辐射和对流模型Fluent参数设置
辐射和对流模型Fluent参数设置

辐射和对流模型Fluent 参数设置1.读入***.mesh 文件,并对网格文件进行进行检查,Grid →cheek,主要看最小体积和最小面积不能为负,之后进行刻度转换, Grid→ scale,在 Gmbit 里面建模默认尺寸为米,与实际尺寸之间要进行转化,如下图:2.选择求解器, Define →Models→sover ⋯⋯根据情况选择,如上图:接着选择辐射模型, Define →Models→Radiation ,如下图,当 Radiation Model面板上点击ok 时,会出现一个信息提示框,告诉你新的材料物性被添加了,你将在后面设置物性参数,因此现在只需单击ok 确认这个信息即可,如下图:注意:当你激活辐射模型后,Fluent会自动打开能量求解器,如下图:不用再 Define →Models→Energy⋯⋯3.设置流体粘性,由于模型中空气流速比较大,设成双方程模型:如下图:4.设置操作条件,此模型此有流体,属有重力情况, Define → Operating Conditions ,选中Gravity.Y 方向加速度设置为 -9.8m / s2,击确定。
OK设置工作温度,在后面要激活的Boussinesq model 要用到,(Boussinesq model:只考虑温度变化而忽略压强变化引起的密度变化叫做Boussinesq 假设)5.定义材料并设置其物理属性Define→Material ⋯⋯先定义空气物性,要定义成有浮力的,取Boussinesq选项。
Density=1.165 kg / m3,C p1005 j / kg kThermal Conductivity=0.0267 w / m k, Material Type: fluid ;Thermal Expansion Coefficient =0.0033 1 / k。
通过滚动条使先前面板中不可见的物性显示出来。
在Scattering Coefficient 和Scattering Phase Function中保持默认值,在要解决的问题中不涉及到散射问题;设定热扩散系数(用boussinesq 模型时)为 1e-5K -1 。
fluent自然对流边界设置

fluent自然对流边界设置Fluent自然对流边界设置自然对流是指在流体中,由于温度差异而产生的自发对流现象。
在工程领域中,对流现象经常出现在流体传热和流体力学的问题中。
为了准确模拟和预测这些现象,需要使用专业的软件工具,如Fluent,来进行数值模拟和仿真分析。
在Fluent中,设置自然对流边界条件是模拟自然对流现象的关键步骤之一。
对于自然对流现象,边界条件的设置对模拟结果具有重要影响。
在Fluent中,可以通过设置边界类型、温度和传热系数等参数来模拟自然对流现象。
以下将详细介绍如何在Fluent中设置自然对流边界条件。
在Fluent中选择合适的边界类型。
对于自然对流现象,通常使用壁面边界条件来模拟。
壁面边界条件可以分为两种类型:绝热壁面和恒温壁面。
对于绝热壁面,边界上的温度梯度为零;对于恒温壁面,边界上的温度保持恒定。
根据具体问题的要求,选择合适的壁面边界条件。
设置边界的温度。
在Fluent中,可以通过直接输入温度值或者通过函数来设置边界的温度。
对于自然对流现象,边界的温度通常是随着时间变化的。
因此,可以通过定义一个函数来描述边界温度随时间的变化规律。
在Fluent中,可以选择不同的函数类型,如线性函数、指数函数、正弦函数等,来描述边界温度的变化规律。
设置边界的传热系数。
传热系数是描述对流传热能力的重要参数。
在Fluent中,可以通过设置边界的传热系数来模拟自然对流现象中的传热过程。
传热系数可以是一个常数,也可以是一个随时间变化的函数。
根据具体问题的要求,选择合适的传热系数。
除了上述的基本设置外,Fluent还提供了许多高级选项来进一步调节对流边界条件的模拟效果。
例如,可以设置边界的湍流模型、湍流强度和壁面辐射等参数,以更准确地模拟自然对流现象。
在进行自然对流边界条件设置时,还需要注意一些常见的问题。
