江苏省苏州市九年级数学上学期期末考试试题(无答案) 苏科版

合集下载

江苏省苏州市九年级上学期期末数学试卷 (解析版)

江苏省苏州市九年级上学期期末数学试卷 (解析版)

江苏省苏州市九年级上学期期末数学试卷 (解析版)一、选择题1.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .12.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限3.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大. 4.一元二次方程x 2=9的根是( ) A .3B .±3C .9D .±95.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐6.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .167.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y = B .32=y x C .23x y = D .23=y x 8.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .159.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位10.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( ) A .-2B .2C .-1D .111.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大. A .2x <B .2x >C .0x <D .0x >12.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A .1B .1.5C .2D .2.513.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( ) A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5)14.下列条件中,一定能判断两个等腰三角形相似的是( ) A .都含有一个40°的内角 B .都含有一个50°的内角 C .都含有一个60°的内角D .都含有一个70°的内角15.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( ) A .23(1)3y x =--+ B .23(1)3y x =-+ C .23(1)3y x =+-D .23(1)3y x =-++二、填空题16.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.17.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.18.如图,在□ABCD 中,AB =5,AD =6,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点C 作⊙O 的切线交AD 于点N ,切点为M .当CN ⊥AD 时,⊙O 的半径为____.19.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 20.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______.21.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.22.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.23.如图,矩形ABCD 中,2AB =,点E 在边CD 上,且BC CE =,AE 的延长线与BC 的延长线相交于点F ,若CF AB =,则tan DAE ∠=______.24.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .25.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.26.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.27.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 28.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.29.若关于x 的一元二次方程22(1)0k x x k -+-=的一个根为1,则k 的值为__________. 30.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________三、解答题31.如图,抛物线y=-x 2+bx+3与x 轴交于A ,B 两点,与y 轴交于点C ,其中点A (-1,0).过点A 作直线y=x+c 与抛物线交于点D ,动点P 在直线y=x+c 上,从点A 出发,以每秒2个单位长度的速度向点D 运动,过点P 作直线PQ ∥y 轴,与抛物线交于点Q ,设运动时间为t (s ).(1)直接写出b ,c 的值及点D 的坐标;(2)点 E 是抛物线上一动点,且位于第四象限,当△CBE 的面积为6时,求出点E 的坐标;(3)在线段PQ 最长的条件下,点M 在直线PQ 上运动,点N 在x 轴上运动,当以点D 、M 、N 为顶点的三角形为等腰直角三角形时,请求出此时点N 的坐标. 32.如图,在△ABC 中,AB =AC =13,BC =10,求tan B 的值.33.如图,在一块长8m 、宽6m 的矩形绿地内,开辟出一个矩形的花圃,使四周的绿地等宽,已知绿地的面积与花圃的面积相等,求花圃四周绿地的宽.34.在平面直角坐标系中,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=a2x+bx+c(a<0)经过点A,B,(1)求a、b满足的关系式及c的值,(2)当x<0时,若y=a2x+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围,(3)如图,当a=−1时,在抛物线上是否存在点P,使△PAB的面积为32?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由,35.(问题呈现)阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是ABC的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD =DG ∴AB +BD =CG +DG 即CD =DB +BA根据证明过程,分别写出下列步骤的理由: ① , ② , ③ ;(理解运用)如图1,AB 、BC 是⊙O 的两条弦,AB =4,BC =6,点M 是ABC 的中点,MD ⊥BC 于点D ,则BD = ;(变式探究)如图3,若点M 是AC 的中点,(问题呈现)中的其他条件不变,判断CD 、DB 、BA 之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC 是⊙O 的直径,点A 圆上一定点,点D 圆上一动点,且满足∠DAC =45°,若AB =6,⊙O 的半径为5,求AD 长.四、压轴题36.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?37.如图,⊙O 的直径AB =26,P 是AB 上(不与点A ,B 重合)的任一点,点C ,D 为⊙O 上的两点.若∠APD =∠BPC ,则称∠DPC 为直径AB 的“回旋角”.(1)若∠BPC =∠DPC =60°,则∠DPC 是直径AB 的“回旋角”吗?并说明理由; (2)猜想回旋角”∠DPC 的度数与弧CD 的度数的关系,给出证明(提示:延长CP 交⊙O 于点E );(3)若直径AB 的“回旋角”为120°,且△PCD 的周长为3AP 的长. 38.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A ,B ,C 的外延矩形,矩形是点A ,B ,C 的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,). ①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D (1,1).E (,)是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.39.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示);(2)当t为何值时,PQ的长度等于5cm?(3)是否存在t的值,使得五边形APQCD的面积等于226cm?若存在,请求出此时t的值;若不存在,请说明理由.40.矩形ABCD中,AB=2,AD=4,将矩形ABCD绕点C顺时针旋转至矩形EGCF(其中E、G、F分别与A、B、D对应).(1)如图1,当点G落在AD边上时,直接写出AG的长为;(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键. 2.D解析:D【解析】【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<, 解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->; 纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.3.D解析:D 【解析】 【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案. 【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意. 故选:D. 【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.4.B解析:B 【解析】 【分析】两边直接开平方得:3x =±,进而可得答案. 【详解】 解:29x =,两边直接开平方得:3x =±, 则13x =,23x =-. 故选:B . 【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成2(0)x a a =的形式,利用数的开方直接求解.5.B解析:B 【解析】 【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】∵S 2甲=1.7,S 2乙=2.4, ∴S 2甲<S 2乙, ∴甲队成员身高更整齐; 故选B. 【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键6.D解析:D 【解析】 【分析】直接利用三角形中位线定理得出DE ∥BC ,DE=12BC ,再利用相似三角形的判定与性质得出答案. 【详解】解:∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∵DE BC =12,∴14ADE ABC S S ∆∆=, ∵△ADE 的面积为4,∴△ABC 的面积为:16,故选D .【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.7.D解析:D【解析】【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意; 故选:D .【点睛】 本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.8.D解析:D【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D .【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.9.D解析:D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.10.D解析:D【解析】【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x2+bx-6=0得4+2b-6=0,解得b=1.故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x的取值范围.【详解】22=-+=--+,2(1)1y x x x<,∵图像的对称轴为x=1,a=-10<时,y随着x的增大而增大,∴当x1故选:C.【点睛】<时,对称轴左增右减,当>时,对称轴左减右增.此题考查二次函数的性质,当a0a012.C解析:C【解析】【分析】因为OCP和ODQ为直角三角形,根据勾股定理可得OP、DQ、PQ的长度,又因为CP //DQ ,两直线平行内错角相等,∠PCE=∠EDQ ,且∠CPE=∠DQE=90°,可证CPE ∽DQE ,可得CP DQ =PE EQ,设PE=x ,则EQ=14-x ,解得x 的取值,OE= OP-PE ,则OE 的长度可得.【详解】解:∵在⊙O 中,直径AB=20,即半径OC=OD=10,其中CP ⊥AB ,QD ⊥AB , ∴OCP 和ODQ 为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP ⊥AB ,QD ⊥AB ,垂直于用一直线的两直线相互平行,∴CP //DQ ,且C 、D 连线交AB 于点E ,∴∠PCE=∠EDQ ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°, ∴CPE ∽DQE ,故CP DQ =PE EQ, 设PE=x ,则EQ=14-x , ∴68=x 14-x,解得x=6, ∴OE=OP-PE=8-6=2,故选:C .【点睛】 本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE 与DQE 相似,并得出线段的比例关系.13.D解析:D【解析】【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 14.C解析:C【解析】试题解析:因为A,B,D 给出的角40,50,70可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A ,B ,D 错误;C. 有一个60的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C 正确. 故选C.15.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 二、填空题16.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.17.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.18.2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=解析:2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=5,AD=6∴GC=r,BG=BF=6-r,∴AF=5-(6-r)=r-1=AE∴ND=6-(r-1)-r=7-2r,在Rt△NDC中,NC2+ND2=CD2,(7-r)2+(2r)2=52,解得r=2或1.5.故答案为:2或1.5.【点睛】本题考查了切线的性质,切线长定理,勾股定理,平行四边形的性质,正确得出线段关系,列出方程是解题关键.19.(6,4).【解析】【分析】作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F ,P解析:(6,4).【解析】【分析】作BQ⊥AC于点Q,由题意可得BQ=12,根据勾股定理分别求出BC、AB的长,继而利用三角形面积,可得△OAB内切圆半径,过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,从而得出点P的坐标,即可得出答案.【详解】解:如图,过点B作BQ⊥AC于点Q,则AQ=5,BQ=12,∴13=,CQ=AC-AQ=9,∴15=设⊙P的半径为r,根据三角形的面积可得:r=14124 141315⨯=++过点P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,设AD=AF=x,则CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴点P的坐标为(6,4),故答案为:(6,4).【点睛】本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P的坐标是解题的关键.20.20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160::10,解得.故答案是:20m.解析:20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,=:10,根据相同时刻的物高与影长成比例,得到160:80x=.解得x20故答案是:20m.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.21.【解析】【分析】求方程的解即是求函数图象与x轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x解析:15x -<<【解析】【分析】求方程的解即是求函数图象与x 轴的交点坐标,因为图像具有对称性,知道一个坐标,就可求出另一个,分析x 轴上方的图象可得结果.【详解】由图像可知,二次函数的对称轴x=2,图像与x 轴的一个交点为5,所以,另一交点为2-3=-1. ∴x 1=-1,x 2=5. ∴不等式20ax bx c ++>的解集是15x -<<.故答案为15x -<<【点睛】要了解二次函数性质与图像,由于图像的开口向下,所以,有两个交点,知一易求另一个,本题属于基础题.22.24【解析】【分析】根据题意做图,圆心在内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交A C 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根解析:24【解析】【分析】根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积.【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J .∵90C ∠=︒,12AC =,9BC =,∴15=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9,∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2即AH 2=HM 2+AM 2(12-x )2=x 2+62解得x=4.5 ∵EK ∥AC , ∴△BEK ∽△BHC ,∴EK BK HC BC =,即14.59BK = ∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG ∥AB ,EF ∥AC ,FG ∥BC , ∴∠EGF =∠ABC ,∠FEG =∠CAB ,∴△EFG ∽△ACB ,故EF FG BC AC =,即6912FG = 解得FG=8 ∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.23.【解析】【分析】设BC=EC=a,根据相似三角形得到,求出a 的值,再利用tanA 即可求解.【详解】设BC=EC=a,∵AB ∥CD ,∴△ABF ∽△ECF ,∴,即解得a=(-舍去)∴51- 【解析】【分析】设BC=EC=a,根据相似三角形得到222a a =+,求出a 的值,再利用tan DAE ∠=tanA 即可求解.【详解】设BC=EC=a,∵AB ∥CD ,∴△ABF ∽△ECF ,∴AB EC BF CF =,即222a a =+ 解得a=51-(-51-舍去) ∴tan DAE ∠=tanF=2EC a CF ==51- 故答案为:51-. 【点睛】 此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及正切的定义.24.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147. 考点:概率公式.25.3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵=,AE =2,EC =6,AB =12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.26.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70° ∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.27.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.28.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.29.0【解析】把x =1代入方程得,,即,解得.此方程为一元二次方程,,即,故答案为0.解析:0【解析】把x =1代入方程得,2110k k -+-=,即20k k -=,解得120,1k k ==.此方程为一元二次方程,10k ∴-≠,即1k ≠,0.k ∴=故答案为0.30.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0),由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线n 过点B (4,0)与新图象有三个交点, 当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,当直线处于直线m 的位置:联立y=-2x+b 与y=x 2-4x 并整理:x 2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B 时,将点B 的坐标代入直线表达式得:0=-8+b ,解得:b=8,故-1<b <8;故答案为:-1<b <8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x 轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A 、B 两个临界点,进而求解.三、解答题31.(1)b=2,c=1,D (2,3);(2)E(4,-5) ;(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【解析】【分析】(1)将点A 分别代入y=-x 2+bx+3,y=x+c 中求出b 、c 的值,确定解析式,再解两个函数关系式组成的方程组即可得到点D 的坐标;(2))过点E 作EF ⊥y 轴,设E (x ,-x 2+2x+3),先求出点B 、C 的坐标,再利用面积加减关系表示出△CBE 的面积,即可求出点E 的坐标.(3)分别以点D 、M 、N 为直角顶点讨论△MND 是等腰直角三角形时点N 的坐标.【详解】(1)将A (-1,0)代入y=-x 2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x 2+2x+3,将点A 代入y=x+c 中,得-1+c=0,解得c=1,∴y=x+1,解2123y x y x x =+⎧⎨=-++⎩,解得1123x y =⎧⎨=⎩,2210x y =-⎧⎨=⎩(舍去), ∴D (2,3).。

