半导体材料ZnO专题介绍
纳米zno 磁

纳米zno 磁
纳米ZnO磁性的研究一直备受科学界的关注,因为纳米ZnO具有独特的物理和化学性质,对于磁性材料的研究具有重要意义。
在纳米尺度下,ZnO材料表现出与大尺度不同的磁性行为,这种磁性行为的产生主要是由于纳米结构的调控和表面效应的影响。
纳米ZnO是一种半导体材料,具有优良的光电性能和化学稳定性。
通过控制ZnO材料的尺寸、形貌和结构,可以调控其磁性质。
在纳米尺度下,ZnO材料的能带结构发生变化,导致其电子结构发生改变,从而影响其磁性行为。
此外,ZnO表面的缺陷和掺杂也会影响其磁性质,进一步提高了纳米ZnO的磁性能。
研究表明,纳米ZnO材料具有较强的铁磁性和顺磁性。
铁磁性是指材料在外加磁场下会产生磁化强度,而顺磁性是指材料中的电子会受到外界磁场的影响而发生自旋取向。
这种磁性行为在纳米ZnO中表现得非常显著,使其具有潜在的应用前景。
纳米ZnO磁性的研究不仅可以拓展磁性材料的应用领域,还可以深化对纳米材料磁性行为的理解。
通过对纳米ZnO磁性的研究,可以为纳米材料的设计合成提供新的思路和方法,推动纳米技术的发展。
同时,纳米ZnO磁性的研究还可以为磁存储、磁传感器等领域的应用提供新的材料选择。
总的来说,纳米ZnO磁性的研究具有重要的科学意义和应用前景。
随着科学技术的不断发展,相信纳米ZnO磁性将会在更多领域展现出其独特的价值,为人类社会的进步和发展做出贡献。
希望未来能有更多的科研工作者投入到纳米ZnO磁性的研究中,共同探索其更多的奥秘,推动科学的发展和进步。
《2024年ZnO及ZnO-石墨烯复合材料气敏性能研究》范文

《ZnO及ZnO-石墨烯复合材料气敏性能研究》篇一ZnO及ZnO-石墨烯复合材料气敏性能研究一、引言随着科技的发展,气体传感器在工业、环境监测、医疗、安全等领域的应用越来越广泛。
其中,氧化锌(ZnO)作为一种重要的半导体材料,因其具有优异的物理和化学性质,被广泛应用于气敏传感器。
近年来,ZnO/石墨烯复合材料因其高导电性、高比表面积等特性在气敏性能方面表现出了显著的优势。
本文旨在研究ZnO及ZnO/石墨烯复合材料的气敏性能,为气体传感器的设计提供理论依据。
二、ZnO材料的气敏性能研究1. ZnO材料介绍ZnO是一种具有宽禁带的n型半导体材料,具有优良的光电性能和气敏性能。
其表面存在大量的氧空位和吸附氧,能够与气体分子发生相互作用,从而产生电阻变化。
2. ZnO气敏性能实验方法通过制备不同浓度的ZnO薄膜,利用气敏测试系统对不同气体进行测试,观察ZnO薄膜在不同气体浓度下的电阻变化情况。
3. 实验结果分析实验结果表明,ZnO薄膜对多种气体具有敏感响应,如乙醇、甲醛等。
随着气体浓度的增加,ZnO薄膜的电阻逐渐降低。
此外,ZnO薄膜的气敏响应速度较快,具有良好的实时监测能力。
三、ZnO/石墨烯复合材料的气敏性能研究1. ZnO/石墨烯复合材料介绍ZnO/石墨烯复合材料是将ZnO与石墨烯通过物理或化学方法复合而成。
石墨烯具有优异的导电性和高比表面积,能够提高ZnO的分散性和气敏性能。
2. 制备方法及实验条件采用溶胶-凝胶法或化学气相沉积法制备ZnO/石墨烯复合材料。
通过调整石墨烯的含量、复合方式等参数,研究不同条件下复合材料的气敏性能。
3. 实验结果分析实验结果表明,ZnO/石墨烯复合材料的气敏性能明显优于纯ZnO。
在相同条件下,复合材料对气体的敏感响应更快,且响应值更高。
此外,石墨烯的加入还提高了ZnO的稳定性和重复使用性。
四、结论本文研究了ZnO及ZnO/石墨烯复合材料的气敏性能。
实验结果表明,ZnO对多种气体具有敏感响应,且响应速度较快。
宽禁带半导体ZnO材料的调研

详细描述
脉冲激光沉积法利用高能脉冲激光照射在锌 靶上,产生高温高压等离子体,其中包含锌 原子和氧原子。这些原子在飞向衬底的过程 中发生化学反应,生成ZnO沉积在衬底上。 通过控制激光能量、脉冲频率、衬底温度等 参数,可以调节ZnO薄膜的生长速度和晶体 质量。
脉冲激光沉积法
总结词