首先,边界条件的选择应根据具体问题的要求来确定,不能盲目选择;其次,边界的温度和传热系数应根据实际情况进行合理设定,不要过分追求模拟结果的精确性;最后,需要不断验证和调整模拟结果,以提高模拟的准确性和可靠性。
Fluent辐射传热模型理论以和相关设置

Fluent辐射传热模型理论以及相关设置目录1 概述 (2)2 基础理论 (2)2.1 专业术语解释: (2)2.2 FLUENT辐射模型介绍: (3)2.3 辐射模型适用范围总结 (4)3 Fluent实际案例操作 (5)3.1 Case1-测试external emissivity 使用DO模型计算-2D模型 (5)3.2 Case2-测试internal emissivity-使用DO模型计算-2D模型 (6)3.3 仿真结论 (10)1概述在传热的仿真中,有时候会不可避免的涉及到辐射传热,而我们对Fluent中辐射模型的了解甚少,很难得到可靠的计算结果。
因此,一直以来,Fluent中的带辐射的传热仿真是我们的一个难点,本专题重点来学习辐射模型的理论,让我们对辐射计算模型有一个深入的了解,以帮助我们攻克这个仿真难点。
2基础理论2.1专业术语解释:在Fluent中开启辐射模型时,流体介质以及固体壁面会出现一些专业的参数需要用户来设置。
在Fluent help中介绍辐射模型时会经常提到一些专业术语。
对这些专业参数以及术语,我们来一一解释:1、Optical thickness(光学深度,无量纲量):介质层不透明性的量度。
即介质吸收辐射的能力的量度,等于入射辐射强度与出射辐射强度之比。
设入射到吸收物质层的入射辐射强度为 I ,透射的辐射强度为 e,则 T = I/e,其中T为光学深度。
按照此定义,那介质完全透明,对辐射不吸收、也不散射,透射的辐射强度e=入射辐射强度I,即光学深度为T=1,介质不参与辐射。
—摘自百度百科而FLUENT中T=αL,其中L为介质的特征长度,α为辐射削弱系数(可理解为介质因吸收和散射引起的光强削弱系数)。
如果T=0,说明介质不参与辐射,和百度百科中的定义有出入。
但是所表达的意思是接近的,一个是前后辐射量的比值;一个是变化量和入射辐射量的比值(根据Fluent help里的解释,经过介质的辐射损失量 =I*T,个人理解,按照此定义,T不可能大于1啊,矛盾。
Fluent求解参数设置

求解参数设置(Solution Methods/Solution Controls):在设置完计算模型和边界条件后,即可开始求解计算了,因为常会出现求解不收敛或者收敛速度很慢的情况,所以就要根据具体的模型制定具体的求解策略,主要通过修改求解参数来完成。
在求解参数中主要设置求解的控制方程、选择压力速度耦合方法、松弛因子、离散格式等。
在VOF模型中,PISO比较适合于不复杂的流体,SIMPLE和SIMPLEC适合于可压缩的流体或者处于封闭域中的流体。
• 求解的控制方程:在求解参数设置中,可以选择所需要求解的控制方程。
可选择的方程包括Flow(流动方程)、Turbulence(湍流方程)、Energy(能量方程)、V olume Fraction(体积分数方程)等。
在求解过程中,有时为了得到收敛的解,先关闭一些方程,等一些简单的方程收敛后,再开启复杂的方程一起计算。
• 选择压力速度耦合方法:在基于压力求解器中,FLUENT提供了压力速度耦合的4种方法,即SIMPLE、SIMPLEC(SIMPLE.Consistent)、PISO以及Coupled。
定常状态计算一般使用SIMPLE或者SIMPLEC方法,对于过渡计算推荐使用PISO方法。
PISO方法还可以用于高度倾斜网格的定常状态计算和过渡计算。
需要注意的是压力速度耦合只用于分离求解器,在耦合求解器中不可以使用。
在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC算法,默认是SIMPLE算法,但对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松弛迭代时。
对于相对简单的问题(如没有附加模型激活的层流流动),其收敛性可以被压力速度耦合所限制,用户通常可以使用SIMPLEC算法很快得到收敛解。
在SIMPLEC算法中,压力校正亚松弛因子通常设为1.0,它有助于收敛,但是,在有些问题中,将压力校正松弛因子增加到1.0可能会导致流动不稳定,对于这种情况,则需要使用更为保守的亚松弛或者使用SIMPLE 算法。
