甘肃省会宁县会师中学2020-2021学年度上学期八年级 第一次月考数学试题
2020年八年级上学期数学第一次月考试卷及答案

2020年八年级上学期第一次月考数学试卷4分,共40分)1.如图1,在△中,点是延长线上一点,=40°,=120°,则等于()A.60°B.70°C.80°D.90°2.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A.2 B.4 C.6 D.83.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =().A.7 B.8 C.10 D.114.用直尺和圆规作一个角等于已知角的示意图2如下,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS图1 图2 图3 图45.如图3,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15° B.25° C.30° D.10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A.5 B.6 C.7 D.87.如图4,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( )A.∠A=∠EDF B.∠B=∠E C.∠BCA=∠F D.BC∥EF8.如图5,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( )A.1 B.2 C.3 D.49.如图6,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5图5 图6 图7 图810.如图7,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( )A.4cm B.6cm C.8cm D.9cm二、填空题(每小题4分,共24分)11.如图8,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理_________________.12.如果一个等腰三角形有两边长分别为4和9,那么这个等腰三角形的周长为__________.13.小明不慎将一块三角形的玻璃摔碎成如图9所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带_____.图9 图10 图11 图1214.如图10为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=________.15.如图11,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______.16.如图12,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到______________位置时,才能使△ABC≌△QPA.年八年级上学期数学第一次月考答题卡二、填空题(本题共24分,每小题4分)11._________________ , 12._______________ , 13.________________ ,14.__________________ , 15._______________ , 16.________________ .三、解答题(共86分)17.(8分)一个多边形的外角和是内角和的,求这个多边形的边数.18.(8分)张峰同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下.如图,AB∥OH∥CD,OB=OD,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米请根据上述信息求标语CD的长度.19.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).20.(10分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF; (2)指出图中所有平行的线段,并说明理由.21.(10分)如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.22.(10分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)求证:AC=CB; (2)若AC=12 cm,求BD的长.23.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB; (2)AB=AF+2EB.24.(10分)两个大小不同的等腰直角三角形三角板,如图①所示放置,图②是由它抽象出的几何图像,点B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明.(说明:结论中不得含有未标识的字母)(2)证明:DC⊥BE. 25.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.2020年八年级上学期第一次月考数学试卷(答案)4分,共40分)1.如图,在△中,点是延长线上一点,=40°,=120°,则等于(C)A.60°B.70°C.80°D.90°2.如果一个三角形的两边长分别为2和4,则第三边长可能是( B )A.2 B.4 C.6 D.83.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =( D).A.7 B.8 C.10 D.114.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是(A)A.SSS B.SAS C.ASA D.AAS图1 图2 图3 图45.如图3,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( A )A.15° B.25° C.30° D.10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( D )A.5 B.6 C.7 D.87.如图4,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( B )A.∠A=∠EDF B.∠B=∠E C.∠BCA=∠F D.BC∥EF8.如图5,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( B )A.1 B.2 C.3 D.49.如图5,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于(C)A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5图5 图6 图7 图810.如图6,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( C )A.4cm B.6cm C.8cm D.9cm二、填空题(每小题4分,共24分)11.如图7,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是___三角形的稳定性_______.12.如果一个等腰三角形有两边长分别为4和9,那么这个等腰三角形的周长为____22______.13.