脉冲激光沉积法是一种利用激光诱导化学反 应制备ZnO材料的方法,通过将高能脉冲激 光照射在锌靶上,产生高温高压等离子体, 再与氧气反应生成ZnO沉积在衬底上。
ZnO材料的应用领域
03
ZnO材料的应用领域
电子器件
发光二极管
ZnO具有高导电性和宽禁带特性, 可用作蓝光LED的基底材料,广 泛应用于显示、照明等领域。
太阳能电池
ZnO作为宽禁带半导体材料,具有 较高的光吸收系数和良好的光学稳 定性,在太阳能电池领域具有潜在 的应用价值。
场效应晶体管
ZnO基场效应晶体管因其高迁移率 和良好的稳定性,在集成电路、微 电子器件等领域具有广阔的应用前 景。
宽禁带半导体的定义
宽禁带半导体
指禁带宽度较大的半导体材料,通常禁带宽度大于2.3eV。这类半导体材料具有高热导率、高击穿场 强、高饱和电子速度等优点,在高温、高频率、高功率器件以及光电器件等领域具有广泛的应用前景 。
ZnO材料
是一种宽禁带半导体材料,禁带宽度为3.37eV,在室温下表现出高激子束缚能(60meV)和高热导率等 特点。ZnO材料还具有优异的光学性能和电学性能,使其在紫外光电器件、短波长激光器、气体传感器和 太阳能电池等领域具有广泛的应用前景。
详细描述
化学气相沉积法利用气态的锌源和氧气发生化学反应,在衬底上生成ZnO晶体。常用的锌源包括锌粉、锌盐等, 衬底材料则根据需要选择,如蓝宝石、硅等。通过控制温度、压力、气体流量等参数,可以调节ZnO薄膜的生长 速度和晶体结构。
zno发光特点

ZnO发光特点1. 引言ZnO(氧化锌)是一种广泛研究的半导体材料,具有良好的电子传导性和光学性能。
由于其特殊的晶格结构和能带结构,ZnO能够发出可见光和紫外光,具有较高的光致发光性能。
本文将探讨ZnO的发光特点和相关性质。
2. ZnO晶格结构2.1. 六方晶系结构ZnO晶体结构属于六方晶系,具有紧密堆积的排列方式。
它的晶格常数为a=b≠c,晶格中的Zn和O离子通过共价键和离子键相互连接,形成稳定的结构。
3. ZnO能带结构3.1. 能带理论根据能带理论,ZnO晶体具有导带和价带。
导带是一系列能量较高的电子轨道,而价带是一系列能量较低的电子轨道。
能带之间的能隙决定了材料的电子传导和光学性质。
3.2. ZnO的带隙结构ZnO的能带结构非常有趣,具有大约3.37eV的直接带隙。
这意味着当外部能量激发ZnO晶体时,电子可以直接跃迁到导带中,从而产生发光现象。
4. ZnO的发光机制4.1. 缺陷相关发光ZnO晶体中的缺陷可以导致光致发光。
具体来说,氧空位和氧空位相关的缺陷在激发时会产生电荷载流子,从而引发发光现象。
这种发光被称为紫外发光,其波长通常在380-400nm之间。
4.2. 缺陷复合发光除了缺陷相关发光外,ZnO还可以通过掺杂和复合过程发出可见光。
通过控制掺杂材料的种类和浓度,可以实现可见光的发射。
例如,镍离子的掺杂可以产生蓝色发光,铜离子的掺杂可以产生绿色发光。
5. ZnO发光应用5.1. 发光二极管ZnO作为半导体材料,被广泛应用于发光二极管(LED)的制造。
通过合理设计LED 结构和掺杂材料,可以实现高亮度、高效率的发光效果。
ZnO发光二极管具有低成本、高稳定性和可调控性等优点,在照明和显示领域有着广阔的应用前景。
5.2. 激光器ZnO晶体还可以用于激光器的制造。
在控制紫外光激光器的工作条件下,可以获得高纯度的紫外光输出。
这对于生物医学、信息存储和材料加工等领域具有重要意义。
5.3. 光催化由于ZnO具有较高的光致发光性能,它在光催化领域也有着广泛的应用。
氧化锌晶体结构半导体

氧化锌晶体结构半导体氧化锌(ZnO)是一种广泛应用于半导体器件、光电器件以及光催化材料的重要材料。
它具有宽带隙、高透明性、优良的光电性能和热稳定性等特点,因此在光电子学领域有着广泛的应用前景。
了解氧化锌的晶体结构对于理解其性质和改善其应用至关重要。
氧化锌的晶体结构可以归类为两种类型,即闪锌矿结构和六方结构。
闪锌矿晶体结构是氧化锌的最稳定的结构形式,也是最常见的晶体形态。
它属于立方晶系,在晶胞中原子排列有序,具有离子结合和共价结合的特点。
在闪锌矿结构中,氧化锌晶格中的每个氧原子都与六个锌原子相连,而每个锌原子则与四个氧原子相连。
