核医学显像原理

合集下载

核医学成像原理及设备课件

核医学成像原理及设备课件

多模态成像技术
总结词
多模态成像技术是核医学成像的另一个重要 发展趋势,通过结合多种成像模式,能够提 供更全面的医学信息,有助于医生更全面地 了解患者的病情。
详细描述
多模态成像技术是利用多种成像模式进行医 学影像获取的方法。这种技术能够结合不同 模式的成像特点,提供更全面的医学信息, 有助于医生更全面地了解患者的病情,提高
和医学影像技术的不断发展,分子成像技术在核医学成像中的应用将越来越广泛。
06 核医学成像设备安全与防 护
辐射防护原则
辐射防护三原则
防护、隔离、减量。
辐射防护最优化
在满足诊断和治疗效果的前提下,尽量减少患者 和医务人员的辐射剂量。
剂量限值
根据不同人群和不同照射情况,设定合理的剂量 限值,确保辐射安全。
肿瘤治疗
核医学成像设备还可以用于肿瘤 的治疗,如放射性碘治疗甲状腺 癌、骨转移瘤的放射性核素治疗 等。
心血管疾病诊断
冠心病诊断
核医学成像技术可以检测心肌缺血和 心肌梗死,通过心肌灌注显像和代谢 显像等方法,评估心脏功能和诊断冠 心病。
心功能评估
核医学成像设备可以评估心脏功能, 通过放射性核素心室造影等技术,测 定心脏射血分数等指标,了解心脏的 收缩和舒张功能。
规定。
个人剂量监测
为医务人员配备个人剂量计,实时 监测和记录个人辐射剂量,保障医 务人员健康。
环境辐射监测
对核医学成像设备周围的环境进行 辐射监测,确保环境安全。
THANKS FOR WATCHING
感谢您的观看
核医学成像的优点
无创、无痛、无辐射,能 够提供人体生理和病理过 程的详细信息。
核医学成像的应用
在肿瘤、心血管、神经系 统等领域具有广泛的应用 价值。

核医学第9章 核医学显像技术原理

核医学第9章 核医学显像技术原理

6、通透弥散 : 进入体内的某些放射性药物借助简单的通透弥散作 用可使脏器和组织显像。 静脉注入放射性133Xe生理盐水后流经肺组织时放射 性惰性气体(133Xe)从血液中弥散至肺泡内可进行肺灌注 动态显影。
99mTcO -、99mTc-葡庚糖酸盐(99mTc-GH)等可以通过 4
破坏的血脑屏障弥散至颅内的病变区,引起局部放射性 浓聚的“热区”,可进行颅内占位性病变的定位诊断。
99mTc-葡庚糖酸盐(99mTc-GH)、201Tl和67Ga-柠檬酸盐
等可用于肺、脑、鼻咽部的恶性肿瘤显像以进行恶性肿 瘤的定位、定性诊断。
5、选择性排泄: 某些脏器对一些引入体内的放射性药物具有选择性 排泄功能,这类特定脏器的特定细胞具有选择性摄取代 谢产物并将其排除体外,这样一方面可显示脏器的形态, 另方面又可观察分泌、排泄功能和排泄通道。 静脉注入经肾小管上皮细胞分泌(131I-OIH)或肾小球 滤过(99mTc-DTPA)的放射性药物,动态显像可以显示肾 的形态以及尿路通畅情况。
根据影像获取的部位分 局部显像;指显影的范围仅显示身体的某一部位或 某一脏器,此法在临床医学中最为常用。
全身显像:显像装置沿体表从头至足作匀速移动, 将采集全身各部位的放射性显示成为一帧影像称全 身显像。
常用于全身骨骼显像、全身骨髓显像等,此法 主要用于探寻肿瘤转移灶或了解骨髓功能状况,其 优点是观察方便易于对称比较。
(三) 异常图像的分析 1. 静态图像分析要点 ① 位置(平面):注意被检器官与解剖标志和毗邻器官之间 的关系,确定器官有无移位或反位;
② 形态大小:受检器官的外形和大小是否正常,轮廓是否 清晰完整;
③ 放射性分布:一般以受检器官的正常组织放射性分布为 基准,比较判断病变组织的放射性分布,是否增高或降 低(稀疏)、正常或缺损; ④ 对称性:对于脑、骨髓等对称性器官的图像进行分析时, 还应注意两侧相对应部位放射性分布是否一致。