小明不慎将一块三角形的玻璃摔碎成如图8所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带__②___.图8 图9 图10 图1114.如图10为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=___135°_____.15.如图11,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=____67°___.16.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到__AC的中点_位置时,才能使△ABC≌△QPA.三、解答题(共86分)17.(8分)一个多边形的外角和是内角和的,求这个多边形的边数.解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.18.(8分)张峰同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下.如图,AB∥OH∥CD,OB=OD,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米请根据上述信息求标语CD的长度.解:∵ AB∥CD,∴∠ABO=∠CDO.(1分)又∵ OD⊥CD,∴∠CDO=90°.∴∠ABO=90°,即OB⊥AB.(3分)在△ABO与△CDO中,∴△ABO≌△CDO.(6分)∴ CD=AB=20米.(8分)(也可利用“AAS”证△ABO≌△CDO,其他过程相同).解析:根据AB∥OH∥CD,利用平行线的性质可知∠ABO=∠CDO(或者∠BAO=∠DCO).由题意可证明OD,OB分别是平行线AB与OH以及OH与CD之间的距离,故OD=OB,根据“ASA”或者“AAS”证明△ABO ≌△CDO,所以CD=AB,进而求出CD的长.19.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.20.(10分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.(1)证明:∵ BF=EC,∴ BF+FC=EC+CF,即BC=EF.(3分)又AB=DE,AC=DF,∴△ABC≌△DEF.(5分)(2)AB∥DE,AC∥DF.(7分)理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴ AB∥DE,AC∥DF. (10分)21.(10分)如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.解:(1)∆ABE≅∆ACD∴∠EBA=∠C=42°(3分)∠EBG=0180—∠EBA=138°.(5分)(2) ∆ABE≅∆ACD∴AC=AB=9 AE=AD=6 .(8分)∴EC=AC-AE=9-6=3 . (10分)22.(10分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)求证:AC=CB;(2)若AC=12 cm,求BD的长.(1)证明:∵AF⊥DC,∴∠ACF+∠FAC=90°,∵∠ACF+∠FCB=90°,∴∠EAC=∠FCB,在△DBC和△ECA,⎩⎪⎨⎪⎧∠DBC=∠ACB=90°∠DCB=∠CAEDC=AE,∴△DBC≌△ECA(AAS),∴BC=AC(2)解:∵E是AC的中点,∴EC =12BC =12AC=12×12 cm=6 cm,又∵△DBC≌△ECA,∴BD=CE,∴BD=6 cm23.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB; (2)AB=AF+2EB.证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),∴ CF=EB.(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴△ADC≌△ADE,∴ AC=AE,∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.24.(10分)两个大小不同的等腰直角三角形三角板,如图①所示放置,图②是由它抽象出的几何图像,点B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明.(说明:结论中不得含有未标识的字母)(2)证明:DC⊥BE.解:(1)△ABE≌△ACD,证明:∵AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,∴△ABE≌△ACD(2)由△ABE≌△ACD得∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE 25.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.证明:(1)如图①,连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠ACB=∠AEF=90°,AF=AF,∴Rt△ACF≌Rt△AEF, (4分)∴CF=EF,∴BF+EF=BF+CF=BC,∴BF+EF=DE; (6分)(2)如图②,(1)中的结论不成立,有DE=BF﹣EF,(8分)理由是:连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠E=∠ACF=90°,AF=AF,∴Rt△ACF≌Rt△AEF, (12分)∴CF=EF,∴DE=BC=BF﹣FC=BF﹣EF,即DE=BF﹣EF. (14分)。
甘肃省会宁县会师中学2020-2021学年度上学期八年级 第一次月考数学试题

八年级上册第一次月考(总分120 时间120分)一、选择题:本大题共10小题,每小题3分,共30分.1、下列各组数中,是勾股数的是 ( ) A .2,3,4 B.3,4,6 C.5,12,13 D.4,6,72、一直角三角形的斜边比一直角边长2,另一直角边长为6,则斜边长为( ) A 、4 B 、8 C 、10 D 、123、下列各数中是无理数的是 ( ) A 、16 B 、3.142 345 678 C 、311D 、0.202 002 000 2…(相邻两个2之间0的个数逐次增加1) 4、4的算术平方根是 ( ) A 、2 B 、2- C 、2± D 、25正数m 的平方根是x+1和x-5,则m 的值是 ( ) A . 2 B . 3 C. 9 D. 66、一个数的平方根等于它的立方根 ,这个数是 ( )A 、0B 、-1C 、1D 、不存在 7、下列各组数中互为相反数的是( )A. 2-与2)2(-B. 2-与38-C. 2-与21-D. 2与2- 8、下列式子中,是二次根式的是 ( ) A .5- B .π C .4 D .139、如图1,ABC ∆是直角三角形,正方形N ,L 的面积分别是1,10,则正方形M 的边长是BC= ( ) A 、9 B 、3 C 、6 D 、8图1 图210、如图2,长方形OABC中边OA的长为2,边AB的长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数为()A.2.5 B.22 C.3 D.5二、填空题(8小题,每小题3分,共24分)11、8116的平方根是2)81(-的算术平方根是271的立方根是12、化简:(1)______,27=(2)_______1253=,(3)51= ______。