江苏省苏州市九年级上第一学期期末数学试卷

江苏省苏州市九年级上第一学期期末数学试卷

江苏省苏州市九年级上第一学期期末数学试卷 一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30° B .45° C .30°或150° D .45°或135°2.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A .BM >DNB .BM <DNC .BM=DND .无法确定3.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC =B .AD AE AB AC = C .△ADE ∽△ABCD .:1:2ADE ABC SS = 4.一元二次方程x 2-x =0的根是( )A .x =1B .x =0C .x 1=0,x 2=1D .x 1=0,x 2=-1 5.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°6.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( )A .12B .13C .23D .167.如图,在Rt ABC ∆中,90C CD AB ∠=︒⊥,,垂足为点D ,一直角三角板的直角顶点与点D 重合,这块三角板饶点D 旋转,两条直角边始终与AC BC 、边分别相交于G H 、,则在运动过程中,ADG ∆与CDH ∆的关系是( )A .一定相似B .一定全等C .不一定相似D .无法判断8.方程2210x x --=的两根之和是( )A .2-B .1-C .12D .12- 9.已知关于x 的一元二次方程 (x - a )(x - b ) -12= 0 (a < b ) 的两个根为 x 1、x 2,(x 1< x 2)则实数 a 、b 、x 1、x 2的大小关系为( )A .a < x 1< b <x 2B .a < x 1< x 2 < bC .x 1< a < x 2 < bD .x 1< a < b < x 2 10.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒ 11.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( )A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x + 12.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣213.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12 B .13 C 10D 310 14.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( )A .点M 在⊙C 上B .点M 在⊙C 内 C .点M 在⊙C 外D .点M 不在⊙C 内15.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252 B .25C .251 D 52二、填空题16.一元二次方程290x 的解是__.17.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为__________ .18.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.19.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表x… -1 0 1 2 3 … y … -3 -3 -1 39 …关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.20.二次函数y=x 2−4x+5的图象的顶点坐标为 .21.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.22.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.23.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.24.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.25.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.26.已知3a =4b ≠0,那么a b=_____. 27.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.28.若a b b -=23,则a b的值为________. 29.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.30.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.三、解答题31.已知二次函数y =(x -m )(x +m +4),其中m 为常数.(1)求证:不论m 为何值,该二次函数的图像与x 轴有公共点.(2)若A (-1,a )和B (n ,b )是该二次函数图像上的两个点,请判断a 、b 的大小关系.32.我们不妨约定:如图①,若点D 在△ABC 的边AB 上,且满足∠ACD=∠B (或∠BCD=∠A ),则称满足这样条件的点为△ABC 边AB 上的“理想点”.(1)如图①,若点D 是△ABC 的边AB 的中点,AC=22AB=4.试判断点D 是不是△ABC 边AB 上的“理想点”,并说明理由.(2)如图②,在⊙O 中,AB 为直径,且AB=5,AC=4.若点D 是△ABC 边AB 上的“理想点”,求CD 的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C 为x 轴正半轴上一点,且满足∠ACB=45°,在y 轴上是否存在一点D ,使点A 是B ,C ,D 三点围成的三角形的“理想点”,若存在,请求出点D 的坐标;若不存在,请说明理由.33.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE=ED ; (2)若AB=10,∠CBD=36°,求AC 的长.34.为加快城乡对接,建设美丽乡村,某地区对A 、B 两地间的公路进行改建,如图,A ,B 两地之间有一座山.汽车原来从A 地到B 地需途经C 地沿折线ACB 行驶,现开通隧道后,汽车可直接沿直线AB 行驶,已知BC =80千米,∠A =45°,∠B =30°.(1)开通隧道前,汽车从A 地到B 地要走多少千米?(2)开通隧道后,汽车从A 地到B 地可以少走多少千米?(结果保留根号)35.已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.四、压轴题36.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =,求四边形ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长.37.问题发现:(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF 的面积为 .问题探究:(2)如图②,线段BQ =10,C 为BQ 上点,在BQ 上方作四边形ABCD ,使∠ABC =∠ADC =90°,且AD =CD ,连接DQ ,求DQ 的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值.38.如图,在Rt △AOB 中,∠AOB =90°,tan B =34,OB =8. (1)求OA 、AB 的长;(2)点Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD ,QC .①当t 为何值时,点Q 与点D 重合?②若⊙P 与线段QC 只有一个公共点,求t 的取值范围.39.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x .(1)求证:四边形AGDH 为菱形;(2)若EF =y ,求y 关于x 的函数关系式;(3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =3,则30CG+9=______.(直接写出答案).40.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b=+(,k b可用含t的式子表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意画出图形,连接OA和OB,根据勾股定理的逆定理得出∠AOB=90°,再根据圆周角定理和圆内接四边形的性质求出即可.【详解】解:如图所示,连接OA,OB,则OA=OB=3,∵AB=2,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度数是90°,优弧AB的度数是360°﹣90°=270°,∴弦AB对的圆周角的度数是45°或135°,故选:D.【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数. 2.C解析:C【解析】分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出∠DPN=∠BPM,从而得出三角形全等,得出答案.详解:连接BD,因为P为平行四边形ABCD的对称中心,则P是平行四边形两对角线的交点,即BD必过点P,且BP=DP,∵以P为圆心作圆,∴P又是圆的对称中心,∵过P的任意直线与圆相交于点M、N,∴PN=PM,∵∠DPN=∠BPM,∴△PDN≌△PBM(SAS),∴BM=DN.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.3.D解析:D【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AE AB AC =, ∴21()4ADE ABC S DE S BC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误.故选D.4.C解析:C【解析】【分析】利用因式分解法解方程即可解答.【详解】x 2-x =0x(x-1)=0,x=0或x-1=0,∴x 1=0,x 2=1.故选C.【点睛】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.5.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A ,根据圆周角定理计算即可.【详解】∵BC 是⊙O 的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D .【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.6.B解析:B【解析】【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次, ∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:2163=, 故选:B .【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键. 7.A解析:A【解析】【分析】根据已知条件可得出A DCB ∠∠=,ADG CDH ∠∠=,再结合三角形的内角和定理可得出AGD CHD ∠∠=,从而可判定两三角形一定相似.【详解】解:由已知条件可得,ADC EDF CDB C 90∠∠∠∠====︒,∵A ACD ACD DCH 90∠∠∠∠+=+=︒,∴A DCH ∠∠=,∵ADG EDC EDC CDH 90∠∠∠∠+=+=︒,∴ADG CDH ∠∠=,继而可得出AGD CHD ∠∠=,∴ADG ~CDH .故选:A .【点睛】本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.解析:C 【解析】【分析】利用两个根和的关系式解答即可.【详解】两个根的和=1122b a , 故选:C.【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 9.D解析:D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y =(x−a )(x−b ),当y =0时,x =a 或x =b ,当y =12时, 由题意可知:(x−a )(x−b )−12=0(a <b )的两个根为x 1、x 2, 由于抛物线开口向上,由抛物线的图象可知:x 1<a <b <x 2故选:D .【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.10.A解析:A【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数.【详解】连接AC ,如图,∵BC 是O 的直径,∴90BAC ︒∠=,∵70ACB ADB ︒∠=∠=,∴907020ABC ︒︒︒∠=-=.故答案为20︒.故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.11.D解析:D【解析】【分析】先确定抛物线y=3x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x 2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.D解析:D【解析】x 2=4,x =±2.点睛:本题利用方程左右两边直接开平方求解.13.C解析:C【解析】【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案.【详解】tan A =BC AC =13,BC =x ,AC =3x , 由勾股定理,得AB =10x ,sin A =BC AB =1010, 故选:C .【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.14.A解析:A【解析】【分析】根据题意可求得CM 的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得2268 ,∵CM 是AB 的中线,∴CM=5cm ,∴d=r ,所以点M 在⊙C 上,故选A .【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.解析:A【解析】根据黄金比的定义得:AP AB = ,得42AP == .故选A. 二、填空题16.x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x 1=3,x 2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵290x -=∴2x =9,∴x =±3,即x 1=3,x 2=﹣3,故答案为x 1=3,x 2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.17.【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有: ,解得所以解析:16【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有:π·4=8180n,解得360πn=所以22360S==16360360扇形π4πrπ=n18.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.19.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x 1,再利用夹逼法可确定x 1 的取值范围,可得k .【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y =ax 2+bx +c 得313c a b c a b c -=⎧⎪-=++⎨⎪-=-+⎩,解得113a b c =⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b 2-4ac=12-4×1×(-3)=13,∴x=122b a -±-±==−1±2, ∵1x <0,∴1x =−1<0, ∵-4≤-3,∴322-≤≤-, ∴-3≤−1−2≤ 2.5-, ∵整数k 满足k <x 1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.20.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质.21.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△AB解析:22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.6【解析】【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键. 23.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB =90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =62,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =, 0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.24.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70° ∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.25.(1,2)【解析】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2).解析:(1,2)【解析】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的12,∴点A′的坐标是(2×12,4×12),即(1,2).故答案为(1,2).26..【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此解析:43.【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得a b =43,故答案为:43.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.27.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.28.【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则. 解析:53【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】 ∵a b b -=23, ∴b=35a,∴ab=5335aa,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.29.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 30.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.三、解答题31.(1)见解析;(2)①当n=-3时,a=b;②当-3<n<-1时,a>b ;③当n<-3或n>-1时,a<b【解析】【分析】(1)方法一:当y=0时,(x-m)(x-m-4)=0,解得x1=m,x2=-m-4,即可得到结论;方法二:化简得y=x2+4x-m2-4m,令y=0,可得b2-4ac≥0,即可证明;(2)得出函数图象的对称轴,根据开口方向和函数的增减性分三种情况讨论,判断a与b 的大小.【详解】(1)方法一:令y=0,(x-m)(x+m+4)=0,解得x1=m;x2=-m-4.当m=-m-4,即m=-2,方程有两个相等的实数根,故二次函数与x轴有一个公共点;当m≠-m-4,即m≠-2,方程有两个不相等的实数根,故二次函数与x轴有两个公共点.综上不论m为何值,该二次函数的图像与x轴有公共点.方法二:化简得y=x2+4x-m2-4m.令y=0,b2-4ac=4m2+16m+16=4(m+2)2≥0,方程有两个实数根.∴不论m为何值,该二次函数的图像与x轴有公共点.(2)由题意知,函数的图像的对称轴为直线x=-2①当n=-3时,a=b;②当-3<n<-1时,a>b③当n<-3或n>-1时,a<b【点睛】本题考查了二次函数的性质以及与方程的关系,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程,并且注意分情况讨论.32.(1)是,理由见解析;(2)125;(3)D(0,42)或D(0,6)【解析】【分析】(1)依据边长AC=AB=4,D是边AB的中点,得到AC2=AD AB,可得到两个三角形相似,从而得到∠ACD=∠B;(2)由点D是△ABC的“理想点”,得到∠ACD=∠B或∠BCD=∠A,分两种情况证明均得到CD⊥AB,再根据面积法求出CD的长;(3)使点A是B,C,D三点围成的三角形的“理想点”,应分两种情况讨论,利用三角形相似分别求出点D的坐标即可.【详解】(1)D 是△ABC 边AB 上的“理想点”,理由:∵AB=4,点D 是△ABC 的边AB 的中点,∴AD=2,∵AC 2=8,8AD AB •=,∴AC 2=AD AB ,又∵∠A=∠A ,∴△ADC ∽△ACB ,∴∠ACD=∠B ,∴D 是△ABC 边AB 上的“理想点”.(2)如图②,∵点D 是△ABC 的“理想点”,∴∠ACD=∠B 或∠BCD=∠A,当∠ACD=∠B 时,∵∠ACD+∠BCD=90︒, ∴∠BCD+∠B=90︒,∴∠CDB=90︒,当∠BCD=∠A 时,同理可得CD ⊥AB ,在Rt △ABC 中,∵∠ACB=90︒,AB=5,AC=4,∴222254AB AC -=-=3, ∵1122AB CD AC BC ⋅=⋅, ∴1153422CD , ∴125CD =. (3)如图③,存在.过点A作MA⊥AC交CB的延长线于点M,∵∠MAC=∠AOC=90︒,∠ACM=45︒,∴∠AMC=∠ACM=45︒,∴AM=AC,∵∠MAH+∠CAO=90︒,∠CAO+∠ACO=90︒,∴∠MAH=∠ACO,∴△AHM≌△COA∴MH=OA,OC=AH,设C(a,0),∵A(0,2),B(0,-3),∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,∵MH∥OC,∴MH BH OC OB,∴253aa,解得a=6或a=-1(舍去),经检验a=6是原分式方程的解,∴C(6,0),OC=6.①当∠D1CA=∠ABC时,点A是△BCD1的“理想点”,设D1(0,m),∵∠D1CA=∠ABC,∠CD1A=∠CD1B,∴△D1AC∽△D1CB,∴2111CD D A D B,∴226(2)(3)m m m,解得m=42,∴D1(0,42);②当∠BCA=∠CD2B时,点A是△BCD2“理想点”,可知:∠CD2O=45︒,∴OD2=OC=6,∴D2(0,6).综上,满足条件的点D的坐标为D(0,42)或D(0,6).【点睛】此题考查相似三角形的判定及性质,通过证明三角形相似得到点是三角形某条边上的“理想点”,通过点是三角形的“理想点”,从而证明出三角形相似,由此得到点的坐标,相互反推的思想的利用,注意后者需分情况进行讨论.33.(1)证明见解析;(2)2ACπ=【解析】【分析】【详解】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;(2)根据弧长公式解答即可.详证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴AC BD=,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴AC=7252 180ππ⨯=.点睛:此题考查弧长公式,关键是根据弧长公式和垂径定理解答.34.(1)开通隧道前,汽车从A地到B地要走)千米;(2)汽车从A地到B地比原来少走的路程为千米.【解析】【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】(1)过点C作AB的垂线CD,垂足为D,∵AB ⊥CD ,sin30°=CD BC ,BC =80千米, ∴CD =BC •sin30°=80×12=40(千米), AC =CD 402sin 45︒=(千米), AC +BC =80+1-8(千米), 答:开通隧道前,汽车从A 地到B 地要走(80+1-8)千米; (2)∵cos30°=BD BC,BC =80(千米), ∴BD =BC •cos30°=80×3=403(千米), ∵tan45°=CD AD ,CD =40(千米), ∴AD =CD 40tan 45︒=(千米), ∴AB =AD +BD =40+403(千米), ∴汽车从A 地到B 地比原来少走多少路程为:AC +BC ﹣AB =80+1-8﹣40﹣403=40+40(23)-(千米).答:汽车从A 地到B 地比原来少走的路程为 [40+40(23)-]千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.35.(1)3yx ;(2)3;(3)APC ∆面积的最大值为278. 【解析】【分析】(1)由题意分别将x=0、y=0代入二次函数解析式中求出点C 、A 的坐标,再根据点A 、C 的坐标利用待定系数法即可求出直线AC 的解析式;(2)由题意先根据二次函数解析式求出顶点P ,进而利用割补法求APC ∆面积;(3)根据题意过点P 作PE y 轴交AC 于点E 并设点P 的坐标为()2,23m m m --+(30m -<<),则点E 的坐标为(),3+m m 进而进行分析.【详解】解:(1) 分别将x=0、y=0代入二次函数解析式中求出点C 、A 的坐标为()0,3C ;()30A -,;将()0,3C ;()30A -,代入223y x x =--+,得到直线AC 的解析式为3y x .(2)由223y x x =--+,将其化为顶点式为2(1)4y x =-++,可知顶点P 为(1,4)-, 如图P 为顶点时连接PC 并延长交x 轴于点G ,则有S APC S APG S ACG =-,将P 点和C 点代入求出PC 的解析式为3y x =-+,解得G 为(3,0),所有S APC S APG S ACG =-11646312922=⨯⨯-⨯⨯=-=3; (3)过点P 作PE y 轴交AC 于点E .设点P 的坐标为()2,23m m m --+(30m -<<),则点E 的坐标为(),3+m m ∴()2233PE m m m =--+-+2239324m m m ⎛⎫=--=-++ ⎪⎝⎭,当32m =-时,PE 取最大值,最大值为94. ∵()1322APC C A S PE x x PE ∆=⋅-=, ∴APC ∆面积的最大值为278. 【点睛】 本题考查待定系数法求一次函数解析式、二次函数图象上点的坐标特征、等腰三角形的性质、二次函数的性质以及解二元一次方程组,解题的关键是利用待定系数法求出直线解析式以及利用二次函数的性质进行综合分析.四、压轴题36.(1)见详解;(2)125;(3)①见详解,②32-6【解析】【分析】(1)如图1中,作OH ⊥BD 于H .根据等腰三角形的性质以及垂径定理即可;(2)如图2中,作OH ⊥BD 于H ,连接OB ,求出AC ,BD ,根据S 四边形ABCD =12•BD•AM+ 12•BD•CM=12•BD•AC 即可求解; (3)①如图3中,连接OB ,作OH ⊥BD 于H .利用等腰直角三角形的性质,完全平方公式等知识即可;②如图3中,连接OB ,设DM=CM=x ,想办法求出BC ,DB ,在Rt △BCM 中,利用勾股定理构建方程即可.【详解】(1)证明:如图1中,作OH ⊥BD 于H .∵OE=OF ,OH ⊥EF ,∴EH=HF ,∵OH ⊥BD ,∴BH=HD ,∴BE=DF ;(2)解:如图2中,作OH⊥BD于H,连接OB.∵∠EOF=90°,OE=OF,OA=OC,∴∠OEF=∠OAC=45°,∴∠AME=90°,即AC⊥BD,连接OB.设OH=a,∵BE=EF,∴BE=2EH=2OH=2a,在Rt△BOH中,∵OH2+BH2=OB2,∴a2+(3a)2=(25)2,∴a=2或-2(舍弃),∴BD=BE+EF+DF=6a=62,在Rt△AOC中,AC=2AO=210,∴S四边形ABCD=12•BD•AM+12•BD•CM=12•BD•AC=12×210×62=125;(3)①如图3中,连接OB,作OH⊥BD于H.∵OE=OF,OA=OC,∴∠EOH=12∠EOF=12(∠EAC+∠ACO)=12×2∠OAC=∠OAC,∴AC∥OH,∴AC⊥BD,∵AD=BC,∴∠ABD=∠CAB=∠CDB=45°,。