SPEC,PET,CT,MR成像原理及其特点比较

SPEC,PET,CT,MR成像原理及其特点比较

SPECT、PET、CT、MR四类医学影像设备的成像原理简介一、单光子发射断层扫描(简称SPECT)SPECT是利用放射性同位素作为示踪剂,将这种示踪剂注入人体内,使该示踪剂浓聚在被测脏器上,从而使该脏器成为γ射线源,在体外用绕人体旋转的探测器记录脏器组织中放射性的分布,探测器旋转一个角度可得到一组数据,旋转一周可得到若干组数据,根据这些数据可以建立一系列断层平面图像。

计算机则以横截面的方式重建成像。

二、正电子发射断层扫描(Positron Emision Tomograph 简称PET):该技术是利用回旋加速器加速带电粒子轰击靶核,通过核反应产生带正电子的放射性核素,并合成显像剂,引入体内定位于靶器官,它们在衰变过程中发射带正电荷的电子,这种正电子在组织中运行很短距离后,即与周围物质中的电子相互作用,发生湮没辐射,发射出方向相反,能量相等的两光子。

PET成像是采用一系列成对的互成180排列后接符合线路的探头,在体外探测示踪剂所产生之湮没辐射的光子,采集的信息通过计算机处理,显示出靶器官的断层图象并给出定量生理参数。

三、X线计算机断层扫描(Computed Tomography 简称(CT) :它是用X射线照射人体,由于人体内不同的组织或器官拥有不同的密度与厚度,故其对X射线产生不同程度的衰减作用,从而形成不同组织或器官的灰阶影像对比分布图,进而以病灶的相对位置、形状和大小等改变来判断病情。

CT由于有电脑的辅助运算,所以其所呈现的为断层切面且分辨率高的影像。

四、磁共振成像系统(Magnetic Resonance Imaging)简称MRI由于人体内含有非常丰富的氢原子(即质子),且每一个氢原子核都如同是一个小小磁铁,而人体内不同物质、组织或器官彼此之间所含的氢原子核密度皆不相同,因此MRI是利用均匀的强磁场和可改变区域磁场强度的特定频率的射频脉冲,经由各种脉冲程序的控制,使得氢原子核产生磁矩的回旋动力的变化,然后依据法拉第电磁感应定律,转换成电流信号并记录下来,最后由电脑处理而形成不同物质、组织或器官的灰阶影像对比分布图,其所呈现的为断层切面且分辨率高的影像,所提供的也是属于人体解剖结构方面的资讯。

核医学知识点整理

核医学知识点整理

核医学整理核医学显像核医学的PET、SPECT显像侧重于显示功能、血流、代谢、受体、配体等的改变,能早期为临床、科研提供有用的信息。

1.通过放射性核素显像仪(如SPECT)对选择性聚集在或流经特定脏器或病变的放射性核素或其标记物发射出的具一定穿透力的射线进行探测后以一定的方式在体外成像,借以判断脏器或组织的形态、位置、大小、代谢及其功能变化,从而对疾病实现定位、定性、定量诊断的目的。

2.基本条件:用于示踪的放射性核素能够在靶组织或器官中与邻近组织之间形成放射性分布的差异。

3.用于显像的放射性核素或其标记物通称为显像剂(imaging agent),显像剂在机体内的生物学特性决定了显像的主要机制4.诊断和治疗用(含正电子)体内放射性药品浓集原理1)合成代谢2)细胞吞噬3)循环通路:血管、蛛网膜下腔或消化道,暂时性嵌顿。

4)选择性浓聚5)选择性排泄6)通透弥散7)离子交换和化学吸附8)被动扩散9)生物转化10)特异性结合11)竞争性结合12)途径和容积指示5.核医学仪器的基本结构:探头、前置放大器、主放大器、甄别器、定标电路、数字显示器常用显像仪器:γ照相机、SPECT、PET等。