13、-27 的立方根与81的平方根之和是________________ 。
14、如图8所示,有两棵树,相距12m,一棵树高13m,另一棵树高8m,一只鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞 m.15.若aa-=-2)2(2,则a的取值范围是16、已知一个Rt△的两边长分别为3和4,则第三边长是17、若1)1(2=++-ba,则_____20152016=+ba18、如图,折叠长方形的一边AD使点D落在BC边的点F处,已知AB = 8cm,BC = 10 cm,则EC的长为_________cm。
初中数学甘肃省白银市会宁县枝阳中学八年级上第一次月考数学考试卷及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:以下列各组数为三边的三角形中不是直角三角形的是()A. 9、12、15 B. 41、40、9 C. 25、7、24 D. 6、5、4试题2:下列各数中,是无理数的是()A. 7B. 0.5C.D. 0.5151151115…(两个5个之间依次多个1)试题3:已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为()评卷人得分A. 9 B. 3 C.D.试题4:下列运算中错误的有()个①=4;②=±;③=﹣3;④=3;⑤±=3.A. 4 B. 3 C. 2 D. 1试题5:下列各组数中,互为相反数的一组是()A.﹣2与 B.﹣2与 C.﹣2与﹣ D. |﹣2|与2试题6:下列说法正确的是()A. 0.64的立方根是0.4 B. 9的平方根是3C. 0.01的立方是0.000001 D.=×试题7:在△ABC中,∠C=90°,周长为60,斜边与一直角边比是13:5,则这个三角形三边长分别是() A. 5,4,3 B. 13,12,5 C. 10,8,6 D. 26,24,10试题8:如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是()A. 6cm B. 8cm C. 10cm D. 12cm试题9:若与|b+1|互为相反数,则的值为b﹣a=()A.B.+1 C.﹣1 D. 1﹣试题10:如果一个三角形的三边长a,b,c满足a2+b2+c2+388=10a+24b+26c,那么这个三角形一定是() A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形试题11:如图,在数轴上1,的对应点分别是A、B,A是线段BC的中点,则点C所表示的数是.试题12:比较大小:23.试题13:16的平方根是.试题14:估算的值(精确到0.1)应为.试题15:立方根等于本身的实数是.试题16:(+1)2009(﹣1)2010= .试题17:满足﹣2<x<的整数x是.试题18:化简:= .试题19:若|x﹣|=||,则x= .试题20:已知x、y都是实数,且y=++4,则y x的平方根为.试题21:2+3试题22:﹣1试题23:.试题24:5(x﹣1)2=125试题25:2x3=16.试题26:已知甲数是1的平方根,乙数是的立方根,求甲、乙两个数的积.试题27:若△ABC三边长满足下列条件,判断△ABC是不是直角三角形?若是,请说明哪个教角是直角.(1)BC=,AB=,AC=1;(2)△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,a=n2﹣1,b=2n,c=n2+1(n>1)试题28:.已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求a+2b的平方根.试题29:如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,试求∠A的度数.试题30:分析探索题:细心观察如图,认真分析各式,然后解答问题.OA22=()2+1=2 S1=;OA32=()2+1=3 S2=;OA42=()2+1=4 S3=…(1)请用含有n(n为正整数)的等式S n= ;(2)推算出OA10= .(3)求出 S12+S22+S32+…+S102的值.试题1答案:D.试题2答案:D.试题3答案:D.试题4答案:B.试题5答案:A.试题6答案:C.试题7答案:D.试题8答案:C.试题9答案:C.试题10答案: B.试题11答案:2﹣.试题12答案: <.试题13答案:±4.试题14答案: 7.5.试题15答案:﹣1,0,1.试题16答案:﹣1.试题17答案:﹣1,0,1,2,3.试题18答案:π﹣3.试题19答案: 3,.试题20答案:±4.试题21答案:原式=4+12=16;试题22答案:原式=3﹣1=2;试题23答案:原式=6﹣3﹣=.试题24答案:移项,得:(x﹣1)2=25,解得:x﹣1=±5,∴x1=6,x2=﹣4,试题25答案:移项得:x3=8,∴x=3.试题26答案:解:∵甲数为±=±=±;乙数为==,∴甲、乙两个数的积为×=±.试题27答案:解:(1)∵()2+12==()2,∴BC2+AC2=AB2.∴△ABC是直角三角形;(2)∵(n2﹣1)2+(2n)2=n4+2n2+1=(n2+1)2,∴a2+b2=c2,∴△ABC是直角三角形.试题28答案:解:∵2b+1的平方根为±3,∴2b+1=32=9,解得b=4,∵3a+2b﹣1的算术平方根为4,∴3a+2b﹣1=42=16,解得a=3,∴a+2b=3+2×4=11,∴a+2b的平方根是±.试题29答案:解:连接AC,∵AB=BC=2,且∠ABC=90°,∴且∠CAB=45°,又∵AD=1,CD=3,∴AD2+AC2=CD2∴∠CAD=90°,∴∠A=∠CAD+∠CAB=135°.试题30答案:解:(1)+1=n+1Sn=(n是正整数);故答案是:;(2)∵OA12=1,OA22=()2+1=2,OA32=()2+1=3,OA42=()2+1=4,∴OA12=,OA2=,OA3=,…∴OA10=;故答案是:;(3)S12+S22+S32+…+S102=()2+()2+()2+…+()2=(1+2+3+ (10)=.即:S12+S22+S32+…+S102=.。
2020-2021学年度第一学期八年级数学月考试卷含答案共六套

2020-2021学年八年级(上)第一次月考数学试卷一、选择题(本题共10小题,每小题4分,满分40分)1.下列函数中是一次函数的是()A.y=B.y=C.y=ax+b D.y=x22.下列各点中位于第二象限的是()A.(﹣2,0)B.(8,﹣2)C.(0,3)D.(﹣,4)3.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣24.关于函数y=﹣﹣1,下列说法错误的是()A.当x=2时,y=﹣2B.y随x的增大而减小C.若x1>x2,则y1>y2D.图象经过第二、三、四象限5.下面四条直线,其中直线上的每一个点的坐标都是二元一次方程2x﹣3y=6的解的是()A.B.C.D.6.已知y﹣1与x成正比例,当x=3时,y=2.则当x=﹣1时,y的值是()A.﹣1 B.0 C.D.7.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.8.一次函数y=ax+b与y=abx在同一个平面直角坐标系中的图象不可能是()A.B.C.D.9.若点(﹣1,m)和(2,n)在直线y=﹣x+b上,则m、n、b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n10.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/hB.