江苏省苏州市九年级上学期期末数学试卷 (解析版)

江苏省苏州市九年级上学期期末数学试卷 (解析版)

江苏省苏州市九年级上学期期末数学试卷 (解析版)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差2.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( ) A .213y y << B .123y y <<C .213y y <<D .213y y <<3.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .164.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°5.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( )A .12 B .13C .14 D .156.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .127.在六张卡片上分别写有13,π,1.5,5,02六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .568.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁)14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16 B .15,15C .15,15.5D .16,159.sin60°的值是( ) A .B .C .D .10.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 11.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位 12.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-13.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°14.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( ) A .-2B .2C .-3D .315.如图,在正方形 ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .有下列结论:①∠BAE =30°;②射线FE 是∠AFC 的角平分线; ③CF =13CD ; ④AF =AB +CF .其中正确结论的个数为( )A .1 个B .2 个C .3 个D .4 个二、填空题16.如图,已知正六边形内接于O ,若正六边形的边长为2,则图中涂色部分的面积为______.17.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.18.如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点D 是AB 边上一点(不与A 、B 重合),若过点D 的直线截得的三角形与△ABC 相似,并且平分△ABC 的周长,则AD 的长为____.19.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.20.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______.21.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________22.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣3m+2010的值为_____. 23.方程290x 的解为________.24.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.25.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin 13BAC B ∠=∠=,则线段OC 的最大值为_____.26.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.27.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______.28.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF 、EF ,则CF +EF 的最小值为_____.29.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.30.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.三、解答题31.我们不妨约定:如图①,若点D 在△ABC 的边AB 上,且满足∠ACD=∠B (或∠BCD=∠A ),则称满足这样条件的点为△ABC 边AB 上的“理想点”.(1)如图①,若点D 是△ABC 的边AB 的中点,AC=22AB=4.试判断点D 是不是△ABC 边AB 上的“理想点”,并说明理由.(2)如图②,在⊙O 中,AB 为直径,且AB=5,AC=4.若点D 是△ABC 边AB 上的“理想点”,求CD 的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C 为x 轴正半轴上一点,且满足∠ACB=45°,在y 轴上是否存在一点D ,使点A 是B ,C ,D 三点围成的三角形的“理想点”,若存在,请求出点D 的坐标;若不存在,请说明理由.32.如图,在平面直角坐标系中,一次函数13y x =-的图像与x 轴交于点A .二次函数22y x bx c =-++的图像经过点A ,与y 轴交于点C ,与一次函数13y x =-的图像交于另一点()2,B m -.(1)求二次函数的表达式;(2)当12y y >时,直接写出x 的取值范围;(3)平移AOC ∆,使点A 的对应点D 落在二次函数第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标.33.某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在着如图所示的一次函数关系.(1)求y 与x 之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少? (3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.34.⊙O 为△ABC 的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC 分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC ;(2)如图2,直线l与⊙O相切于点P,且l∥BC.35.如图,在平面直角坐标系中,⊙O的半径为1,点A在x轴的正半轴上,B为⊙O上一点,过点A、B的直线与y轴交于点C,且OA2=AB•AC.(1)求证:直线AB是⊙O的切线;(2)若AB=3,求直线AB对应的函数表达式.四、压轴题36.如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点B的坐标为(3,4),一次函数23y x b=-+的图像与边OC、AB分别交于点D、E,并且满足OD BE=,M是线段DE上的一个动点(1)求b的值;(2)连接OM,若ODM△的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)设N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.37.如图,在Rt△ABC中,∠A=90°,0是BC边上一点,以O为圆心的半圆与AB边相切于点D,与BC边交于点E、F,连接OD,已知BD=3,tan∠BOD=34,CF=83.(1)求⊙O的半径OD;(2)求证:AC是⊙O的切线;(3)求图中两阴影部分面积的和.38.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<,设线段AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.39.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.A解析:A 【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<.故选:A.【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键. 3.D解析:D【解析】【分析】直接利用三角形中位线定理得出DE∥BC,DE=12BC,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=12 BC,∴△ADE∽△ABC,∵DEBC=12,∴14ADEABCSS∆∆=,∵△ADE的面积为4,∴△ABC的面积为:16,故选D.【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.4.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键. 5.D解析:D【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D .【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键. 6.C解析:C【解析】【分析】连接OB ,OC ,根据圆周角定理求出∠BOC 的度数,再由OB =OC 判断出△OBC 是等边三角形,由此可得出结论.【详解】解:连接OB ,OC ,∵∠BAC =30°,∴∠BOC =60°.∵OB =OC ,BC =8,∴△OBC 是等边三角形,∴OB =BC =8.故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.7.B解析:B【解析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π,2共2个,∴卡片上的数为无理数的概率是21 =63.故选B.【点睛】本题考查了无理数的定义及概率的计算.8.C解析:C【解析】【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为(1516)2+÷=15.5岁,故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.9.C解析:C【解析】【分析】根据特殊角的三角函数值解答即可.【详解】sin60°=,故选C.【点睛】本题考查特殊角的三角函数值,熟记几个特殊角的三角函数值是解题关键.10.D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可. 解:2012年的产量为100(1+x ),2013年的产量为100(1+x )(1+x )=100(1+x )2,即所列的方程为100(1+x )2=144,故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.11.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.12.D解析:D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD ⊥BC ,∴BD=CD=1,AD=3BD=3,∴△ABC的面积为12BC•AD=1232⨯⨯=3,S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣2×3=2π﹣23,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.13.C解析:C【解析】【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=12(180°﹣40°)=70°.故选C.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.14.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a.要求熟练运用此公式解题. 15.B解析:B【解析】【分析】根据点E 为BC 中点和正方形的性质,得出∠BAE 的正切值,从而判断①,再证明△ABE ∽△ECF ,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE ∽△AEF ,可判断②③,过点E 作AF 的垂线于点G ,再证明△ABE ≌△AGE ,△ECF ≌△EGF ,即可证明④.【详解】解:∵E 是BC 的中点,∴tan ∠BAE=1=2BE AB , ∴∠BAE ≠30°,故①错误;∵四边形ABCD 是正方形,∴∠B=∠C=90°,AB=BC=CD ,∵AE ⊥EF ,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF ,在△BAE 和△CEF 中,==B C BAE CEF ∠∠⎧⎨∠∠⎩, ∴△BAE ∽△CEF , ∴==2AB BE EC CF, ∴BE=CE=2CF ,∵BE=CF=12BC=12CD , 即2CF=12CD , ∴CF=14CD , 故③错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,∴AE=,,AF=5a ,∴25=5AEAF,25=5BEEF,∴=AE BEAF EF,又∵∠B=∠AEF,∴△ABE∽△AEF,∴∠AEB=∠AFE,∠BAE=∠EAG,又∵∠AEB=∠EFC,∴∠AFE=∠EFC,∴射线FE是∠AFC的角平分线,故②正确;过点E作AF的垂线于点G,在△ABE和△AGE中,===BAE GAEB AGEAE AE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABE≌△AGE(AAS),∴AG=AB,GE=BE=CE,在Rt△EFG和Rt△EFC中,==GE CEEF EF⎧⎨⎩,Rt△EFG≌Rt△EFC(HL),∴GF=CF,∴AB+CF=AG+GF=AF,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.二、填空题16.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.17.50【解析】【分析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径 ∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 18.、 、【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=解析:83、103、54【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=3,∴AB=2234+=5设AD=x,BD=5-x,∵DE平分△ABC周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED∽△BCA,如图1,BE=1+x∴BE BDBC AB=,即:5153x x-+=,解得x=54,②△BDE∽△BCA,如图2,BE=1+x∴BD BEBC AB=,即:5135x x-+=,解得:x=11 4,BE=154>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴AD AEAB AC=,即654x x-=,解得:x=103,④△BDE∽△BCA,如图4,AE=6-x∴AD AEAC AB=,即:645x x-=,解得:x=83,综上:AD的长为83、103、54.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.19.720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019解析:720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x,则2018的全年收入为:720×(1+x)2019的全年收入为:720×(1+x)2.那么可得方程:720(1+x)2=845.故答案为:720(1+x)2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).20.20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,根据相同时刻的物高与影长成比例,得到160::10,解得.故答案是:20m.解析:20m【解析】【分析】根据相同时刻的物高与影长成比例列出比例式,计算即可.【详解】解:设旗杆的高度为xm,=:10,根据相同时刻的物高与影长成比例,得到160:80x=.解得x20故答案是:20m.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的性质是解题的关键.21.【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E解析:2【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC ,表示Rt △GMC 的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=13∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,3m ,Rt △GMC 中,勾股可得222GC GM CM =+,即:222(32)(13)m m m ++=+,解得:22m =, ∴边长为22m =.【点睛】本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC是解决此题的关键.22.2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5 m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,然后整体代入即可求得答案.【详解】解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,∴15m﹣3m+2010=3(5m﹣1m)+2010=9+2010=2019,故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键. 23.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这x=±解析:3【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.x=±.故答案为3【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.24.【解析】【分析】圆C过点P、Q,且与相切于点M,连接CM,CP,过点C作CN⊥PQ于N并反向延长,交OB于D,根据等腰直角三角形的性质和垂径定理,即可求出ON、ND、PN,设圆C的半径为r,再解析:4223-【解析】【分析】圆C过点P、Q,且与OB相切于点M,连接CM,CP,过点C作CN⊥PQ于N并反向延长,交OB于D,根据等腰直角三角形的性质和垂径定理,即可求出ON、ND、PN,设圆C的半径为r,再根据等腰直角三角形的性质即可用r表示出CD、NC,最后根据勾股定理列方程即可求出r.【详解】解:如图所示,圆C过点P、Q,且与OB相切于点M,连接CM,CP,过点C作CN⊥PQ于N并反向延长,交OB于D∵2OP =,6OQ =,∴PQ=OQ -OP=4根据垂径定理,PN=122PQ = ∴ON=PN +OP=4在Rt △OND 中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,=设圆C 的半径为r ,即CM=CP=r∵圆C 与OB 相切于点M ,∴∠CMD=90°∴△CMD 为等腰直角三角形∴CM=DM=r ,=∴NC=ND -CD=4根据勾股定理可得:NC 2+PN 2=CP 2即()22242r -+=解得:12r r +==DM >OD ,点M 不在射线OB 上,故舍去)故答案为:.【点睛】此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.25.【解析】【分析】过点A 作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出.解析:833+ 【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AO AE =,进而求得6AE =,再通过证明AEB AOC ∆∆,可得出23OC BE =,根据三角形三边关系可得:BE OE OB ≤+,由勾股定理可得OE =,求出BE 的最大值,则答案即可求出.【详解】解:过点A 作AE ⊥AO,并使∠AEO =∠ABC,∵OAE BAC AEO ABC∠=∠⎧⎨∠=∠⎩ , ∴ABCAEO ∆∆, ∴tan AC AO B AB AE ∠==, ∵213sin B ∠=, ∴2213313cos 113B ⎛⎫∠=-= ⎪ ⎪⎝⎭ ∴13sin 213tan cos 331313B B n B ∠∠===∠, ∴23AO AE =, 又∵4AO =,∴6AE =,∵90,90EAB BAO OAC BAO ∠+∠=︒∠+∠=︒, ∴ =EAB OAC ∠∠, 又∵AC AO AB AE=, ∴AEB AOC ∆∆, ∴23OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+, ∵222264213OE AE AO =+=+=, ∴2134OE OB +=,∴BE 的最大值为:4,∴OC 的最大值为:()28433=. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 26.8【解析】【分析】在Rt △ADC 中,利用正弦的定义得sinC ==,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos ∠DAC =sinC 得到tanB =,接着在Rt △A 解析:8【解析】【分析】在Rt △ADC 中,利用正弦的定义得sin C =AD AC =1213,则可设AD =12x ,所以AC =13x ,利用勾股定理计算出DC =5x ,由于cos ∠DAC =sin C 得到tan B =1213,接着在Rt △ABD 中利用正切的定义得到BD =13x ,所以13x +5x =12,解得x =23,然后利用AD =12x 进行计算. 【详解】 在Rt △ADC 中,sin C =AD AC =1213, 设AD =12x ,则AC =13x ,∴DC =5x ,∵cos ∠DAC =sin C =1213, ∴tan B =1213, 在Rt △ABD 中,∵tan B =AD BD =1213, 而AD =12x ,∴BD =13x ,∴13x +5x =12,解得x =23, ∴AD =12x =8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.27.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2-2x-3=0的解,∴m2-2m-3=0,∴m2-2m=3,∴4m-2m2+2= -2(m2-2m)+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.28.【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案解析:24 5【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=12×BC×AD=12×AC×BM,∴BM=642455 BC ADAC,即CF+EF的最小值是245,故答案为:245.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.29.7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 30.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M 为AF 中点,则OM ⊥AF∵六边形ABCDEF 为正六边形∴解析:3:2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M 为AF 中点,则OM ⊥AF∵六边形ABCDEF 为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a ,3a∵正六边形中心角为60°∴∠MON=120°。