二、分为诊断用放射性药物(显像剂和示踪剂)和治疗用放射性药物。

放射性药品指含有放射性核素供医学诊断和治疗用的一类特殊药品。

γ射线能量为:141KeV三、SPECT显像方法:1.每例检查均需使用显像剂2.给药方式:iv,po,吸入,灌肠,皮下注射等3.仪器:SPECT4.给药后等待检查时间:即刻,20--30min, 1h, 2--3h5.每次机器检查时间:1—20min6.检查次数:1—10次(一)显像的方式和种类1、静态显像:当显像剂在脏器内和病变处的浓度处于稳定状态时进行的显像,可采集足够的放射性计数用以成像,影像清晰可靠,可详细观察脏器和病变的位置、形态、大小和放射性分布;脏器的整体功能和局部功能;计算出一些定量参数, 如局部脑血流量、局部葡萄糖代谢率(参数影像或称功能影像).2、动态显像:显像剂引入体内后,迅速以设定的显像速度动态采集脏器多帧连续影像或系列影像,即电影显示;利用感兴趣区技术提取每帧影像中同一个感兴趣区域内的放射性计数,生成时间--放射性曲线。

核医学显像技术原理

核医学显像技术原理

单光子发射计算机断层成像
<SPECT>
SPECT与γ相机的比较: 目前医院中用的最多SPECT称为旋转γ相机型的 ECT,这种SPECT是γ相机探头加上旋转机构和图 像重建软件,它包含了γ相机的功能,增加了断层 图像获取和图像重建功能.
放射性核素显像
向患者体内引入特定示 踪剂〔或显像剂
核医学显像设备
核医学显象技术原理
主要内容 一、基本原理 二、基本条件 三、显像剂<放射性药物>选择性聚 集的机理 四、各种放射性测量仪器简介
一.基本原理
脏器和组织显像的基本原理是放射性核素的示踪作用:
不同的显像剂<放射性药物在体内有其特殊的分布和代谢 规律,能够选择性聚集在特定脏器、组织或病变部位,使其 与邻近组织之间的放射性分布形成一定程度浓度差,而显 像剂中的放射性核素可发射出具有一定穿透力的γ射线,利 用放射性测量仪器〔γ相机、SPECT、PET 、SPECT/CT、 PET/CT等可在体外被探测、记录到这种放射性浓度差,从 而在体外显示出脏器、组织或病变部位的形态、位置、 大小以及脏器功能变化.
谢谢观赏
知识回顾 Knowledge Review
二、基本条件
• 放射性浓度差要达到一定程度.
• 核医学显像装置能检测到放射性浓度差,并 以一定方式显示成像.
• 正常与异常组织间对放射性核素的摄取差 异是核显像的诊断基础.
三、显像剂<放射性药物>选择性聚集的机理
1.细胞选择性摄取 2.特异性结合 3.化学吸附作用 4.微血管栓塞 5.通道、灌注和生物分布
物质.
铊 201Tl+ 99mTc标记的异腈类化合物
〔3代谢产物和异物 某些器官的某些细胞具有选择性摄取代谢 产物和异物的功能,使代谢产物、异物从体 内清除.

核医学显像的原理和应用

核医学显像的原理和应用

核医学显像的原理和应用1. 核医学显像的概述核医学显像是一种利用放射性核素在体内的分布和代谢来对人体进行诊断和治疗的技术。

它通过测量放射性同位素在体内的分布情况,获取有关人体内部的组织、器官的功能和代谢信息,从而帮助医生做出准确的诊断和治疗方案。

2. 核医学显像的原理2.1 放射性同位素的选择与标记核医学显像使用放射性同位素作为追踪剂,这些同位素具有放射性衰变的特性,可以通过测量其衰变产生的射线来获取有关体内活性物质的信息。