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km二、填空题(共4题,每题5分)11.函数中,自变量x的取值范围是.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是.13.若点P的坐标是(2a+1,a﹣4),且P点到两坐标轴的距离相等,则P点的坐标是.14.直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是.三、解答题(共8题,共90分)15.已知一次函数的图象平行于y=﹣x,且截距为1.(1)求这个函数的解析式;(2)判断点P(﹣2,)是否在这个函数的图象上.16.若函数y=(m+1)x+m2﹣1是正比例函数.(1)求该函数的表达式.(2)将该函数图象沿y轴向上或者向下平移,使其经过(1,﹣2),求平移的方向与距离.17.如图,先将△ABC向上平移2个单位再向左平移5个单位得到△A1B1C1(1)画出△A1B1C1,并写出点A1、B1、C1的坐标.(2)求△A1B1C1的面积.18.画出函数y=﹣x+3的图象,并利用图象解下列问题:(1)求方程﹣x+3=0的解.(2)求不等式﹣x+3>0的解集.(3)若﹣3≤y<6,求x的取值范围.19.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.指距d(cm)20 21 22 23身高h(cm)160 169 178 187 (1)直接写出身高h与指距d的函数关系式;(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)20.如图,直线l1:y=2x﹣2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).(1)求m的值;(2)求直线l2的解析式;(3)根据图象,直接写出1<kx+b<2x﹣2的解集.(4)求△ACD的面积.21.甲、乙两个工程队完成某项工程,先由甲单独做10天,乙队再加入合作.工进度满足如图所示.(1)求工作量y与工作时间x(天)之间的函数关系式;(2)这项工程全部完成需要多少天?(3)求乙队单独完成这项工程的天数.22.甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.(1)a=;b=.(2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.(3)甲、乙两人在什么时间生产的零件总数相差8个?参考答案与试题解析一.选择题(共10小题)1.下列函数中是一次函数的是()A.y=B.y=C.y=ax+b D.y=x2【分析】根据一次函数的定义解答.【解答】解:A、是正比例函数,特殊的一次函数,故本选项符合题意;B、自变量次数不为1,不是一次函数,故本选项不符合题意;C、单a=0时,它不是一次函数,故本选项不符合题意;D、自变量次数不为1,不是一次函数,故本选项不符合题意.故选:A.2.下列各点中位于第二象限的是()A.(﹣2,0)B.(8,﹣2)C.(0,3)D.(﹣,4)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣,4)故选:D.3.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣2【分析】根据两点所在直线平行于x轴,那么这两点的纵坐标相等解答即可.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.4.关于函数y=﹣﹣1,下列说法错误的是()A.当x=2时,y=﹣2B.y随x的增大而减小C.若x1>x2,则y1>y2D.图象经过第二、三、四象限【分析】根据一次函数的性质判定即可.【解答】解:关于函数y=﹣﹣1,A、当x=2时,y=﹣﹣1=﹣2,说法正确,不合题意;B、∵k=﹣,∴y随x的增大而减小,说法正确,不合题意;C、∵k=﹣,∴y随x的增大而减小,∴若x1>x2,则y1<y2,说法错误,符合题意;D、图象经过第二、三、四象限,说法正确,不合题意;故选:C.5.下面四条直线,其中直线上的每一个点的坐标都是二元一次方程2x﹣3y=6的解的是()A.B.C.D.【分析】根据两点确定一条直线,当x=0,求出y的值,再利用y=0,求出x的值,即可得出一次函数图象与坐标轴交点,即可得出图象.【解答】解:∵2x﹣3y=6,∴y=x﹣2,∴当x=0,y=﹣2;当y=0,x=3,∴一次函数y=x﹣2,与y轴交于点(0,﹣2),与x轴交于点(3,0),即可得出选项D符合要求,故选:D.6.已知y﹣1与x成正比例,当x=3时,y=2.则当x=﹣1时,y的值是()A.﹣1 B.0 C.D.【分析】设y﹣1=kx(k≠0),把x=3,y=2代入求出k的值,把x=﹣1代入函数关系式即可得到相应的y的值;【解答】解:设y﹣1=kx(k≠0),则由x=3时,y=2,得到:2﹣1=3k,解得k=.则该函数关系式为:y=x+1;把x=﹣1代入y=x+1得到:y=﹣+1=;故选:D.7.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.【分析】根据前20秒匀加速进行,20秒至50秒保持跳绳速度不变,后10秒继续匀加速进行,得出速度y随时间x的增加的变化情况,即可求出答案.【解答】解:随着时间的变化,前20秒匀加速进行,所以此时跳绳速度y随时间x的增加而增加,再根据20秒至50秒保持跳绳速度不变,所以此时跳绳速度y随时间x的增加而不变,再根据后10秒继续匀加速进行,所以此时跳绳速度y随时间x的增加而增加,故选:C.8.一次函数y=ax+b与y=abx在同一个平面直角坐标系中的图象不可能是()A.B.C.D.【分析】根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.【解答】解:当ab>0,a,b同号,y=abx经过一、三象限,同正时,y=ax+b过一、三、二象限;同负时过二、四、三象限,当ab<0时,a,b异号,y=abx经过二、四象限a<0,b>0时,y=ax+b过一、三、四象限;a>0,b<0时,y=ax+b过一、二、四象限.故选:D.9.若点(﹣1,m)和(2,n)在直线y=﹣x+b上,则m、n、b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n【分析】根据一次函数的解析式判断出其增减性,再根据点的横坐标的特点即可得出结论.【解答】解:∵直线y=﹣x+b中,k=﹣1<0,∴y随x的增大而减小.∵﹣1<0<2,∴m>b>n.故选:C.10.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/hB.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:根据图象可知甲用了(3.5﹣1)小时走了200千米,所以甲的速度为:200÷2.5=80km/h,故选项A不合题意;由图象横坐标可得,乙先出发的时间为1小时,两车相距(200﹣140)=60km,故乙车的速度是60km/h,故选项B不符合题意;140÷(80+60)=1(小时),即甲车出发1h与乙车相遇,故选项C不合题意;200﹣(200÷60﹣1)×80=km,即乙车到达目的地时甲车离B地km,故选项D符合题意.故选:D.二.填空题(共4小题)11.函数中,自变量x的取值范围是x>﹣2 .