这种结构中,锌原子和氧原子的坐标位置按一定规律排列,可用晶胞参数a表示。
其中,a是单个晶胞的边长,通常在0.5 nm左右。
氧化锌的另一种晶体结构是六方结构,也被称为wurtzite结构。
这种晶体结构比较稳定,相对闪锌矿结构而言,六方结构在一些特定情况下有更好的性能。
六方结构中,氧化锌晶体的晶胞呈现出六边形的形状,因此被称为六方结构。
其中,a和c是单个晶胞的两个边长,通常a比c小。
六方晶体结构中,氧原子和锌原子都存在六重对称性,氧原子位于六边形的顶点位置,锌原子位于六边形的中心位置,形成六边形的各个角上都有一个锌原子。
六方结构中的晶格常数c通常大于a,晶胞参数a约为0.32-0.36 nm,而c约为0.52-0.57 nm。
不同晶体结构的氧化锌具有不同的物理化学性质和应用潜力。
闪锌矿结构通常具有更好的热稳定性和更高的导电性能,适用于半导体器件制备;而六方结构由于其特殊的晶体结构,具有较好的光学性能和光催化性能,适用于光电器件和光催化材料的制备。
总之,氧化锌作为半导体材料,其晶体结构主要为闪锌矿结构和六方结构。
了解不同结构的特性对于氧化锌的应用和研究具有重要意义。
半导体材料ZnO专题介绍

4.2 金属有机物气相外延法MOCVD....................................17
4.3 喷雾热解法....................................................17
4.4磁控溅射法....................................................18
4.5溶胶-凝胶法Sol-gel............................................19
5.ZnO的应用与前景.................................................21
本论文着重介绍了氧化锌半导体材料的材料来源,晶体结构,物理化学性质,单晶与薄膜的制备,具体在各个领域应用与发展和目前制备薄膜以及应用于市场所遇到的难题。
关键词:氧化锌,材料来源,晶体结构,物理化学性质,单晶,薄膜,应用,难题。
1. ZnO的发展历史与基本性质
1.1 发展历史
人类很早便学会了使用氧化锌作涂料或外用医药,但人类发现氧化锌的历史已经很难追溯。公元前200年罗马人学会用铜和含氧化锌的锌矿石反应制作黄铜。公元1世纪,希腊医生迪奥斯科里季斯曾用氧化锌做药膏。1834年,氧化锌首次成为水彩颜料。20世纪后半期,氧化锌多用在橡胶工业。在20世纪70年代,氧化锌的第二大用途是复印纸添加剂,但在21世纪氧化锌作复印纸添加剂的做法已经被淘汰。
归纳:由表1知氧化锌的宽禁带宽度(Eg≥2.3eV),直接带隙,低介电常数,低热导率。
1.2.3 其他性质
zno异质结

ZnO是一种宽禁带的半导体材料,具有较高的激子束缚能,在光电子器件、传感器、太阳能电池等领域有广泛的应用前景。
ZnO异质结是指将两种不同的半导体材料结合在一起,形成一种特殊的结构。
这种结构可以改变材料的能带结构和载流子输运特性,从而改变材料的物理和化学性质。
ZnO异质结的制备方法有多种,包括化学气相沉积、脉冲激光沉积、分子束外延等。
这些方法可以控制异质结的界面结构和组分,从而获得具有优异性能的ZnO异质结。
ZnO异质结在光电器件、传感器、太阳能电池等领域有广泛的应用。
例如,在紫外探测器中,ZnO异质结可以增强光生载流子的分离和输运,从而提高探测器的性能。
在气体传感器中,ZnO异质结可以增强传感器的灵敏度和选择性,从而提高传感器的性能。
在太阳能电池中,ZnO异质结可以增强光吸收和载流子输运,从而提高太阳能电池的转换效率和稳定性。
总之,ZnO异质结是一种具有广泛应用前景的半导体材料结构,可以改变材料的物理和化学性质,为光电器件、传感器、太阳能电池等领域的发展提供新的思路和方向。
ZnO

氧化锌(ZnO)氧化锌(ZnO),俗称锌白,是锌的一种氧化物。
由ⅡB族元素Zn和Ⅵ族元素O化合而成的半导体材料。
分子式为ZnO。