最新苏科版数学九年级上册《期末考试试题》(含答案解析)

最新苏科版数学九年级上册《期末考试试题》(含答案解析)

苏科版九年级上学期期末考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上). 1.方程x (x -1)=0的解是( )A. 0B. 1C. 0或1D. 0或-1 2.从单词“happy ”中随机抽取一个字母,抽中p 的概率为( )A. 15B. 14C.25 D. 12 3.某班准备举办一项体育比赛,为了使同学参与比赛热情更高,在全班进行普查,了解同学们对篮球、足球、乒乓球等三种运动项目的喜爱情况,则应关注的统计结果是各种运动项目的( )A. 众数B. 中位数C. 平均数D. 方差4.如图,已知C E ∠=∠,则不一定能使ABC ∆∽ADE ∆成立的条件是( )A. ∠BAD =∠CAEB. ∠B =∠DC. BC AC DE AE =D. AB AC AD AE= 5.某同学在用描点法画二次函数y =ax 2+bx +c 的图象时,列出了下面的表格:由于粗心,他算错了其中一个y 值,则这个错误..的数值是( ) A. -11 B. -5 C. 2 D. -26.如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为( )A.B. C. 3 D. 2 二、填空题(本大题共有10小题,每小题2分,共20分)7.把二次函数y=x 2﹣12x 化为形如y=a (x ﹣h )2+k 的形式______.8.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是________分.9.将二次函数y = x 2的图像向右平移1个单位长度,再向下平移2个单位长度,得到的函数图像的对称轴是_______________10.已知23a b =,则a a b +=_______________ 11.若一个圆锥的侧面展开图是一个半径为6cm ,圆心角为120°的扇形,则该圆锥的侧面面积为______cm (结果保留π).12.如图,AB ∥CD ,S △ABE :S △CDE =1:4,则AB CD =___________13.如图,⊙O 中,∠AOB=110°,点C 、D 是AmB 上任两点,则∠C+∠D 的度数是____°.14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE=40cm ,EF=20cm ,测得边DF 离地面的高度AC=1.5 m ,CD=8 m ,则树高AB= ▲ .15.如图,点A 、B 在二次函数y =ax 2+bx +c 的图像上,且关于图像的对称轴直线x =1对称,若点A 的坐标为(m ,2),则点B 的坐标为____________ .(用含有m 的代数式表示)16.四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠DCE=________°.三、解答题(本大题共有11小题,共88分)17.解方程:x2+4x=1.18.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲平均成绩为8环,求乙的平均成绩;(2)观察图形,直接指出甲,乙这10次射击成绩的方差s甲2,s乙2哪个大?(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选哪位参赛更合适?为什么?如果其他班级参赛选手的射击成绩都在9环左右,本班应该选哪位参赛更合适?为什么?19.甲、乙、丙三人站成一横排照相,因甲、乙两人是好友,照相时两人紧邻着站在一起不分开.(1)请按左、中、右的顺序列出所有符合要求的站位的结果;(2)按要求随机的站立,求丙站在甲左边的概率.20.关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.21.已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:(1)△ACE∽△BDE;(2)BE•DC=AB•DE.22.已知函数y=x2+2kx+k2+1.(1)求证:不论k取何值,函数y>0;(2)若函数图象与y轴的交点坐标为(0,5),求函数图象的顶点坐标.23.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?24.已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE∥AC交CB的延长线于E.(1)求证:DE是⊙O的切线;(2)若∠A=30°,求证:BD=BC.25.某水果店出售一种水果,每只定价20元时,每周可卖出300只.试销发现:①每只水果每降价1元,每周可多卖出25只;②每只水果每涨价1元,每周将少卖出10只;③水果定价不能低于18元.我们知道,销售收入=销售单价×销售量,设降价出售时的销售收入为y1元,涨价出售时的销售收入为y2元,水果的定价为x元/只.根据以上信息,回答下列问题:(1)请直接写出y1、y2与x的函数关系式,并写出x的取值范围;y1= ;y2= ;(2)你认为应当如何定价才能使一周的销售收入最多?请说明理由.26.定义:如果过三角形一个顶点的直线与对边所在直线相交,得到的三角形中有一个与原三角形相似,那么我们称这样的直线为三角形的相似线.如图1,△ABC中,直线CD与AB交于点D,若△ACD∽△ABC,则称直线CD是△ABC的相似线.解决问题:已知:如图2,在△ABC中,∠BAC>∠ACB>∠ABC.求作:△ABC的相似线.(1)小明用如下方法作出△ABC的一条相似线:作法:如图3,①作△ABC的外接圆⊙O;②以C为圆心,AC的长为半径画弧,与⊙O交于点P;③连接AP,交BC于点D.则直线AD为△ABC的相似线.请你证明小明的作法的正确性.(2)过A点还有其它△ABC的相似线,请你参考(1)中的作法与结论,利用尺规作图,在图3中再作出一条△ABC的相似线AE;(写出作法,保留作图痕迹,不要证明)(3)若△ABC中,∠BAC=90°,则△ABC中过A点的相似线有条,过B点的相似线有条.27.如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC.(1)求证:AC平分∠BAD;(2)若AB=6,AC=42,求EC和PB的长.答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上). 1.方程x (x -1)=0的解是( )A. 0B. 1C. 0或1D. 0或-1【答案】C【解析】 【详解】解:∵x(x−1)=0∴x=0或x−1=0∴1x =0,2x =1故选C2.从单词“happy ”中随机抽取一个字母,抽中p 的概率为( ) A. 15B. 14C. 25D. 12【答案】C【解析】∵单词“happy ”中有两个p ,∴抽中p 的概率为:25 . 故选C. 3.某班准备举办一项体育比赛,为了使同学参与比赛热情更高,在全班进行普查,了解同学们对篮球、足球、乒乓球等三种运动项目的喜爱情况,则应关注的统计结果是各种运动项目的( )A. 众数B. 中位数C. 平均数D. 方差【答案】A【解析】根据题意,知要了解同学们对篮球、足球、乒乓球等三种运动项目的喜爱情况,就要看喜欢这三种运动项目的数量,即众数.故选A.4.如图,已知C E ∠=∠,则不一定能使ABC ∆∽ADE ∆成立的条件是( )A. ∠BAD=∠CAEB. ∠B=∠DC. BC AC DE AE=D.AB ACAD AE=【答案】D【解析】由题意得,∠C=∠E,A. 若添加∠BAD=∠CAE,则可得∠BAC=∠DAE,利用两角法可判断△ABC∽△ADE,故本选项错误;B. 若添加∠B=∠D,利用两角法可判断△ABC∽△ADE,故本选项错误;C. 若添加BC ACDE AE=,利用两边及其夹角法可判断△ABC∽△ADE,故本选项错误;D. 若添加AB ACAD AE=,不能判定△ABC∽△ADE,故本选项正确;故选D.点睛:相似三角形的判定:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似,由此判断即可.5.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:由于粗心,他算错了其中一个y值,则这个错误..的数值是()A. -11B. -5C. 2D. -2【答案】B【解析】由函数图象关于对称轴对称,得(-1,-2),(0,1),(1,-2)在函数图象上,把(-1,-2),(0,1),(1,-2)代入函数解析式,得212a b cca b c-+=-⎧⎪=⎨⎪++=-⎩,解得31abc=⎧⎪=⎨⎪=⎩,则函数解析式为:y=-3x²+1,当x=±2时,y=-11,故错误的数值是-5.故选B.6.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ 的最小值为()A. B. C. 3 D. 2【答案】B【解析】【分析】因为PQ为切线,所以△OPQ是Rt△.又∵OQ为定值,所以当OP最小时,PQ最小.根据垂线段最短,知OP′=3时P′Q′最小.根据勾股定理得出结论即可.【详解】作OP′⊥l于P′点,则OP′=3,作P′Q′与⊙O相切于点Q′.根据题意,在Rt△OP′Q′中,22325-=.故选B.二、填空题(本大题共有10小题,每小题2分,共20分)7.把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式______.【答案】y=(x﹣6)2﹣36【解析】【分析】将二次项系数化为1,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】y =2x 2-12x =2(x²−6x +9)−18=2(x −3)² −18,即y =2(x −3)² −18. 故答案为y =2(x -3)2-18【点睛】本题考查了二次函数表达式三种形式的互化,掌握转化的技巧是解题的关键.8.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是________分.【答案】79【解析】【详解】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分) 故答案为799.将二次函数y = x 2的图像向右平移1个单位长度,再向下平移2个单位长度,得到的函数图像的对称轴是_______________【答案】过点(1,2)且平行于y 轴的直线;(或直线x=1)【解析】∵抛物线y=x ²向右平移1个单位长度,再向下平移2个单位长度,∴平移后的解析式为:y=(x−1)²−2. ∴函数图像的对称轴是过点(1,2)且平行于y 轴的直线;(或直线x=1), 故答案为过点(1,2)且平行于y 轴的直线;(或直线x=1)10.已知23a b =,则a a b+=_______________ 【答案】25 【解析】 ∵23a b =, ∴b=32a , ∴a a b +=22355522a a a a a a a ==⨯=+ . 11.若一个圆锥的侧面展开图是一个半径为6cm ,圆心角为120°的扇形,则该圆锥的侧面面积为______cm (结果保留π).【答案】12π【解析】根据圆锥的侧面展开图是扇形可得,2120612360,∴该圆锥的侧面面积为:12π,故答案为12π.12.如图,AB∥CD,S△ABE:S△CDE=1:4,则ABCD=___________【答案】12【解析】∵AB∥CD,∴S△ABE∽S△CDE,∴2()ABECDESABCD S=, ∵S△ABE:S△CDE=1:4, ∴ABCD=1142=,故答案为12.13.如图,⊙O中,∠AOB=110°,点C、D是AmB上任两点,则∠C+∠D的度数是____°.【答案】110.【解析】∵∠AOB=110°,∴∠C=∠D=12∠AOB=55°,∴∠C+∠D=110°.故答案为110.14.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲ .【答案】5.5【解析】【详解】试题分析:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m考点:相似三角形15.如图,点A、B在二次函数y=ax2+bx+c的图像上,且关于图像的对称轴直线x=1对称,若点A的坐标为(m,2),则点B的坐标为____________ .(用含有m的代数式表示)【答案】(2-m,2)【解析】∵二次函数y=ax2+bx+c的图象的对称轴为x=1,A的坐标为(m,2),由图象知点A 和点B关于直线x=1对称, ∴点B的坐标为(2-m,2)故答案(2-m,2).16.