【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【解答】解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x+2≠0,解得x≠﹣2,故x>﹣2.故答案为x>﹣2.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是(﹣2,0).【分析】求直线与x轴的交点坐标,需使直线y=mx+n的y值为0,则mx+n=0;已知此方程的解为x=﹣2.因此可得答案.【解答】解:∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2,0).13.若点P的坐标是(2a+1,a﹣4),且P点到两坐标轴的距离相等,则P点的坐标是(﹣9,﹣9)或(3,﹣3).【分析】根据点到两坐标轴的距离相等列出绝对值方程求出a的值,然后求解即可.【解答】解:∵点P(2a+1,a﹣4)到两坐标轴的距离相等,∴|2a+1|=|a﹣4|,∴2a+1=a﹣4或2a+1=﹣(a﹣4),解得a=﹣5或a=1,当a=﹣5时,点P的坐标为(﹣9,﹣9),当a=1时,点P的坐标为(3,﹣3),综上所述,点P的坐标为(﹣9,﹣9)或(3,﹣3),故答案为:(﹣9,﹣9)或(3,﹣3).14.直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是≤k≤2 .【分析】根据已知条件得到直线y=kx﹣2与y轴的交点坐标为C(0,﹣2),求得直线y=x﹣1过A(1,0),B(4,3),设直线AC的解析式为y=mx+n,得到直线AC的解析式为y=2x﹣2,设直线BC的解析式为y=ex+f,得到直线BC的解析式为y=x﹣2,于是得到结论.【解答】解:令x=0,则y=0•k﹣2=﹣2,所以直线y=kx﹣2与y轴的交点坐标为C(0,﹣2),∵当x=1时,y=x﹣1=0,当x=4时,y=x﹣1=3,∴直线y=x﹣1过A(1,0),B(4,3),设直线AC的解析式为y=mx+n,则,解得.所以直线AC的解析式为y=2x﹣2,设直线BC的解析式为y=ex+f,则,解得.所以直线BC的解析式为y=x﹣2,若直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是≤k≤2,故答案为≤k≤2:三.解答题(共8小题)15.已知一次函数的图象平行于y=﹣x,且截距为1.(1)求这个函数的解析式;(2)判断点P(﹣2,)是否在这个函数的图象上.【分析】(1)根据两平行直线的解析式的k值相等求出k,然后根据截距为1求出b值,即可得解;(2)把点P(﹣2,)代入解析式,检验即可.【解答】解:(1)设这个函数的解析式为y=kx+b,∵一次函数的图象平行于y=﹣x,且截距为1,∴k=﹣,b=1,∴这个函数的解析式为y=﹣x+1;(2)当x=﹣2时,y=+1=,故点P(﹣2,)不在这个函数的图象上.16.若函数y=(m+1)x+m2﹣1是正比例函数.(1)求该函数的表达式.(2)将该函数图象沿y轴向上或者向下平移,使其经过(1,﹣2),求平移的方向与距离.【分析】(1)根据正比例函数的定义列式计算即可得解;(2)设平移后的函数的解析式为y=2x+b,把(1,﹣2)代入求得b的值,即可求得结论.【解答】解:(1)根据题意得,m2﹣1=0且m+1≠0,解得m=±1且m≠﹣1,所以m=1.所以该函数的表达式为y=2x;(2)设平移后的函数的解析式为y=2x+b,∵经过(1,﹣2),∴﹣2=2+b,∴b=﹣4,∴函数图象沿y轴向下平移4个单位,使其经过(1,﹣2).17.如图,先将△ABC向上平移2个单位再向左平移5个单位得到△A1B1C1(1)画出△A1B1C1,并写出点A1、B1、C1的坐标.(2)求△A1B1C1的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用△A1B1C1所在矩形面积减去周围三角形面积得出答案.【解答】解:(1)如图所示:△A1B1C1,点A1(﹣1,5),B1(﹣2,3),C1(﹣4,4);(2)△A1B1C1的面积为:2×3﹣×1×3﹣×2×1﹣×1×2=2.5;18.画出函数y=﹣x+3的图象,并利用图象解下列问题:(1)求方程﹣x+3=0的解.(2)求不等式﹣x+3>0的解集.(3)若﹣3≤y<6,求x的取值范围.【分析】(1)先利用描点法画出一次函数图象,然后利用直线与x轴的交点坐标确定方程﹣x+3=0的解;(2)利用x轴上方所对应的自变量的范围确定不等式的解集;(3)利用图象确定y=﹣3和y=6对应的自变量的值,从而得到对应的x的取值范围.【解答】解:(1)如图,∵直线与x轴的交点坐标为(2,0),∴方程﹣x+3=0的解为x=2,(2)如图,∵x<2时,y>0,∴不等式﹣x+3>0的解集为x<2;(3)如图,﹣2<x≤4时,﹣3≤y<6.19.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.指距d(cm)20 21 22 23身高h(cm)160 169 178 187 (1)直接写出身高h与指距d的函数关系式;(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)【分析】(1)运用待定系数法求解即可;(2)把h=226代入(1)中的结论即可.【解答】解:根据表格中数据,d每增加1,身高增加9cm,故d与h是一次函数关系,设这个一次函数的解析式是:h=kd+b,,解得,故一次函数的解析式是:h=9d﹣20;(2)当h=226时,9d﹣20=226,解得d=27.3.即姚明的身高是226厘米,可预测他的指距约为27.3厘米.20.如图,直线l1:y=2x﹣2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).(1)求m的值;(2)求直线l2的解析式;(3)根据图象,直接写出1<kx+b<2x﹣2的解集.(4)求△ACD的面积.【分析】(1)把C(m,2)代入y=2x﹣2中可求出m的值;(2)利用待定系数法求直线l2的解析式;(3)结合图象写出y=kx+b的函数值大于2且直线l1在直线l2上方对应的自变量的范围;(4)根据两直线解析式确定A、D点的坐标,然后利用三角形面积公式计算.【解答】解:(1)把C(m,2)代入y=2x﹣2得2m﹣2=2,解得m=4;(2)把C(2,2),B(3,1)代入y=kx+b得,解得,∴直线l2的解析式为y=﹣x+4;(3)2<x<3;(3)当y=0时,2x﹣2=0,解得x=1,则C(1,0),当y=0时,﹣x+4=0,解得x=4,则A(4,0),∴S△ACD=×(4﹣1)×2=3.21.甲、乙两个工程队完成某项工程,先由甲单独做10天,乙队再加入合作.工进度满足如图所示.(1)求工作量y与工作时间x(天)之间的函数关系式;(2)这项工程全部完成需要多少天?(3)求乙队单独完成这项工程的天数.【分析】(1)分段函数,运用待定系数法解答即可;(2)根据(1)的结论解答即可;(3)根据(1)可得乙队的工作效率,从而计算出乙队单独完成这项工程要60天.【解答】解:(1)当x≤10时,设y=kx,根据题意得,解得k=,∴y=;当x>10时,设y=k1x+b,根据题意得:,解得,∴y=.(天)∴10<x≤28,∴;(2)由(1)得,当y=1时,,解得x=28.答:这项工程全部完成需要28天;(3)(1﹣)÷(28﹣10)=(天),(天),答:乙队单独完成这项工程需要60天.22.甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.