室温下禁带宽度为3.2eV,属直接跃迁型能带结构。
难溶于水,可溶于酸和强碱。
氧化锌是一种常用的化学添加剂,广泛地应用于塑料、硅酸盐制品、合成橡胶、润滑油、油漆涂料、药膏、粘合剂、食品、电池、阻燃剂等产品的制作中。
氧化锌的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,在半导体领域的液晶显示器、薄膜晶体管、发光二极管等产品中均有应用。
此外,微颗粒的氧化锌作为一种纳米材料也开始在相关领域发挥作用。
基本信息中文名称:氧化锌英文名称:Zinc oxide中文别名:C.I.颜料白4; 氧化锌; 锌氧粉; 锌白; 锌白粉; 锌华; 亚铅华; 预分散ZnO-80; 母胶粒ZnO-80; 药胶ZnO-80; 活性剂ZnO; 环氧乙酰蓖麻油酸甲酯; 中国白; 锌白银; 活性氧化锌; 一氧化锌; 氧化锌掺杂银; 锌白银(色料名); 纳米氧化锌; 水锌矿; 氧化锌脱硫剂T304; 氧化锌脱硫剂T303; 金属氧化物; ZnO英文别名:C.I. 77947; C.I. Pigment White 4; Zinc oxide [USAN]; zincoxideheavy; flowers of zinc; zinc white; zinc oxide,edible; active zinc oxide;zinkoxyd aktiv; zinci oxidum; activox; activox b; actox14; zine oxide; zine white; zincoxide; actox16; actox216; ai3-00277; akro-zincbar85; akro-zincbar90; amalox; azo22; azo-33; azo-55; azo-55tt; azo-66; azo-66tt[1]CAS编号:1314-13-2物理性质分子量81.39熔点1975 °C密度 5.6折射率 2.008~2.029form nanopowder水溶解性 1.6 mg/L (29 oC)Merck 14,10147稳定性Stable. Incompatible with magnesium, strong acids 白色六方晶系结晶或粉末。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.1短波长发光材料.............................................21
5.1.2氮化镓薄膜的缓冲层.........................................22
参考文献...........................................................26
摘要
氧化锌(ZnO)是一种具有广泛用途的新型第三代II-VI族多功能半导体材料,拥有着许多诸如宽禁带,激子结合能大,高化学稳定性和耐高温性等等优良性质,
制备出来的ZnO单晶和薄膜在发光器件,透明电极,压敏电阻等等领域有着诸多的应用,在未来有着光明的应用前景,引起了社会各界的广泛关注。
ZnO薄膜中掺入Mg、Cd可有效调节它的禁带宽度:Zn1-xMgxO混晶薄膜禁带宽度随组分x的变化而变化,x=0时为3.3ev;x=0.46时为4.20ev; (ZnO)x(CdO)1-x薄膜禁带宽度在2.29ev(x=0)与3.3ev(x=1)之间变化弛曾有报道ZnO禁带宽度为3.1ev或3.2ev,不过vSfikant等人的研究表明ZnO在3.15ev存在着价带和施主能级间的跃迁,因此3.1ev、3.2ev实质上并不是ZnO的禁带宽度。【7】
4.4磁控溅射法....................................................18
4.5溶胶-凝胶法Sol-gel............................................19
5.ZnO的应用与前景.................................................21