FLUENT参数设置(新手)

4月1日写给Fluent新手(续)31 数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免?假扩散(false diffusion)的含义:基本含义:由于对流—扩散方程中一阶导数项的离散格式的截断误差小于二阶而引起较大数值计算误差的现象。
有的文献中将人工粘性(artificial viscosity)或数值粘性(numerical viscosity)视为它的同义词.拓宽含义:现在通常把以下三种原因引起的数值计算误差都归在假扩散的名称下1.非稳态项或对流项采用一阶截差的格式;2。
流动方向与网格线呈倾斜交叉(多维问题);3。
建立差分格式时没有考虑到非常数的源项的影响。
克服或减轻假扩散的格式或方法,为克服或减轻数值计算中的假扩散(包括流向扩散及交叉扩散)误差,应当:1. 采用截差阶数较高的格式;2。
减轻流线与网格线之间的倾斜交叉现象或在构造格式时考虑到来流方向的影响。
3. 至于非常数源项的问题,目前文献中,还没有为克服这种影响而专门构造的格式,但是高阶格式显然对减轻其影响是有利的。
32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决?FLUENT等高线(contour)显示过程中,可以通过调节显示的水平等级来调节其显示细节,Levels..。
最大值允许设置为100.对于封闭的3D物体,可以通过建立Surface,监视Surface 上的量来显示计算结果.或者计算之后将结果导入到Tecplot中,作切片图显示。
33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?对于非定常计算,可以通过创建动画来形象地显示出动态的效果图。
Solve—>Animate->Define。
.。
,具体操作请参考Fluent用户手册。
34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值?参考压力有何作用?如何设置和利用它?GAUGE PRESSURE 就是静压。
FLUENT中五种辐射模型的详细计算对比

图中一个边长为L=1m的正方形箱体,右墙温度2000K,左墙温度1000K,上下墙绝热,重力向下,由于热重力引起密度梯度所以发展为浮力流。
箱体中的介质被认为是具有吸收性和散射性的,因此墙壁间的辐射交换因存在吸收而减弱,同时因存在介质散射而增强。
自然对流分为三步进行,有两种设置方法。
第一步:设置工作条件(工作压力101325Pa、勾选重力加速度-6.9e-5(负号表示方向沿Y轴向下)、工作温度T f=(1000+2000)/2=1500K)。
第二步:对材料密度进行选择时有两种情况(1)选择idea-gas为理想气体模型,其密度满足理想气体状态方程,标准状态下P0=101325Pa、T0=15℃时,密度为理想气体标准密度为1.225kg/m3(2)选择Boussinesq为非理想气体,需要根据实际气体设置密度。
第三部:设置自然对流其它参数,比热C p=11030J/kg/K,热导率15.309W/m/K,粘度10-3m/s2,热膨胀系数1e-5K-1,吸收系数0、0.2、5m-1,散射系数目前不考虑。
一、网格划分建立边长为1的正方形,对面和边线进行命名。
全局面网格设置最大网格尺寸为0.2,表示网格最大边长为0.2,设置网格类型为四边形网格。
设置线网格尺寸时有三种类型,普通、动态、复制,生成规律则有很多种(BiGometric、Uniform、Geometric1、Geometric2等),这些生成规律涉及到线上起始点与终止点的关系,所以在由点生成线时,相互平行的线,生成应当方向一致(从上到下或从左到右),在生成线网格时的方向才会相同。
这里我们选用动态类型,生成规律为Biometric,每条边上节点数为50个,比例为1.2。
二、参数设置1.选择默认求解器Scale可以设定模型的单位,默认为m,可以比例缩小或放大。
求解器类型为基于压力变化、绝对速度、稳态、2D平面求解器。