放射性同位素常用的有碘-131、锗-68、锝-99m等。

2.2 射线的探测与测量核医学显像主要利用射线探测器来检测放射性同位素放射出的射线,并测量其强度。

常见的射线探测器有闪烁体探测器、正电子探测器、伽马摄像仪等。

2.3 数据处理与图像重建核医学显像通过采集到的射线强度数据,并利用计算机进行数据处理与图像重建。

常见的数据处理方法包括滤波、校正、重建算法等。

图像重建以产生清晰、准确的图像为目标,从而呈现出体内组织、器官的结构和功能。

3. 核医学显像的应用3.1 放射性同位素扫描核医学显像可用于放射性同位素扫描,用于检测人体内特定区域的功能和代谢变化。

比如甲状腺扫描可以检测甲状腺功能亢进或功能减退,骨扫描可用于检测骨转移等。

3.2 心肌灌注显像核医学显像还可用于心肌灌注显像,通过注射放射性同位素,观察其在心肌内的分布情况,来检测心肌供血情况,以评估是否存在心肌缺血等心血管疾病。

3.3 肿瘤诊断与治疗核医学显像在肿瘤的诊断和治疗中有着重要的应用。

例如,正电子发射断层成像(PET)可用于检测肿瘤细胞的代谢活性,辅助肿瘤的定位和评估疗效。

3.4 甲状腺疾病诊断核医学显像还可用于甲状腺疾病的诊断。

例如,甲状腺清除率测定可以评估甲状腺的功能状态,判断甲状腺功能亢进或功能减退。

3.5 癌症治疗与放射性核素治疗核医学显像在癌症治疗中也有着广泛的应用。

放射性核素治疗可通过给予放射性同位素,将其富集在肿瘤组织内,从而实现对肿瘤的定向治疗。

18ffdgpetct显像原理

18ffdgpetct显像原理

18ffdgpetct显像原理18ffdgpetct显像是一种核磁共振成像技术,可以用于获得人体内部的高清图像。

该技术采用放射性药物注射到人体内部,然后使用PET和CT两种成像方式,将药物在体内的分布情况反映在影像上,以便医生进行诊断和治疗。

18ffdgpetct显像的基础是PET和CT两种成像技术。

PET即正电子发射断层扫描,是一种核医学成像技术,通过注射放射性药物,利用其发出的正电子与电子碰撞产生的两个光子,来探测人体内部组织和器官的代谢情况,进而生成图像。

而CT即计算机断层成像,是一种X线成像技术,通过多次旋转扫描,将被扫描的对象切割成一系列的小块,再通过计算机处理得到高清图像。

在18ffdgpetct显像中,注射的药物为18F-脱氧葡萄糖(18F-FDG),这是一种放射性药物,可以通过PET成像反映出人体内部的葡萄糖代谢情况。

当18F-FDG注射到人体内部后,它会被身体各个组织和器官吸收和代谢,其中代谢活跃的组织和器官会吸收更多的18F-FDG,从而在PET成像上显示出更高的信号强度,形成亮点。

而CT成像则可以清晰地显示出各个组织和器官的位置和形态,从而将PET成像的亮点和组织器官对应起来,得到更加准确的诊断结果。

18ffdgpetct显像技术的优点是可以同时获得PET和CT两种成像方式的信息,从而更加准确地反映出人体内部的情况。

它可以用于诊断和治疗多种疾病,如肿瘤、心血管疾病、神经系统疾病等。

同时,18ffdgpetct显像还可以用于评估治疗效果、指导手术和放疗等医疗工作,可以为医生提供更加全面的信息,有助于提高治疗效果和患者的生存率。

18ffdgpetct显像技术是一种高端的医疗成像技术,可以为医生提供更加准确、全面的信息,有助于提高疾病的诊断和治疗水平。

它的应用前景非常广阔,将会在医疗领域发挥越来越重要的作用。

核医学显像原理(1)

核医学显像原理(1)