四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠DCE=________°.【答案】50°【解析】连结EF,如图,∵四边形ABCD内接于O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°. ∵四边形ABCD内接于O, ∴∠DCE=∠A=50°, 故答案为50.三、解答题(本大题共有11小题,共88分)17.解方程:x2+4x=1.【答案】1=52x-,2=52x--.【解析】分析:方程两边加上4得到(x+2)²=5,然后利用直接开平方法解方程.本题解析:解:()225x+=∴∴18.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接指出甲,乙这10次射击成绩的方差s甲2,s乙2哪个大?(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选哪位参赛更合适?为什么?如果其他班级参赛选手的射击成绩都在9环左右,本班应该选哪位参赛更合适?为什么?【答案】(1)8环;(2)s甲2>s乙2;(3)答案见解析.【解析】分析:(1)根据平均数的计算公式和折线统计图给出的数据即可得出答案;(2)根据图形波动的大小可直接得出答案;(3)根据射击成绩都在7环左右的多少可得出乙参赛更合适;根据射击成绩都在9环左右的多少可得出甲参赛更合适.本题解析:解:(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环);(2)根据图象可知:甲的波动小于乙的波动,则s甲2>s乙2;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;因射击成绩在7环以上的次数乙比甲多,所以乙参赛获胜可能性更大;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.因射击成绩在9环以上的次数甲比乙多,所以甲参赛获胜可能性更大.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.19.甲、乙、丙三人站成一横排照相,因甲、乙两人是好友,照相时两人紧邻着站在一起不分开.(1)请按左、中、右的顺序列出所有符合要求的站位的结果;(2)按要求随机的站立,求丙站在甲左边的概率.【答案】(1)答案见解析;(2)12. 【解析】 分析:(1)利用列举法写出所有6种等可能的结果;(2)再找出丙站在甲左边的结果数,然后根据概率公式求解.本题解析:(1)根据题意,甲、乙、丙三名同学从左向右的顺序所有可能站位的结果有6种,即甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲.(2)由(1)可知,符合条件丙站在甲左边的所有可能的结果有3种:乙丙甲,丙甲乙,丙乙甲,而所有等可能的站位的结果有6种,根据概率公式可得,丙站在甲左边位置的概率p=3162=. 20.关于的一元二次方程x 2+2x+k+1=0的实数解是x 1和x 2.(1)求k 的取值范围;(2)如果x 1+x 2﹣x 1x 2<﹣1且k 为整数,求k 的值.【答案】解:(1)k≤0.(2)k 的值为﹣1和0.【解析】【分析】(1)方程有两个实数根,必须满足△=b 2-4ac≥0,从而求出实数k 的取值范围;(2)先由一元二次方程根与系数的关系,得x 1+x 2=-2,x 1x 2=k+1.再代入不等式x 1+x 2-x 1x 2<-1,即可求得k 的取值范围,然后根据k 为整数,求出k 的值.【详解】(1)∵方程有实数根,∴△=22−4(k+1)≥0,解得k ≤0.故k 的取值范围是k ≤0. (2)根据一元二次方程根与系数的关系,得12x x +=−2,12x x =k+1, 12x x +−12x x =−2−(k+1).由已知,得−2−(k+1)<−1,解得k>−2.又由(1)k ≤0,∴−2<k ≤0.∵k 为整数,∴k 的值为−1或0.21.已知,如图,在四边形ABCD 中,∠ADB=∠ACB ,延长AD 、BC 相交于点E .求证:(1)△ACE ∽△BDE ;(2)BE•DC=AB•DE .【答案】(1)答案见解析;(2)答案见解析.【解析】【分析】(1)根据邻补角的定义得到∠BDE=∠ACE ,即可得到结论;(2)根据相似三角形的性质得到BE ED AE EC= ,由于∠E=∠E ,得到△ECD ∽△EAB ,由相似三角形的性质得到AE AB AC CD = ,等量代换得到BE AB ED CD =,即可得到结论. 本题解析:【详解】证明:(1)∵∠ADB=∠ACB ,∴∠BDE=∠ACE ,又∵∠E=∠E ,∴△ACE ∽△BDE ;(2)∵△ACE ∽△BDE ∴BE ED AE EC =,∵∠E=∠E ,∴△ECD ∽△EAB ,∴BE AB ED CD=,∴BE•DC=AB•DE . 【点睛】本题考查相似三角形的判定与性质,熟练掌握判定定理是关键.22.已知函数y =x 2+2kx +k 2+1.(1)求证:不论k 取何值,函数y >0;(2)若函数图象与y 轴的交点坐标为(0,5),求函数图象的顶点坐标.【答案】(1)答案见解析;(2)顶点坐标为(2,1)或(-2,1).【解析】分析:(1)由根的判别式小于0,可知抛物线与x 轴无交点,再由图象开口向上可得出结论;(2)由二次函数图像与y 轴的交点可得出k 2+1=5,得出k 的值,代入原函数即可.本题解析:解:(1)解法一:∵a=1,b=2k ,c=k 2+1∴b 2-4ac=(2k )2-4×1×(k 2+1)=-4<0∴二次函数图像与x 轴无交点∵a=1>0 ∴图像开口向上∴抛物线在x轴上方∴y>0即不论k取何值,函数y>0解法二:y=x2+2kx+k2+1=(x+k)2+1,∵不论k取何值(x+k)2≥0,∴y>0(2)∵二次函数图像与y轴交于点(0,5)∴当x=0时,y=5∴k2+1=5∴k=±2∴y=x2±4x+5=(x±2)2+1∴顶点坐标为(2,1)或(-2,1)23.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【答案】羊圈的边长AB,BC分别是20米、20米. 【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20考点:一元二次方程的应用.24.已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE∥AC交CB的延长线于E.(1)求证:DE是⊙O的切线;(2)若∠A=30°,求证:BD=BC.【答案】(1)答案见解析;(2)答案见解析.分析:(1)连接OD ,由OB=OD ,得出∠ODB=∠OBD ,根据BD 是△ABC 的外角平分线,推出∠ODB=∠DBE ,得到OD ∥BE .推出BE ⊥DE ,根据AB 是⊙O 的直径,得到AC ⊥CE ,根据DE ∥AC ,即可推出OD ⊥DE ,从而证得直线DE 与⊙O 相切.(2)连接OC ,得出△BOC 是等边三角形,再利用平行线的性质得出结果.本题解析:解:(1)连接OD ,∵OB=OD ,∴∠ODB=∠OBD .∵BD 是△ABC 的外角平分线,∴∠DBE=∠OBD ,∴∠DBE=∠ODB ,∴BE ∥OD .∵AB 是⊙O 的直径,∴∠C=90°.∵DE ∥AC ,∴∠DEB=90°,∴OD ⊥DE 且点D 在⊙O 上,∴直线DE 与⊙O 相切.(2)连接OC ,∵∠A=30°,∴∠BOC=60°,∵OB=OC ,∴△BOC 是等边三角形,∴∠OBC=60°,∵BE ∥OD ,∴∠DOB=60°,∴∠DOB=∠BOC ,∴BD=BC . 点睛:本题主要考查切线的性质,三角形外角的性质,平行线的判定,圆周角定理,等腰三角形的性质等知识点的理解和掌握,综合运用这些性质进形推理是证此题的关键.25.某水果店出售一种水果,每只定价20元时,每周可卖出300只.试销发现:①每只水果每降价1元,每周可多卖出25只;②每只水果每涨价1元,每周将少卖出10只;③水果定价不能低于18元.我们知道,销售收入=销售单价×销售量,设降价出售时的销售收入为y 1元,涨价出售时的销售收入为y 2元,水果的定价为x 元/只.根据以上信息,回答下列问题:(1)请直接写出y 1、y 2与x 的函数关系式,并写出x 的取值范围;y 1= ;y 2= ;(2)你认为应当如何定价才能使一周的销售收入最多?请说明理由.【答案】(1)y 1=225800x x -+(18≤x≤20),y 2=210500x x -+(x≥20);(2)该水果应降价销售,当定价为18元每千克时,销售收入最多.分析:(1)设售价为x 元,根据销售量=原来销售量±增加(减少)销售量,就可以表示出y 1、y 2与x 之间案的关系式;(2)根据销售收入=售价×数量就可以表示出y 1、y 2与x 之间的关系式,由函数的性质就可以得出结论.本题解析:解:(1)y 1=(18≤x≤20) y 2=()2300-10-20-10500x x x x ⎡⎤=+⎣⎦(x≥20)(2)由(1)可得:y 1=∵18≤x≤20∴y 1最大值=y 2=()22-10500-10-256250x x x +=+∵x≥20y 2最大值=()2-1025-2562506250+=∴6300>6250∴该水果应降价销售,当定价为18元每千克时,销售收入最多.26.定义:如果过三角形一个顶点的直线与对边所在直线相交,得到的三角形中有一个与原三角形相似,那么我们称这样的直线为三角形的相似线.如图1,△ABC 中,直线CD 与AB 交于点D ,若△ACD ∽△ABC ,则称直线CD 是△ABC 的相似线.解决问题:已知:如图2,在△ABC 中,∠BAC >∠ACB >∠ABC .求作:△ABC的相似线.(1)小明用如下方法作出△ABC的一条相似线:作法:如图3,①作△ABC的外接圆⊙O;②以C为圆心,AC的长为半径画弧,与⊙O交于点P;③连接AP,交BC于点D.则直线AD为△ABC的相似线.请你证明小明的作法的正确性.(2)过A点还有其它的△ABC的相似线,请你参考(1)中的作法与结论,利用尺规作图,在图3中再作出一条△ABC的相似线AE;(写出作法,保留作图痕迹,不要证明)(3)若△ABC中,∠BAC=90°,则△ABC中过A点的相似线有条,过B点的相似线有条.【答案】(1)答案见解析;(2)答案见解析;(3)1条,3条.【解析】(1)连接CP,根据条件得出△ABC∽△DAC,即可求解;(2)截取BQ=BA,再作直线AQ,即可;(3)根据相似三角形的判定方法分别利用平行线及垂直平分线的性质得出对应角相等即可.(1)连接CP,由作图可得AC=PC,则=∴∠EAC=∠B∵∠C是公共角∴△ABC∽△DAC∴直线AD为△ABC的相似线.(2)如图,截取BQ=BA,交⊙O于点Q;作直线AQ,交BC于点E.则直线AE为所求作的相似线.画图正确(3)1条,3条27.如图,AB 是⊙O 的直径,点C 为⊙O 上一点,AE 和过点C 的切线互相垂直,垂足为E ,AE 交⊙O 于点D ,直线EC 交AB 的延长线于点P ,连接AC ,BC .(1)求证:AC 平分∠BAD ;(2)若AB =6,AC =42,求EC 和PB 的长.【答案】(1)答案见解析;(2)EC=423,PB=67. 【解析】 分析:(1)首先连接OC ,由PE 是 O 的切线,AE 和过点C 的切线互相垂直,可证得OC ∥AE ,又由OA=OC ,易证得∠DAC=∠OAC ,即可得AC 平分∠BAD ;(2)由Rt △ABC ∽Rt △ACE 得出CE 的值,再由Rt △ABC ∽Rt △ACE ,得出PB 的值.本题解析:(1)证明:连接OC ,∵PE 是⊙O 的切线,∴OC ⊥PE ,∵AE ⊥PE ,∴OC ∥AE ,∴∠DAC=∠OCA ,∵OA=OC ,∴∠OCA=∠OAC ,∴∠DAC=∠O AC ,∴AC 平分∠BAD ;(2)∵AB 是⊙O 的直径,∠ACB=90°在Rt △ABC 中,AB=6,AC=43()22226422AB AC -=-=,在Rt △ABC 和Rt △ACE中,∵∠DAC=∠OAC,∠AEC=∠ACB=90°,∴Rt△ABC∽Rt△ACE ,∴AC ECAB BC=,∴,∴EC=42 3在Rt△ACE中,AE=()2 2224216 4233AC EC ⎛⎫-=-=⎪⎪⎝⎭,OC==3又∵OC∥AE,∴Rt△ABC∽Rt△ACE,∴,∴331663PBPB+=+,解得:PB=67点睛:本题主要考查了的是相似三角形的性质和判定、切线的性质、圆周角定理的应用,熟练掌握相关定理是解题的关键.。