2D Space选择为Axisymetric时,求解的是轴对称的圆柱坐标系统,注意ICEM中画图时,对称轴必须放置在X轴上。
Fluent辐射传热模型理论以及相关设置

Fluent辐射传热模型理论以及相关设置目录1概述 (2)2基础理论 (2)2.1专业术语解释: (2)2.2FLUENT辐射模型介绍: (3)2.3辐射模型适用范围总结 (4)3Fluent实际案例操作 (5)3.1Case1-测试external emissivity 使用DO模型计算-2D模型 (5)3.2Case2-测试internal emissivity-使用DO模型计算-2D模型 (6)3.3仿真结论 (10)1概述在传热的仿真中,有时候会不可避免的涉及到辐射传热,而我们对Fluent中辐射模型的了解甚少,很难得到可靠的计算结果。
因此,一直以来,Fluent中的带辐射的传热仿真是我们的一个难点,本专题重点来学习辐射模型的理论,让我们对辐射计算模型有一个深入的了解,以帮助我们攻克这个仿真难点。
2基础理论2.1专业术语解释:在Fluent中开启辐射模型时,流体介质以及固体壁面会出现一些专业的参数需要用户来设置。
在Fluent help中介绍辐射模型时会经常提到一些专业术语。
对这些专业参数以及术语,我们来一一解释:1、Optical thickness(光学深度,无量纲量):介质层不透明性的量度。
即介质吸收辐射的能力的量度,等于入射辐射强度与出射辐射强度之比。
设入射到吸收物质层的入射辐射强度为I ,透射的辐射强度为e,则T = I/e,其中T为光学深度。
按照此定义,那介质完全透明,对辐射不吸收、也不散射,透射的辐射强度e=入射辐射强度I,即光学深度为T=1,介质不参与辐射。
—摘自百度百科而FLUENT中T=αL,其中L为介质的特征长度,α为辐射削弱系数(可理解为介质因吸收和散射引起的光强削弱系数)。
如果T=0,说明介质不参与辐射,和百度百科中的定义有出入。
但是所表达的意思是接近的,一个是前后辐射量的比值;一个是变化量和入射辐射量的比值(根据Fluent help里的解释,经过介质的辐射损失量=I*T,个人理解,按照此定义,T不可能大于1啊,矛盾。
FLUENT中五种辐射模型的详细计算对比.

图中一个边长为L=1m的正方形箱体,右墙温度2000K,左墙温度1000K,上下墙绝热,重力向下,由于热重力引起密度梯度所以发展为浮力流。
箱体中的介质被认为是具有吸收性和散射性的,因此墙壁间的辐射交换因存在吸收而减弱,同时因存在介质散射而增强。
自然对流分为三步进行,有两种设置方法。
第一步:设置工作条件(工作压力101325Pa、勾选重力加速度-6.9e-5(负号表示方向沿Y轴向下)、工作温度T f=(1000+2000)/2=1500K)。
第二步:对材料密度进行选择时有两种情况(1)选择idea-gas为理想气体模型,其密度满足理想气体状态方程,标准状态下P0=101325Pa、T0=15℃时,密度为理想气体标准密度为1.225kg/m3(2)选择Boussinesq为非理想气体,需要根据实际气体设置密度。
第三部:设置自然对流其它参数,比热C p=11030J/kg/K,热导率15.309W/m/K,粘度10-3m/s2,热膨胀系数1e-5K-1,吸收系数0、0.2、5m-1,散射系数目前不考虑。
一、网格划分建立边长为1的正方形,对面和边线进行命名。
全局面网格设置最大网格尺寸为0.2,表示网格最大边长为0.2,设置网格类型为四边形网格。
设置线网格尺寸时有三种类型,普通、动态、复制,生成规律则有很多种(BiGometric、Uniform、Geometric1、Geometric2等),这些生成规律涉及到线上起始点与终止点的关系,所以在由点生成线时,相互平行的线,生成应当方向一致(从上到下或从左到右),在生成线网格时的方向才会相同。
这里我们选用动态类型,生成规律为Biometric,每条边上节点数为50个,比例为1.2。
二、参数设置1.选择默认求解器Scale可以设定模型的单位,默认为m,可以比例缩小或放大。
求解器类型为基于压力变化、绝对速度、稳态、2D平面求解器。
2D Space选择为Axisymetric时,求解的是轴对称的圆柱坐标系统,注意ICEM中画图时,对称轴必须放置在X轴上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辐射和对流模型Fluent参数设置