(1)a= 4 ;b=10 .(2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.(3)甲、乙两人在什么时间生产的零件总数相差8个?【分析】(1)根据题意和图象中的数据可以求得a、b的值;(2)根据函数图象中的数据可以求得甲工作2小时后的安装的零件数y与时间x的函数关系;(3)根据函数图象,利用分类讨论的方法可以求得甲、乙两人在什么时间生产的零件总数相差8个.【解答】解:(1)由图可得,a=10﹣6=4,b=4+(40﹣10)÷(10÷2)=4+30÷5=4+6=10,故答案为:4,10;(2)甲后来的速度为:=6件/小时,甲做完40个需要的时间为:2+(40﹣4)÷6=2+36÷6=2+6=8,设甲工作2小时后的安装的零件数y与时间x的函数关系是y=kx+b,∵甲工作2小时后的安装的零件数y与时间x的函数图象过点(2,4),(8,40),∴,得,即甲工作2小时后的安装的零件数y与时间x的函数关系是y=6x﹣8(2<x≤8);(3)设t小时时,甲、乙两人生产的零件总数相差8个,乙的速度为:10÷2=5件/小时,当4<t≤8时,6+(t﹣4)×(6﹣5)=8,解得,t=6,当8<t<10时,5(10﹣t)=8,解得,t=8.4,答:甲、乙两人在6小时或8.4小时时生产的零件总数相差8个.2020-2021学年度第一学期第一次月考八年级数学试题卷考试方式:闭卷考试时间:100 分钟满分:120 分一.选择题(共10小题,每题3分,共30分,请把正确答案写在答案卷上.)1.下列四个图案是我国几家银行的标志,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.下列各条件不能作出唯一直角三角形的是()A.已知两直角边 B.已知两锐角C.已知一直角边和它们所对的锐角 D.已知斜边和一直角边3.下列语句中正确的有几个()①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A.1 B.2 C.3 D.44.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的()A.CB=CD B.BAC=∠DAC C.BCA=DCA D.∠B=∠D=9005.如图,请仔细观察用直尺和圆规作一个角等于已知角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出'''A O B AOB ∠=∠的依据是( )A.SASB.ASAC.AASD.SSS6.如图,将三角形纸片ABC 折叠,使点C 与点A 重合,折痕为DE . 若∠B =80°,∠BAE =26°,则∠EAD 的度数为( )A.36°B. 37°C.38°D.45°7.如图,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是( )8.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H 分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A. A,C 两点之间B. E,G 两点之间C. B,F 两点之间D. G,H 两点之间9.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB =20cm ,AC =8cm ,则DE 的长是( )A .4cmB .3cmC .2cmD .1cm10.如图,在△ABC 中,∠A=∠B ,∠ACB=90°,点D 、E 在AB 上,将△ACD 、△B CE 分别沿CD 、CE 翻折,点A 、B 分别落在点A′、B′的位置,再将△A′CD 、△B′CE 分别沿A′C 、B′C 翻折,点D 与点E 恰好重合于点O ,则∠A′OB′的度数是( ) A .90°B .120°C .135°D .150°二.填空题(共8小题,每题2分,共16分,请把结果直接填在答案卷上.)11.下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形;⑥平行四边形.其中一定是轴对称图形的有 个.AC OB DA'C O'B'DBAE DC第3题B CDA(第4题图) (第5题图)(第6题图)(第8题图) (第9题图) (第10题图)12.小明从平面镜子中看到镜中电子钟示数的像如图所示,这时的时刻应是 .13.如图,AC=BD ,要使△ABC ≌△DCB (SAS ),只要添加一个条件 .14.如图,△ABC 的周长为32,且BD=DC ,AD ⊥BC 于D ,△ACD 的周长为24,那么AD 的长为 . 15.如图,已知AB ∥CF ,E 为DF 的中点,若AB =8 cm ,BD =3 cm ,则CF = cm .16.如图,点D 在边BC 上,DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,D ,BD =CF ,BE =CD .若∠AFD =155°,则∠EDF = .17.如图,方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC 全等的格点三角形共有 个(不含△ABC ).18.已知在△ABC 中,AB=5,BC=7,BM 是AC 边上的中线,则BM 的取值范围为 .三.解答题(共8小题,共74分. 解答需写出必要的文字说明或演算步骤.)19.(本题满分12分)如图,在3×3的正方形网格中,有一个以格点为顶点的三角形.(1)请你在图①,图②,图③中,分别画出一个与该三角形成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的三幅图不能重复).(2)格纸中所有与该三角形成轴对称且以格点为顶点的三角形共有 个.20.(本题满分8分)如图,在所给正方形网格图中完成下列各题:①画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1;FEDCB A(第15题图) (第16题图)(第17题图)(第12题图)(第13题图) (第14题图)②在DE上画出点Q,使QA+QC最小.(用直尺画图,保留痕迹)21.(本题满分8分)已知△ABC,按下列要求作图:(尺规作图,保留痕迹不写作法。
2024-2025学年八年级数学上学期第一次月考卷及答案

2024-2025学年八年级数学上学期第一次月考卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版八年级上册11.1-12.1。
5.考试结束后,将本试卷和答题卡一并交回。