2022-2023学年江苏省苏州市九年级上学期数学期末试题及答案

2022-2023学年江苏省苏州市九年级上学期数学期末试题及答案

加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!12022-2023学年江苏省苏州市九年级上学期数学期末试题及答案一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将答案填涂在答题卡相应位置上) 1. 有一组数据:11,11,12,15,16,则这组数据的中位数是( ) A. 11 B. 12C. 15D. 16【答案】B 【解析】【分析】根据中位数的定义,即可求解.【详解】解:根据题意得:把这一组数据从大到小排列后,位于正中间的数为12, ∴这组数据的中位数是12. 故选:B【点睛】本题主要考查了求中位数,熟练掌握把这一组数据从小到大(或从大到小)排列后,位于正中间的一个数或两个数的平均数是中位数是解题的关键. 2. 方程的根是( ) 24x =B. 2或D. 2或2-【答案】D 【解析】【分析】直接两边开平方即可得到答案. 【详解】解:两边开平方得,,2x =±故选D .【点睛】本题考查直接开平方法解一元二次方程.3. 若⊙O 的半径为4cm ,点A 到圆心O 的距离为3cm ,那么点A 与⊙O 的位置关系( ) A. 点A 在圆内 B. 点A 在圆上C. 点A 在圆外D. 不能确定 【答案】A 【解析】【分析】要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来判断,设点与圆心的距离d ,则d >r 时,点在圆外;当d=r 时,点在圆上;当d <r 时,点在圆内.【详解】解:∵点A 到圆心O 的距离为3cm ,小于⊙O 的半径4cm , ∴点A 在⊙O 内.故选:A .【点睛】本题考查了对点与圆的位置关系的判断,关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d=r 时,点在圆上;当d <r 时,点在圆内. 4. 若抛物线的对称轴是y 轴,则a 的值是( ) 22y x ax =++A. B.C. 0D. 22-1-【答案】C 【解析】【分析】根据抛物线的对称轴公式,列出关于a 的方程即可解答. 【详解】解:∵抛物线的对称轴是y 轴, 22y x ax =++∴, =02a-解得:, 0a =故选:C .【点睛】本题考查了二次函数的对称轴,记住二次函数的对称2y ax bx c =++2bx a=-轴公式是解题的关键.5. 如图,点A ,B ,C 在上,若,则的度数为( )O 100AOB ∠=︒ACB ∠A. B.C. D.40︒50︒80︒100︒【答案】B 【解析】【分析】利用圆周角定理计算即可.【详解】∵, 100AOB ∠=︒∴,111005022ACB AOB ∠=∠=⨯︒=︒故选B .【点睛】本题考查了圆周角定理,熟练掌握定理是解题的关键.6. 我们可用“斜尺”测量管道的内径(如图),若玻璃管的内径正对“30”刻度线,DE 已知长为,,则玻璃管内径的长度等于( )AB 5mm DE AB ∥DEA. B. C. D.2.5mm 3mm3.5mm 4mm 【答案】B 【解析】【分析】根据,即可求解.CDE CAB △△∽【详解】解:根据题意得:, 30mm,50mm CD AC ==∵, DE AB ∥∴, CDE CAB △△∽∴,即, CD DEAC AB =30505DE =解得:. 3mm DE =故选:B【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.7. 如图,C 为⊙O 上一点,是⊙O 的直径,,,现将绕点AB 4AB =30ABC ∠=︒ABC ∆B 按顺时针方向旋转30°后得到,交⊙O 于点D ,则图中阴影部分的面积为A BC ''∆BC '( )A.B.C.D.3π3π23π23π+【答案】C 【解析】【分析】连接,,根据及旋转,得到,OC OD 30ABC ∠=︒30ABC CBC '∠=∠=︒,从而得到是等边三角形,结合是⊙O 的直径,即可得到60DOB ∠=︒BOD ∆AB,,从而得到是等边三角形,即可得到,90ACB ∠=︒60BAC ∠=︒AOC ∆OD BC ⊥根据扇形面积公式及三角形面积公式即可得到答案.120BOC ∠=︒【详解】解:连接,,过O 作, OC OD OE BD ⊥∵是⊙O 的直径, , AB 30ABC ∠=︒∴,, 90ACB ∠=︒60BAC ∠=︒∴是等边三角形, AOC ∆∵, 4AB =∴,, 122AC AO AB ===BC ==∵绕点B 按顺时针方向旋转30°后得到, ABC ∆A BC ''∆∴, 30ABC CBC '∠=∠=︒∴, 60DOB ∠=︒是等边三角形,BOD ∆∴,, 120BOC ∠=︒OD BC ⊥∵, 30ABC ∠=︒∴,, 112OF OB ==2sin 60OE =︒=∴阴影部分的面积为:,2212021602121(2360236023πππ︒⨯⨯︒⨯⨯-⨯--⨯=︒︒故选C.【点睛】本题考查勾股定理,扇形面积公式,圆周角定理,解题的关键是添加辅助线,利用扇形面积减三角形面积求得阴影部分面积.8. 如图,已知抛物线与直线交于,两点,则关2y ax c =+y kx m =+()13,A y -()21,B y 于x 的不等式的解集是( )2ax kx c m ++≥A. 或B. 或 3x ≤-1x ≥1x ≤-3x ≥C.D.31x -≤≤13x -≤≤【答案】D 【解析】【分析】根据抛物线与直线交于,两点,可得2y ax c =+y kx m =+()13,A y -()21,B y 直线与抛物线交于点,两点,根据图像即可y kx m =-+2y ax c =+()113,A y ()121,B y -得到答案.【详解】解:∵抛物线与直线交于,两点, 2y ax c =+y kx m =+()13,A y -()21,B y ∴与抛物线交于点,两点, y kx m =-+2y ax c =+()113,A y ()121,B y -图像如图所示,由图像可知,当时,, 13x -≤≤2ax c kx m +≥-+∴的解集是, 2ax kx c m ++≥13x -≤≤故选D .【点睛】本题考查利用函数图像解一元二次不等式及根据对称性求交点,解题关键是找到与抛物线交于点.y kx m =-+2y ax c =+二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9. 某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是_________.尺码/ cm2424.52525.526销售量/双 131042【答案】 25【解析】【分析】直接根据众数的定义:一组数据中出现次数最多的数即为众数即可得出结论. 【详解】由表格可知:尺码的运动鞋销售量最多为双,即众数为. 251025故答案为:25.【点睛】本题考查了众数,解题的关键是熟练掌握众数的定义.10. 如图,在中,,,,则的值为______.Rt ABC ∆90ACB ∠=︒2AB =BC =sin B【答案】## 120.5【解析】【分析】根据勾股定理求出,根据正弦定义直接求解即可得到答案. AC 【详解】解:由题意可得,∵,,,90ACB ∠=︒2AB =BC =∴,1AC ==∴, 1sin 2AC B AB ==故答案为.12【点睛】本题考查勾股定理与解直角三角形求线段,解题的关键是求出及熟练掌握直AC 角三角形中锐角的正弦等于对边比斜边.11. 一只蚂蚁在一块黑白两色的正六边形地砖上任意爬行,并随机停留在地砖上某处,则蚂蚁停留在黑色区域的概率是______.【答案】13【解析】【分析】设该正六边形地砖的面积为6,则黑色区域的面积为2,再由概率公式计算,即可求解.【详解】解:设该正六边形地砖的面积为6,则黑色区域的面积为2, ∴蚂蚁停留在黑色区域的概率是. 2163=故答案为:13【点睛】本题考查了概率公式:熟练掌握随机事件A 的概率事件A 可能出现的结()P A =果数除以所有可能出现的结果数;P (必然事件);P (不可能事件)是解题的关1=0=键.12. 已知,是一元二次方程的两个根,则的值为______. 1x 2x 2560x x +-=1211+x x 【答案】56【解析】【分析】根据根与系数关系得到两根和与两根积的值,将式子通分代入求解即可得到答案.【详解】解:由题意可得,∵,是一元二次方程的两个根, 1x 2x 2560x x +-=∴,, 12551x x +=-=-12661x x -==-∴ 121212115566x x x x x x +-+===-故答案为:. 56【点睛】本题考查一元二次方程根与系数之间的关系,解题的关键是熟练掌握,.12b x x a+=-12cx x a =13. 如图,与⊙O 相切于点A ,是⊙O 的弦,且,,则⊙O 的MN AB 1AB =30BAN ∠=︒半径长为______.【答案】1 【解析】【分析】连接,,根据与⊙O 相切于点A ,得到,结合OA OB MN 90OAN ∠=︒,得到,根据,即30BAN ∠=︒903060OAB OAN BAN ∠=∠-∠=︒-︒=︒OA OB =可得到是等边三角形即可得到答案. OAB 【详解】解:连接,, OA OB ∵与⊙O 相切于点A , MN ∴, 90OAN ∠=︒∵,30BAN ∠=︒∴, 903060OAB OAN BAN ∠=∠-∠=︒-︒=︒∵,OA OB =∴是等边三角形, OAB ∵, 1AB =∴, 1r =故答案为:1,.【点睛】本题考查切线的性质,等边三角形的判定与性质,解题的关键是根据切线得到.90OAN ∠=︒14. 如图,四边形中,点E 在上,且,,已知的ABCD AD EC AB ∥EB DC ∥ABE 面积为3,的面积为1,则的面积为______.ECD BCE【解析】【分析】连接,分别过点C 作于G ,过点E 作于F ,根据平行可AC CG BE ⊥EFCD ⊥证∶ 和同底等高, , ,,从而ABC ABE BAE CED ∠=∠,AEB EDC CG EF ∠=∠=证出,,根据相似三角形的性质可得∶3E ABC AB S S == AEB EDC ∽ ,从而得出∶ ,然后计算的面积即可.EBDC===EB =BCE 【详解】解∶连接,分别过点C 作于G ,过点E 作于F ,如图:AC CG BE ⊥EF CD ⊥∵,EC AB ∥∴和同底等高,, ABC ABE BAE CED ∠=∠∵的面积为3, ABE ∴, 3E ABC AB S S == ∵,EB DC ∥∴, ,AEB EDC CG EF ∠=∠=∴, AEB EDC ∽ ∴,EB DC===∴,EB =∴1122BCE ECD S BE CG EF =⋅=⋅== 故答案为∶【点睛】此题考查的是相似三角形的判定及性质,掌握相似三角形的判定定理和相似三角形的面积比等于相似比的平方是解决此题的关键.15. 在中,,度数的最大值为______. ABC ∆2AB =BC =A ∠︒【答案】##45度45【解析】【分析】画出线段,以B 为圆心为半径画圆即可得到,当C 从与圆交点处开AB BC AB 始运动时逐渐增大,当与圆相切时最大,随后逐渐减小,根据三角函数即可得到A ∠AC 答案.【详解】解:由题意可得,画出线段,以B 为圆心为半径画圆即可得到,当C 从AB BC 与圆交点处开始运动时逐渐增大,当与圆相切时最大,随后逐渐减小, AB A ∠AC ∴当时,度数的最大,AC BC ⊥A ∠此时 sin BC A AB ∠∠==∴度数的最大值为,A ∠45︒故答案为.45【点睛】本题考查三角函数求角度,解题的的关键是画出圆利用动点问题得到最值点.16. 已知抛物线过,两点.若,则下列四个结2y x bx c =++()1,0A -(),0B m 23m <<论中正确的是______.(请将所有正确结论的序号都填写到横线上):①;②;0b >0c <③点,在抛物线上,若,,则;④关于x ()11,M x y ()22,N x y 12x x <121x x =+12y y >的一元二次方程必有两个不相等的实数根.220x bx c +++=【答案】②③④【解析】【分析】根据抛物线过,两点,可得抛物线的对称轴为直2y x bx c =++()1,0A -(),0B m 线,再由,可得,故①错误;把点代入抛物线122b m x -+=-=23m <<0b <()1,0A -解析式可得,从而得到,故②正确;再由,可得抛物线的对10b c =+<0c <23m <<称轴位于直线和之间,分两种情况分析,进而得到,故③正确;然后12x =1x =12y y >根据,,可得,再利用一元二次方程根的判别122b m -+-=1bc =+1,b m c m =-=-式,可得关于x 的一元二次方程必有两个不相等的实数根,故④正确.220x bx c +++=【详解】解∶∵抛物线过,两点,2y x bx c =++()1,0A -(),0B m ∴抛物线的对称轴为直线, 122b m x -+=-=∵,23m <<∴,11m -+>∴,故①错误;0b <∵抛物线过,2y x bx c =++()1,0A -∴,10b c -+=∴,10b c =+<∴,故②正确;0c <∵,23m <<∴,112m <-+<∴, 11122m -+<<即抛物线的对称轴位于直线和之间, 12x =1x =若点,都在对称轴左侧,()11,M x y ()22,N x y ∵开口向上,∴在对称轴左侧,y 随着x 的增大而减小,∵,12x x <∴,12y y >若点在对称轴左侧,在对称轴右侧,()11,M x y ()22,N x y ∵,,12x x <121x x =+∴点距离对称轴更远,()11,M x y ∵抛物线开口向上,距离对称轴越远函数值越大,∴,故③正确;12y y >∵,, 122b m -+-=1bc =+∴,1,b m c m =-=-∵,220x bx c +++=∴()()()()2224214218b c m m m ∆=-+=---+=+-∵,23m <<∴,()29116m <+<∴,()21188m <+-<即,0∆>关于x 的一元二次方程必有两个不相等的实数根,故④正确; 220x bx c +++=故答案为:②③④【点睛】本题考查二次函数的性质,一元二次方程的根的判别式等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.三、解答题(本大题共11小题,共82分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17. 计算:;2cos30tan 60sin 45︒-︒+︒【解析】【分析】根据特殊角三角函数值代入求解即可得到答案.【详解】解:原式 2=. =【点睛】本题考查特殊三角函数求值,解题的关键是熟练掌握特殊角三角函数.18. 