3.1水热法........................................................13
3.2 化学气相输运法................................................14
4.ZnO的薄膜的制备.................................................16
a:10.4
11.9
c:8.75
c:9.5
热导率(Wcm-6K-1)
0.6
1.3~2.1
1.5
表1 宽禁带半导体参数比较【5】
如表1所示,在常温下ZnO的稳定相是纤锌矿结构,每个锌原子与四个氯原子构成四面体,同样地每个氧原子也被四个锌原子包围。优质的ZnO薄膜具有c轴择优取向生长,晶格常数为A=0.325nm,c=0.521nm.
5.1.3集成光学...................................................22
5.1.4电声器件与声光器件.........................................22
5.1.5 传感器和高效率器件.........................................22
深圳大学考试答题纸
(以论文、报告等形式考核专用)
二○~二○学年度第学期
课程编号
课程名称
主讲教师
评分
学 号
姓名
专业年级
教师评语:
题目:
摘要................................................................4
1.ZnO的发展历史与基本性质..........................................5
2.2.2间接法(法国法)...........................................11
2.2.3化学湿法...................................................12
3.ZnO的单晶的制备.................................................13
1.2.3.2透明导体特性
ZnO的光学透明性是由宽禁带引起的。ZnO带隙宽,对可见光和红外光吸收很小,基本上是透明的。蒋向东等人在假定可见光和红外辐射吸收为零的情况下,推导出ZnO在可见光和红外区的理论透过率为76%~96%;实验测量值为70%~90%,与理论值还是相符的。ZnO的透光率与膜厚、衬底温度等因素有关。一般地,膜厚增加,吸收增加,透光减少。ZnO的导电性主要不是依赖本征激发,而是靠附加能级的电子或空穴激发。ZnO半导体附加能级的产生和它的化学计量比偏移即氧过剩(造成氧空位)或氧不足(造成锌填隙)有关。化学计量比偏移程度在技术上很难控制,实际生产是用掺杂A1203的方法来控制ZnO薄膜的导电性。ZnO的导电性也受膜厚影响。一般地,膜厚增加,导电增强。电阻率急剧下降(比透光率下降明显得多);当膜厚增加到一定厚度时,电阻率不会再继续下降,而是趋于一个饱和值。【9】
本论文着重介绍了氧化锌半导体材料的材料来源,晶体结构,物理化学性质,单晶与薄膜的制备,具体在各个领域应用与发展和目前制备薄膜以及应用于市场所遇到的难题。
关键词:氧化锌,材料来源,晶体结构,物理化学性质,单晶,薄膜,应用,难题。
1. ZnO的发展历史与基本性质
1.1 发展历史
人类很早便学会了使用氧化锌作涂料或外用医药,但人类发现氧化锌的历史已经很难追溯。公元前200年罗马人学会用铜和含氧化锌的锌矿石反应制作黄铜。公元1世纪,希腊医生迪奥斯科里季斯曾用氧化锌做药膏。1834年,氧化锌首次成为水彩颜料。20世纪后半期,氧化锌多用在橡胶工业。在20世纪70年代,氧化锌的第二大用途是复印纸添加剂,但在21世纪氧化锌作复印纸添加剂的做法已经被淘汰。
2.1原料的获取....................................................10