6.难度系数:0.8。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.△ABC的三角之比是1:2:3,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定2.下列四个图形中,线段AD是△ABC的高的是()A.B.C.D.3.如图,在△ABC中,AB=15,BC=9,BD是AC边上的中线,若△ABD的周长为30,则△BCD的周长是()A.20B.24C.26D.284.如图,在△ABC中,AD是高,AE是角平分线,AF是中线.则下列结论错误的是()A.BF=CF B.∠BAE=∠EACC.∠C+∠CAD=90°D.S△BAE=S△EAC5.如图,将一副三角尺按图中所示位置摆放,点C在FD的延长线上,点C、F分别为直角顶点,且∠A =60°,∠E=45°,若AB∥CF,则∠CBD的度数是()A.15°B.20°C.25°D.30°6.如图,把△ABC沿EF翻折,叠合后的图形如图,若∠A=60°,∠1=95°,则∠2的度数是()A.15°B.20°C.25°D.35°7.如图,将五边形ABCDE沿虚线裁去一个角,得到六边形ABCDGF,则下列说法正确的是()A.外角和减少180°B.外角和增加180°C.内角和减少180°D.内角和增加180°8.如图,大建从A点出发沿直线前进8米到达B点后向左旋转的角度为α,再沿直线前进8米,到达点C 后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了72米,则每次旋转的角度α为()A.30°B.40°C.45°D.60°9.如图,AP,CP分别是四边形ABCD的外角∠DAM,∠DCN的平分线,设∠ABC=α,∠APC=β,则∠ADC的度数为()A.180°﹣α﹣βB.α+βC.α+2βD.2α+β10.如图,由9个完全相同的小正方形拼接而成的3×3网格,图形ABCD中各个顶点均为格点,设∠ABC =α,∠BCD=β,∠BAD=γ,则α﹣β﹣γ的值为()A.30°B.45°C.60°D.75°第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。
2020—2021年北师大版八年级数学上册第一次月考考试卷及参考答案

2020—2021年北师大版八年级数学上册第一次月考考试卷及参考答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .42.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为(( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.若6x ,小数部分为y ,则(2xy 的值是( )A .5-B .3C .-5 D .-35.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a -- 7.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:( )A .B .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=________.2.计算:16=_______.3.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =________. 4.如图,正方形ABCD 中,点E 、F 分别是BC 、AB 边上的点,且AE ⊥DF ,垂足为点O ,△AOD 的面积为7,则图中阴影部分的面积为________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在平行四边形ABCD 中,添加一个条件_____使平行四边形ABCD 是菱形.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--.2.先化简,再求值:(1﹣11x -)÷22441x x x -+-,其中x 5 23.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN ∥AB ,D 为AB 边上一点,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE .(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.5.如图,在△ABC 中,∠ACB=90°,点D ,E 分别是边BC ,AB 上的中点,连接DE 并延长至点F ,使EF=2DE ,连接CE 、AF(1)证明:AF=CE ;(2)当∠B=30°时,试判断四边形ACEF 的形状并说明理由.6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、B5、D6、A7、D8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、43、﹣245、46、AB=BC(或AC ⊥BD)答案不唯一三、解答题(本大题共6小题,共72分)1、x=32、12x x +-,3、(1)1;(2)m >2;(3)-2<2m -3n <184、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)略;(2)四边形ACEF 是菱形,理由略.6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。
2020—2021年北师大版八年级数学上册第一次月考考试卷(及参考答案)

2020—2021年北师大版八年级数学上册第一次月考考试卷(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,12.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.在圆的周长C =2πR 中,常量与变量分别是( )A .2是常量,C 、π、R 是变量B .2π是常量,C,R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量4.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A .∠2B .∠3C .∠4D .∠56.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB等于()A.55°B.70°C.110°D.125°7.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D10.下列选项中,不能判定四边形ABCD是平行四边形的是()A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.计算:123-=________.2.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.3.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =________.4.如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E .设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是________.6.已知:在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF 分别交AD 于E 、BC 于F ,S △AOE =3,S △BOF =5,则▱ABCD 的面积是_____.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=1.2.先化简,再求值[(x 2+y 2)-(x-y )2+2y (x-y )]÷2y ,其中x=-2,y=-12.3.已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图,在平面直角坐标系xOy 中,函数(0)k y x x=>的图象与直线2y x =-交于点A(3,m).(1)求k 、m 的值;(2)已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)k y x x => 的图象于点N.①当n=1时,判断线段PM 与PN 的数量关系,并说明理由;②若PN ≥PM ,结合函数的图象,直接写出n 的取值范围.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、B5、C6、B7、D8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)12、(3,7)或(3,-3)3、﹣24、2≤a+2b≤5.5、156、32三、解答题(本大题共6小题,共72分)1、x=12、2x-y;-31 2.3、(1)k<52(2)24、略5、(1) k的值为3,m的值为1;(2)0<n≤1或n≥3.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