解方程:.2450x x --=【答案】125,1x x ==-【解析】【分析】直接利用因式分解求解一元二次方程即可.【详解】解:2450x x --=(5)(1)0x x -+=或50x ∴-=10x +=解得:.125,1x x ==-【点睛】本题考查了解一元二次方程,解题的关键是掌握一元二次方程常规的求解方法,因式分解法,直接开方法,配方法,公式法.19. 为落实“双减”政策,某中学在课后服务时间开设了四个兴趣小组,分别为A :机器人,B :交响乐,C :油画,D :古典舞.为了解学生的报名情况(每名学生只报一个兴趣小组),现随机抽取部分学生进行调查,并根据调查结果绘制了如下两幅不完整的统计图.请根据以上图文信息回答下列问题:(1)此次调查共抽取______名学生;(2)请将条形统计图补充完整;(3)扇形统计图中,项目A 所对应的扇形圆心角的度数为______.︒【答案】(1)100(2)图见详解 (3)144【解析】【分析】(1)根据扇形统计图与条形统计图中B 的数据即可得到答案;(2)利用(1)中求出的总数减去A ,B ,D ,的即可得到C 的数据补充即可得到答案;(3)利用乘以A 所占比例即可得到答案.360︒【小问1详解】解:由题意可得,此次调查抽取人数为(人),3030%100÷=∴此次调查共抽取名学生;100【小问2详解】解:由(1)得,C 的人数为:(人),10030401020---=∴条形统计图如图所示,【小问3详解】解:由题意可得,A 所对应的扇形圆心角的度数为:, 40360144100︒⨯=︒故答案为.144【点睛】本题考查条形统计图与扇形统计图综合题,解题的关键是找到两个都有的量求出总数,熟练掌握所占圆心角等于乘以所占比例.360︒20. 为深入学习贯彻党的二十大精神,我市某中学决定举办“青春心向党,奋进新征程”主题演讲比赛,该校九年级有二男二女共4名学生报名参加演讲比赛.(1)若从报名的4名学生中随机选1名,则所选的这名学生是女生的概率是______;(2)若从报名的4名学生中随机选2名,用树状图或表格列出所有可能的情况,并求出这2名学生都是男生的概率.【答案】(1)12(2) 16【解析】【分析】(1)利用树状图列出所有情况,找出所选的这名学生是女生的情况,代入m P n =即可得到答案;(2)利用树状图列出所有情况,找出2名学生都是男生的情况,代入即可得到答m P n=案;【小问1详解】解:由题意可得,由上图可得总共有4种情况,是女生的情况有2种,∴, 2142P ==∴选的这名学生是女生的概率是;12【小问2详解】解:由题意可得,由上图可得总共有种情况,是女生的情况有2种,12∴, 21126P ==∴这2名学生都是男生的概率为. 16【点睛】本题考查利用树状图法求概率,解题的关键是正确列出树状图.21. 如图,测绘飞机在同一高度沿直线由B 向C 飞行,且飞行路线经过观测目标A 的BC 正上方.在第一观测点B 处测得目标A 的俯角为,航行米后在第二观测点C 处测60︒1000得目标A 的俯角为,求第二观测点C 与目标A 之间的距离.75︒【答案】【解析】【分析】过C 作,可得,,CD AB ⊥9030DBC B ∠=︒-∠=︒15002BD BC ==,根据三角形内角和定理得到CD ==,根据的正弦即可得到答案.18045A ACB ABC ∠=︒-∠-∠=︒A ∠【详解】解:过C 作,CD AB ⊥∵,CD AB ⊥∴,,90CDB ∠=︒9030DBC B ∠=︒-∠=︒∴,, 15002BD BC ==CD ==∵,,75ACB ∠=︒=60B ∠︒∴,18045A ACB ABC ∠=︒-∠-∠=︒在中,Rt ACD ∆, sin CD A AC ∠=∴, AC ==答:第二观测点C 与目标A 之间的距离为.【点睛】本题考查利用三角函数解决仰俯角问题及三角形内角和定理,解题的关键是作出辅助线.22. 把一根长8米的绳子剪成两段,并把每一段绳子围成一个正方形.(1)要使这两个正方形面积的和等于2平方米,应该怎么剪?(2)这两个正方形面积的和可能等于平方米吗?请说明理由. 418【答案】(1)剪成的一段为4米,则另一段就为4米;(2)不可能,理由见解析.【解析】【分析】(1)利用正方形的性质表示出边长进而得出等式求出即可;(2)利用正方形的性质表示出边长进而得出等式,进而利用根的判别式求出即可.【小问1详解】解:设剪成的一段为米,则另一段就为米,x ()8x -由题意得, 228244x x -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭解得:.124x x ==答:剪成的一段为4米,则另一段就为4米;【小问2详解】解:设剪成的一段为米,则另一段就为米,y ()8y -由题意得, 22841448y y -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭变形为:,2890y y --=解得:,舍去,,舍去,110y =-<298y =>即:这两个正方形面积的和不可能等于. 418【点睛】此题主要考查了一元二次方程的应用,根据正方形的性质表示出正方形的边长是解题关键.23. 的圆形纸片中,剪出一个圆心角为的扇形(图中的阴影部分).60︒(1)求这个扇形的半径;(2)若用剪得的扇形纸片围成一个圆锥的侧面,求所围成圆锥的底面圆半径. 【答案】(1)3 (2)12【解析】【分析】(1)连接,,过点O 作,垂足为D ,得到BC ,OB OC OD BC ⊥120BOC ∠=︒,,根据垂径定理,求得,判定是等边三角形,30OBC OCB ∠=∠=︒=2BC BD ABC 计算即可.(2)设圆锥底面圆的半径为r ,根据题意,得,计算即可. 6032180r ππ︒⨯⨯=︒【小问1详解】如图,连接,,过点O 作,垂足为D , BC ,OB OC OD BC ⊥∵,,60BAC ∠=︒OB OC ==AB AC =∴,,是等边三角形,120BOC ∠=︒30OBC OCB ∠=∠=︒ABC∴,, =2=23BC BD =AB BC AC ==∴这个扇形的半径为3.【小问2详解】设圆锥底面圆的半径为r ,根据题意,得, 6032180r ππ︒⨯⨯=︒解得. 12r =故圆锥底面圆的半径为.12【点睛】本题考查了等腰三角形的性质,等边三角形的判定和性质,圆周角定理,勾股定理,垂径定理,弧长公式,圆锥与扇形的关系,熟练掌握弧长公式,垂径定理,勾股定理是解题的关键.24. 已知二次函数的图像与x 轴有唯一公共点.244y ax ax =-+(1)求a 的值;(2)当时(),函数的最大值为4,且最小值为0,则实数m 的取值范围0x m ≤≤0m >是______.【答案】(1)1a =(2)24m ≤≤【解析】【分析】(1)根据二次函数的图像与x 轴有唯一公共点即一元二次方程244y ax ax =-+的判别式等于0即可得到答案;2440ax ax -+=(2)配方找到对称轴,确定最小值,代入最大值即可得到答案.【小问1详解】解:由题意可得,∵二次函数的图像与x 轴有唯一公共点,244y ax ax =-+∴一元二次方程的判别式等于0,2440ax ax -+=∴,,0a ≠2(4)440a a --⨯=解得:;1a =【小问2详解】解:由(1)得,,2244(2)y x x x =-+=-∴当时,,2x =min 0y =∵当时,,0x =4y =∴抛物线上点的对称点为(0,4)(4,4)∵时(),函数的最大值为4,且最小值为0,0x m ≤≤0m >∴.24m ≤≤【点睛】本题考查二次函数与x 轴交点问题问题及最值问题,解题的关键是根据有唯一公共点得到判别式等于0解出a 及配方找到对称轴.25. 如图,矩形中,,,点P 从点A 出发,以每秒1个单位长度的ABCD 3AD =4CD =速度在射线上向右运动,运动时间为t 秒,连接交于点Q .AB DP AC(1)求证:;DCQ PAQ △△∽(2)若是以为腰的等腰三角形,求运动时间t 的值.ADQ △AD 【答案】(1)见解析;(2)或 6t =727t =【解析】【分析】(1)由题意可知,从而可知,由,可AB CD DCQ PAQ ∠=∠DQC PQA ∠=∠证;△∽△DCQ PAQ(2)由矩形性质可得及勾股定理可知,,,分两种情况:①当5AC =DP =时,②当时,分别利用相似三角形列出比例式可求解得的值. AD AQ =AD DQ =t 【小问1详解】证明:∵四边形是矩形,ABCD ∴,AB CD ∴,DCQ PAQ ∠=∠又∵,DQC PQA ∠=∠∴;△∽△DCQ PAQ 【小问2详解】解:∵四边形是矩形,,,ABCD 3AD =4CD =∴,5AC =由题意知,,,AP t =DP ==①当时,即:,AD AQ =3AQ =2CQ =∵,△∽△DCQ PAQ ∴,即:,解得:; CQ DC AQ AP =243t=6t =②当时,即:,AD DQ =3DQ =3PQ DP DQ =-=∵,△∽△DCQ PAQ∴,整理得:, DQ DC PQ AP =4t=334t +=两边同时平方得:,整理得: 229999162t t t ++=+27207t t -=解得:; 727t =综上:是以为腰的等腰三角形时,或. ADQ △AD 6t =727t =【点睛】本题考查相似三角形的判定及性质,等腰三角形定义、矩形性质,熟练掌握相似三角形的判定及性质,分类讨论求解是解决问题的关键.26. 如图,以为直径的经过的顶点C ,分别平分和AB O ABC ,AE BE BAC ∠,的延长线交于点F ,交于点D ,连接.ABC ∠AE BC O BD(1)求证:;CBD BAD ∠=∠(2)求证:;BD DE =(3)若,求的长. AB =BE =BC 【答案】(1)见解析 (2)为等腰直角三角形,证明见解析BDE △(3 【解析】【分析】(1)根据平分,可得,再由圆周角定理可得AE BAC ∠BAD CAD ∠=∠,即可;CBD CAD ∠=∠(2)由直径所对圆周角为直角可知.根据角平分线的性质可知90ADB ∠=︒,.根据同弧所对圆周角相等得出,BAE CAE ∠=∠ABE CBE ∠=∠CAE CBD ∠=∠最后由三角形外角性质结合题意即可证明,得出,即说明BED EBD ∠=∠BD ED =为等腰直角三角形;BDE △(3)连接,交于点F .由,说明,即可由垂径定理OD BC BAD CAD ∠=∠ BDCD =得出.由(2)得为等腰直角三角形,,得出OD BC ⊥BDE △BE =,再由两次勾股定理建立方程得出2BD DE ==OF =解.【小问1详解】证明:∵平分,AE BAC ∠∴,BAD CAD ∠=∠∵,CBD CAD ∠=∠∴;CBD BAD ∠=∠【小问2详解】解:为等腰直角三角形,证明如下:BDE △∵为的直径,AB O ∴.90ADB ∠=︒∵分别平分和,AE BE ,BAC ∠ABC ∠∴,. BAE CAE ∠=∠ABE CBE ∠=∠∵, CDCD =∴.CAE CBD ∠=∠∵,,BED BAE ABE ∠=∠+∠EBD CBD CBE ∠=∠+∠∴,BED EBD ∠=∠∴,BD ED =∴为等腰直角三角形;BDE △【小问3详解】如图,连接,交于点F .OD BC∵,BAD CAD ∠=∠∴, BDCD =∴,.OD BC ⊥BF CF =∵AB =∴, 12OB OD AB ===由(2)得为等腰直角三角形,, BDE △BE =∴222BD DE BE +=,解得:,2BD DE ==在中,Rt OBF △,222BF OB OF =-在中,Rt BDF △, )222BF BD OF =--∴ )2222OB OF BD OF -=--解得: OF =∴, BF ==∴. 2BC BF ==【点睛】本题考查圆周角定理,等腰直角三角形的判定,勾股定理,垂径定理等知识.熟练掌握圆的相关知识,并会连接常用的辅助线是解题关键.27. 在平面直角坐标系中,O 为坐标原点,直线与x 轴交于点B ,与y 轴交于点3y x =-+C .二次函数的图像过B ,C 两点,且与x 轴交于另一点A ,点M 为线段2y ax 2x c =++OB 上的一个动点(不与端点O ,B 重合).(1)求二次函数的表达式;(2)如图①,过点M 作y 轴的平行线l 交于点F ,交二次函数的图BC 2y ax 2x c =++像于点E ,记的面积为,的面积为,当时,求点E 的坐标; CEF 1S BMF 2S 1212S S =(3)如图②,连接,过点M 作的垂线,过点B 作的垂线,与交于点CM CM 1l BC 2l 1l 2l G ,试探究的值是否为定值?若是,请求出的值;若不是,请说明理由. CG CM CG CM【答案】(1);223y x x =-++(2);(1,4)E (3)是,定值为;【解析】【分析】(1)根据坐标轴交点特点利用一次函数求出B ,C 两点坐标,代入抛物线解析式即可得到答案;(2)连接,设点M 坐标为,根据题意写出点F ,E 的坐标,表示出,,OF (,0)M m 1S 2S 根据列等式求出m 即可得到答案; 1212S S =(3)过G 作,根据垂直易得,根据对应成GN x ⊥轴COB BNG ∽COM MNG ∆∆∽比例即可得到答案;【小问1详解】解:在一次函数中,当时,,0y =3x =当时,,0x =3y =∴,,(3,0)B (0,3)C 将,代入抛物线得,(3,0)B (0,3)C, 3960c a c =⎧⎨++=⎩解得:,,1a =-3c =∴;223y x x =-++【小问2详解】解:连接,设点M 坐标为,OF (,0)Mm∵,EM y 轴∴点E 的坐标为:,点F 的坐标为,2(,23)E m m m -++(,3)F m m -+由题意可得,1OME OCE COF OMF S S S S S =+-- 211113(23)3(3)2222m m m m m m m =⨯⨯+⨯⨯-++-⨯⨯-⨯⨯-+ 21(3)2m m m =-+, 21(3)2m m =-, ()()21332MBF S S m m ==⨯-⨯- ∵, 1212S S =∴, 221(3)1212(3)2m m m -=-解得: ,(不符合题意舍去), 11m =232m =-∴E 的坐标为:;(1,4)E 【小问3详解】解:过G 作,由题意可得,GN x ⊥轴∵,, ,,GM CM ⊥GB CB ⊥GN x ⊥轴90COB ∠=︒∴,,,, =OMC NGM ∠∠=OCM NMG ∠∠=OCB NBG ∠∠=OBC NGB ∠∠∴,,COB BNG ∽COM MNG ∽∴,, ==OC OB CB BN GN GB ==OC OM CM MN GN MG∵,,(3,0)B (0,3)C ∴,,BN CN =OB OC =∵,222CG CM GM =+∴, 22221CG GM CM CM=+∴设点G 坐标为,点M 坐标为, (3,)G t t +(,0)M m 可得, 33m t m t=+-解得:,t m =∴, 222222313MG m CM m+==+∴, 222212CG GM CM CM=+=∴ CG CM=【点睛】本题主要考查二次函数综合应用,解题的关键是设出动点坐标写出相关联的坐标,根据等量列式求解.。