PET
向患者体内引入特定 示踪剂(或显像剂)
核医学显像设备
精品课件
二 基本条件
放射性浓度差要达到一定程度。 核医学显像装置能检测到放射性浓度差,并以
一定方式显示成像。 正常与异常组织间对放射性核素的摄取差异是
核显像的诊断基础。
精品课件
三 显像剂(放射性药物)选择性聚集的机理:
1.细胞选择性摄取 2.特异性结合 3.化学吸附作用 4.微血管栓塞 5.通道、灌注和生物分布
精品课件
精品课件
核医学是利用开放型放射性核素 及其核射线对疾病进行诊断、治疗和研究 的一门新兴科学。
它集中了核物理、高能物理、电 子学、计算机技术、化学、生物学、基础 医学和工程技术最新成就的产物,属于多 专业的综合性科学。
精品课件
FDG
精品课件
精品课件
临床常见病种与核医学SPECT/PET检查项目对照表
(二) 特异性结合
.受体—受体配体 结合
抗原—抗体
结合
可进行特异性的显影
间位碘代苄胍可与肾上腺素能受体结合,可以使富含肾上 腺素能受体的嗜铬细胞瘤显影。
精品课件
肿瘤组织具有特异抗原, 利用与之结合的特异抗体 可使肿瘤组织显影, 称放射免疫显像。
肝癌AFP放射免疫显像
精品课件
(三) 化学吸附作用
精品课件
3.较高的特异性
精品课件
4.辐射剂量低,无创检查,安 CT、MRI、超声显像属于解剖或结构显像,核显像以脏
器对显像剂的摄取功能变化为依据,属于功能性显像。
精品课件
定量显像: 可以通过计算机的局部数据处理给出定量数据,更客 观的评价病变部位放射性的变化
精品课件
精品课件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
肝癌AFP放射免疫显像
2020/6/28
(三) 化学吸附作用
• 骨骼组织中的羟 基磷灰石晶体可 高度吸附磷酸类 化合物。99mTc标 记 的 膦 酸 盐 MDP 可用于全身骨骼 显影,
• 99mTc标记的焦磷 酸盐PYP可用于 急性心肌梗塞灶 的显影。
2020/6/28
99mTc标记 聚合人血清白
蛋 白 ( MAA) ,
经静脉注入后
栓塞在肺毛细 血管床
从而使肺显影

(四) 微血管栓塞
2020/6/28
(五)通道、灌注和生物分布
• 当显像剂通过某 一通道时,可以 使通道显影。
• 肘静脉快速(弹 丸式)注入放射 性药物,使腔静 脉、右心房、右 心室、肺血管床 、左心房、左心 室、主动脉的管 腔、房、室腔陆 续显影。
• 放射性浓度差要达到一定程度。 • 核医学显像装置能检测到放射性浓度差,并以
一定方式显示成像。 • 正常与异常组织间对放射性核素的摄取差异是
核显像的诊断基础。
2020/6/28
三 显像剂(放射性药物)选择性聚集的机理:
1.细胞选择性摄取 2.特异性结合 3.化学吸附作用 4.微血管栓塞 5.通道、灌注和生物分布
2020/6/28
(一)细胞选择摄取
(2)特殊价态物质
• 一些细胞可以选择性摄 取特殊化合价态的物质 。
• 铊 201Tl+ • 99mTc标记的异腈类化
合物
2020/6/28
(一)细胞选择摄取
(3)代谢产物和异 物
某些器官的某些细 胞具有选择性摄取代 谢产物和异物的功能 ,使代谢产物、异物 从体内清除。
• 然后可获得器官 的动脉灌注影像 。
• 显像剂存留在血 循环中,可获得 大血管、心房、 心室2020和/6/2各8 器官的
2020/6/28
四 放射性核素显像的方式
1.静态显像 动态显像 • 2.局部显像、全身显像 3.平面显像、断层显像
4.早期显像、延迟显像 5. 阳性显像、阴性显像
2020/6/28
化学或代谢显像: 核显像不但可以反映局部血流、细胞功能和放射性浓 集量的改变,而且反映细胞内分子水平的化学或代谢改 变,属分子生物学水平。
2020/6/28
图像融合
No Image
2020/6/28
SPECT/PET
衰减校正
同机 图像融合
CT
2020/6/28
2020/6/28
SPECT、PET 、SPECT/CT、PET/CT等)可在体外被
探测、记录到这种放射性浓度差,从而在体外显示出
脏器、组织或病变部位的形态、位置、大小以及脏器
功能变化。
2020/6/28
放射性核素显像 SPECT
向患者体内引入特定 示踪剂(或显像剂)
PET
核医学显像设备
2020/6/28
二 基本条件
+
=
核20医20学/6/2肺8 肿瘤图像
CT 肺肿瘤图像
融合后图像
意义
• 更好的定义解剖位置 • 解剖图像与功能图像结合
• 提高诊断准确性 • 提高定位准确性. •降低化疗或放疗的成本
2020/6/28
2020/6/28
核医学是利用开放型放射性核素及其 核射线对疾病进行诊断、治疗和研究的一 门新兴科学。
• 邻碘马尿酸 • 99mTc标记植酸钠胶