2.2原料的提纯....................................................11
2.2.1直接法(美国法)...........................................11
4.1 脉冲激光沉积法PLD............................................16
4.2 金属有机物气相外延法MOCVD....................................17
4.3 喷雾热解法....................................................17
5.2 ZnO的问题与挑战...............................................23
5.3 ZnO的前景.....................................................24
谢 辞..............................................................25
(a) (b) (c)
图1 ZnO的三种晶体结构
1.2.2 物理化学性质
材料
ZnO
GaN
Si
能隙性质
直接带隙
直接带隙
间接带隙
禁带宽度(eV)
3.2
3.39
1.12
晶格常数(nm)
a=0.325
a=0.319
a=0.543
c=0.521
c=0.519
熔点(K)
>1800
20
1690
静态介电常数
a:7.8
ZnO晶体随着环境条件的改变形成不同结构的晶体。ZnO晶体中的化学键既有离子键的成分,又有共价键的成分,两种成分的含量差不多,因而使得ZnO晶体中的化学键没有离子晶体那么强,导致其在一定的外界条件下更容易发生晶体结构上的改变。【3】
纤锌矿结构在四者中稳定性最高,因而最常见,也是半导体氧化锌中主要的晶体结构。纤锌矿结构有中心对称性,但没有轴对称性。晶体的对称性质使得纤锌矿结构具有压电效应和焦热点效应,闪锌矿结构具有压电效应。【4】
1.1 ZnO的发展历史..................................................5
1.2 ZnO的基本性质..................................................5
1.2.1 ZnO的晶体结构...............................................5
1.2.3.2透明导体特性.............................................8
1.2.3.3 气敏性...................................................8
1.2.3.4 压敏特性.................................................8
近年来,氧化锌开始被用作半导体材料。日本岛根大学2008年11月18日宣布开发出一种在光线照射下能发出荧光的氧化锌纳米粒子,其发光稳定且安全,可应用于尖端医疗领域。【1】
1.2 基本性质
1.2.1 晶体结构
ZnO可以有三种可能的晶体结构。如图1所示,分别为闪锌矿型结构(与金刚石类似,可看成氧原子FCC排列,4个锌原子占据金刚石中晶胞内四个碳原子的位置),纤锌矿型结构(六方结构,氧原子层和锌原子层呈六方紧密排列)和立方岩盐结构(即NaCL型结构)。【2】
常温常压下稳定的相是纤锌矿型结构,当外界压强增大,大约是9.6GPa时向立方岩盐结构转变,而闪锌矿型结构则是在生长时形成的亚稳态结构。ZnO的纤锌矿结构的晶胞参数a0=0.325nm,c0=0.521nm,每个晶胞中含有两个ZnO原子和两个O原子,其晶体结构如图1(a)所示,其中(0001)晶面是Zn原子层,而(0001)面是O原子层,没有对称中心,为典型的极性晶体。ZnO本身这种晶体的各向异性使它具有本征的各向异性生长的趋势。在热力学平衡条件下,ZnO沿c轴方向生长最快,容易形成一维纳米结构,如纳米线,纳米带等。