1.读入***.mesh文件,并对网格文件进行进行检查,Grid→cheek,主要看最小体积和最小面积不能为负,之后进行刻度转换,Grid→scale,在Gmbit 里面建模默认尺寸为米,与实际尺寸之间要进行转化,如下图:
2.选择求解器,Define→Models→sover……根据情况选择,如上图:接着选择辐射模型,Define→Models→Radiation,如下图,当Radiation Model面板上
点击ok时,会出现一个信息提示框,告诉你新
的材料物性被添加了,你将在后面设置物性参
数,因此现在只需单击ok确认这个信息即可,
如下图:
注意:当你激活辐射模型后,Fluent会自动打开能量求解器,如下图:
不用再Define→Models→Energy……
3.设置流体粘性,由于模型中空气流速比较大,设成双方程模型:如下图:
4.设置操作条件,此模型此有流体,属有重力情况,Define→Operating Conditions,选中
Gravity.Y方向加速度设置为-9.8 2
m,击OK确定。
/s
设置工作温度,在后面要激活的Boussinesq model要用到,(Boussinesq model:
考虑温度变化而忽略压强变化引起的密度变化叫做Boussinesq 假设)
5. 定义材料并设置其物理属性 Define →Material ……
先定义空气物性,要定义成有浮力的,取Boussinesq 选项。
Density=1.1653/m kg ,()k kg j C p ⋅=/1005
Thermal Conductivity=0.0267()k m w ⋅/,Material Type :fluid ; Thermal Expansion Coefficient =0.0033()k /1。
通过滚动条使先前面板中不可见的物性显示出来。
在Scattering Coefficient 和Scattering Phase Function 中保持默认值,在要解决的问题中不涉及到散射问题;设定热扩散系数(用boussinesq 模型时)为1e-5K -1。
单击Change/Create ,关闭Materials 面板。
6.设置边界条件Define → Boundary Conditions ……
对于绝热墙,保持默认设置热边界条件。
(heat flux=0)
注意:Rosseland model(一种辐射模型)模型不需要设定墙的发射率,对于其它辐射模型,就需要设定墙的发射率。
7. Rosseland model模型求解器设置Solve →Controls →Solution...
在Equations 和 Under-Relaxation Factors.下,保持默认值。
在Discretization 下, Pressure 选择PRESTO!,Momentum and
Energy 选Second Order Upwind
流场初始化,Solve→Initialize→Initialize, 根据情况设置压力和速度……
计算时,设置显示残差曲线,Solve→Monitors→Residual……
注意:Rosseland model 不能
解决额外的辐射传热方程,因
此显示不出残差曲线来,但可以解决能量方程中的导热系数,当使用the P-1 and DO 模型时,就可以解决辐射输运方程,能显示出辐射残差曲线。
8.保存Case & Date文件,下次打开时可以直接计算,File→write→Case & Date 最后,进行迭代计算,Solve→Iterate……
9.Rosseland模型后处理……
Display→Vectors……和Display→Counters…
计算总的热流量……Report→Fluxes……
创建切面,Surface Iso-Surface……,在Surface of Constant 下拉列表中选Grid……,在下面的列表中选X-Coordinate,单击Computer 看计算域的范围,在Iso-Values 中设定值,根据冷渣机入口为位置创建切面。
(注:可编辑下载,若有不当之处,请指正,谢谢!)。