2020/6/28
(二) 特异性结合
.受体—受体配体 结合
抗原—抗体
结合
可进行特异性的显影
间位碘代苄胍可与肾上腺素能受体结合,可以使富含肾上 腺素能受体的嗜铬细胞瘤显影。
2020/6/28
肿瘤组织具有特异抗原, 利用与之结合的特异抗体 可使肿瘤组织显影, 称放射免疫显像。
2020/6/28
2020/6/28
2性显像
2020/6/28
静息显像、负荷显像
2020/6/28
2020/6/28
五 放射性核素显像特点
1.不仅反映形态,更反映功能,有助于疾病早期诊断 。
2020/6/28
2020/6/28
2.动、静态相结合,定性、定量相结合。
2020/6/28
2020/6/28
3.较高的特异性
2020/6/28
4.辐射剂量低,无创检查,安全性高。
2020/6/28
功能性显像: • CT、MRI、超声显像属于解剖或结构显像,核显像以
脏器对显像剂的摄取功能变化为依据,属于功能性显 像。
2020/6/28
定量显像: 可以通过计算机的局部数据处理给出定量数据,更客 观的评价病变部位放射性的变化
2020/6/28
(一)细胞选择摄取 (1)特殊需要物质
有些物质是某些细胞完 成某种功能所特需的,能被 细胞选择性摄取。
碘离子
2020/6/28
18F标记的 脱氧葡萄 糖与天然 葡萄糖一 样可以作 为能量物 质被心肌 细胞和脑 细胞摄取 利用,故 可以利用 PET来观 察心肌及 脑灰质的 能量代谢 状况。
图像融合的作用:
融合的图像使在CT上的一个极难发现的纵膈低衰减病变得以注意. 这一发现 倾向于右纵膈淋巴瘤的诊断, 使医生能选择最恰当的治疗方案.
2020/6/28
2020/6/28
图像融合的特点
• 1. 与多种影像设备建立关联 • 2. 将核医学数据整合到其他设备影像中
• 3.功能影像与解剖影像的结合
6. 静息显像、负荷显像
2020/6/28
静态显像
2020/6/28
2020/6/28
动态显像
2020/6/28
动态显像
2020/6/28
局部显像、全身显像
2020/6/28
2020/6/28
平面显像、断层显像
2020/6/28
2020/6/28
2020/6/28
2020/6/28
2020/6/28
一 基本原理

脏器和组织显像的基本原理是放射性核素的示踪作用:
不同的显像剂(放射性药物)在体内有其特殊的分布和
代谢规律,能够选择性聚集在特定脏器、组织或病变
部位,使其与邻近组织之间的放射性分布形成一定程
度浓度差,而显像剂中的放射性核素可发射出具有一
定穿透力的γ射线,利用放射性测量仪器(γ相机、
Decatur Memorial Hospital, NM-department, Oncology
Image Fusion 11
临床病史:
70岁的男性连续4个月腹部及背部疼痛. 同时, 病人在前8周体重减轻了31 磅
CT 检查:
正常的胸部CT, 未见腺体异常, 团块或结节.
FDG 检查:
发现在纵膈右部有高代谢区, 提示有淋巴瘤或支气管肺癌.
相关文档
最新文档