2020—2021年北师大版八年级数学上册第一次月考考试题(及参考答案)

2020—2021年北师大版八年级数学上册第一次月考考试题(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120202.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <0 5.代数式131x x -+-中x 的取值范围在数轴上表示为( ) A .B .C .D .6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )A.20人B.40人C.60人D.80人8.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A.102B.104C.105D.510.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.分解因式:22a4a2-+=__________.3.若214x xx++=,则2211xx++= ________.4.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_________.5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.如图,在平行四边形ABCD 中,添加一个条件_____使平行四边形ABCD 是菱形.三、解答题(本大题共6小题,共72分)1.解不等式(1)7252x x -+≥ (2)11132x x -+-<2.先化简,再求值:()()22141a a a +--,其中18a =.3.己知关于x 的一元二次方程x 2+(2k+3)x+k 2=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围;(2)若1211x x +=﹣1,求k 的值.4.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.5.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、A5、A6、A7、D8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、82、()22a 1-3、84、x >3.5、26、AB=BC(或AC ⊥BD)答案不唯一三、解答题(本大题共6小题,共72分)1、(1)2x ≥;(2)11x >-2、23、(1)k >﹣34;(2)k=3. 4、(1)见解析(2)成立(3)△DEF 为等边三角形5、(1)①132y x =-+;②四边形ABCD 是菱形,理由略;(2)四边形ABCD 能是正方形,理由略,m+n=32.6、(1)设甲种书柜单价为180元,乙种书柜的单价为240元.(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册第一次月考
(总分120 时间120分)
一、选择题:本大题共10小题,每小题3分,共30分.
1、下列各组数中,是勾股数的是 ( ) A .2,3,4 B.3,4,6 C.5,12,13 D.4,6,7
2、一直角三角形的斜边比一直角边长2,另一直角边长为6,则斜边长为( ) A 、4 B 、8 C 、10 D 、12
3、下列各数中是无理数的是 ( ) A 、16 B 、3.142 345 678 C 、
3
11
D 、0.202 002 000 2…(相邻两个2之间0的个数逐次增加1) 4、4的算术平方根是 ( ) A 、2 B 、2- C 、2± D
5正数m 的平方根是x+1和x-5,则m 的值是 ( ) A . 2 B . 3 C. 9 D. 6
6、一个数的平方根等于它的立方根 ,这个数是 ( )
A 、0
B 、-1
C 、1
D 、不存在 7、下列各组数中互为相反数的是( )
A. 与
B.
与 C. 与 D. 2与 8、下列式子中,是二次根式的是 ( )
A
.π C .
13
9、如图1,ABC ∆是直角三角形,正方形N ,L 的面积分别是1,10,则正方形M 的边长是BC= ( )
A 、9
B 、3
C 、6
D 、8
图1 图2
10、如图2,长方形OABC中边OA的长为2,边AB的长为1,OA在数轴上,以原点O为圆心,对角
线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数为
2-2
)2(-2-38-2-2
1
-
2-
( )
A . 2.5
B .2
2 C .
3 D .5
二、填空题(8小题,每小题3分,共24分) 11、
8116的平方根是 的算术平方根是 的立方根是 12、化简:(1)______,27= (2)_______1253=,(3)5
1
= ______。
13、-27 的立方根与81的平方根之和是________________ 。
14、如图8所示,有两棵树,相距12m ,一棵树高13m ,
另一棵树高8m ,一只鸟从一棵树的顶端飞到另一棵 树的顶端,小鸟至少要飞 m . 15.若a a -=-2)2(2,则a 的取值范围是
16、已知一个Rt △的两边长分别为3和4,则第三边长是 17、若
1)1(2=++-b a ,则
_____20152016=+b a 18、如图,折叠长方形的一边AD 使点D 落在BC 边的点F 处,
已知AB = 8cm ,BC = 10 cm ,则EC 的长为_________cm 。
三、计算题(6小题,每题4分,共24分)
19(1).计算507218+-; (2).计算(
)(
)
16373
7--+;
(3).计算63
145
520•-
+; (4).计算()
401022
+-.
(5).计算(-2)3
+
21(2015-3)0
-|-21|; (6).计算
2
)81(-27
10)31(33122-++(第18)
D
C
A 四、解方程:(每小题4分,共8分)
20.822
=y 21.8)12(3
-=-x
五、作图题(6分)22.在数轴上找出表示--17的点
六、解答题(共28分)
23、(8分) 如图,长方体盒子(无盖)的长、宽、高分别是12cm ,8cm,30cm,在AB 中点C 处有一滴蜜糖,一只小虫从P 处爬到C 处去吃,有无数种走法,则最短路程是多少?
24、(10分)如图,有一块土地形状如图所示,∠B=900
,AB=4米,BC=3米,CD=12米,AD=13米,请计算这块土地的面积。
25、(10分)阅读下面计算过程: ;
.
试求:(1
_______; (2
______(为正整数)
(3
.
11
1⨯
=1⨯=
12
2⨯
===n 98+
+。