萍等《兵器光电材料技术研究》2006-03。

相关文档
最新文档