江苏省苏州市九年级上学期数学期末考试试卷

江苏省苏州市九年级上学期数学期末考试试卷

江苏省苏州市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·镇江) 如图,将棱长为6的正方体截去一个棱长为3的正方体后,得到一个新的几何体,这个几何体的主视图是()A .B .C .D .2. (2分)(2016·十堰) 如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y= 上(k>0,x>0),则k的值为()A . 25B . 18C . 9D . 93. (2分)如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是()A . ①B . ②C . ①②D . ①③4. (2分)如图,在菱形ABCD中,对角线AC=4,∠BAD=120°,则菱形ABCD的周长为()A . 20B . 18C . 16D . 155. (2分)若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A . 1B . 2C . -1D . -26. (2分) (2019八下·江阴月考) 已知P1(x1 , y1),P2(x2 , y2),P3(x3 , y3)是反比例函数y=的图象上三点,且y1<y2<0<y3 ,则x1 , x2 , x3的大小关系是()A . x1<x2<x3B . x3<x2<x1C . x2<x1<x3D . x2<x3<x17. (2分) (2019八下·重庆期中) 在▱ABCD中,已知AB=6,AD为▱ABCD的周长的,则AD=()A . 4B . 6C . 8D . 108. (2分)甲、乙、丙三人参加数学、物理、英语三项竞赛,每人限报一项,每项限报一人,则甲报英语、乙报数学、丙报物理的概率是()A .B .C .D .9. (2分) (2019九上·莲池期中) 某商店3月份的营业额为15万元,4月份的营业额比3月份的营业额减少10%;商店经过加强管理,实施各种措施,使得5、6月份的营业额连续增长,6月份的营业额达到了20万元;设5、6月份的营业额的平均增长率为x,依题意可列方程为()A .B .C .D .10. (2分)(2019·岐山模拟) 如图,在△ABC中,AB=AC,点D、E分别是边AB,AC的中点,点G,F在BC 边上,四边形DGFE是正方形.若DE=4cm,则AC的长为()A . 4cmB . 2 cmC . 8cmD . 4 cm二、填空题 (共3题;共3分)11. (1分) (2019八上·嘉定月考) 若关于的一元二次方程有两个实数根,则实数m的取值范围是________12. (1分)如图,三角尺在灯泡O的照射下在墙上形成影子,现测得OA=20cm,OA′=50cm,则这个三角尺的面积与它在墙上所形成影子图形的面积之比是________。

苏州市苏科版九年级数学上 期末测试题(Word版 含答案)

苏州市苏科版九年级数学上 期末测试题(Word版 含答案)

苏州市苏科版九年级数学上 期末测试题(Word 版 含答案) 一、选择题1.sin 30°的值为( )A .3B .32C .12D .22 2.已知3sin α=,则α∠的度数是( ) A .30° B .45° C .60° D .90°3.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( )A .13B .512C .12D .14.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm5.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .6.方程2210x x --=的两根之和是( )A .2-B .1-C .12D .12- 7.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A.22B.1C.2D.28.如图,点A、B、C都在⊙O上,若∠ABC=60°,则∠AOC的度数是()A.100°B.110°C.120°D.130°9.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是( ) A.2 B.3 C.4 D.510.如图,AB为⊙O的直径,点C、D在⊙O上,∠BAC=50°,则∠ADC为()A.40°B.50°C.80°D.100°11.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.12.关于二次函数y=x2+2x+3的图象有以下说法:其中正确的个数是()①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y轴的直线;③它与x轴没有公共点;④它与y轴的交点坐标为(3,0).A.1 B.2 C.3 D.413.二次函数y =()21x ++2的顶点是( )A .(1,2)B .(1,−2)C .(−1,2)D .(−1,−2)14.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y =﹣(x +1)2+m 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 3>y 2>y 1B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 2>y 1>y 315.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度B .先向左平移2个单位长度,然后向下平移1个单位长度C .先向右平移2个单位长度,然后向上平移1个单位长度D .先向右平移2个单位长度,然后向下平移1个单位长度二、填空题16.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.17.若圆锥的底面半径为3cm ,高为4cm ,则它的侧面展开图的面积为_____cm 2. 18.二次函数y=x 2−4x+5的图象的顶点坐标为 .19.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.20.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)21.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AE AC,AE =2,EC =6,AB =12,则AD 的长为_____.22.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.23.点P 在线段AB 上,且BP AP AP AB =.设4AB cm =,则BP =__________cm . 24.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.25.已知 x 1、x 2 是关于 x 的方程 x 2+4x -5=0的两个根,则x 1 + x 2=_____.26.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.27.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.28.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.29.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.30.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式21220h t t =-++,则火箭升空的最大高度是___m三、解答题31.如图,BD 是⊙O 的直径.弦AC 垂直平分OD ,垂足为E .(1)求∠DAC 的度数;(2)若AC =6,求BE 的长.32.如图,在平行四边形ABCD 中,过点B 作BE CD ⊥,垂足为E ,连接AE ,F 为AE 上一点,且BFE C ∠=∠.(1)求证:ABF EAD .(2)若4AB =,3BE =,72AD =,求BF 的长.33.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF=3m ,沿BD 方向到达点F 处再测得自己得影长FG=4m ,如果小明的身高为1.6m ,求路灯杆AB 的高度.34.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同.(1)搅匀后从袋子中任意摸出1个球,摸到红球的概率是多少?(2)搅匀后先从袋子中任意摸出1个球,记录颜色后不放回,再从袋子中任意摸出1个球,用画树状图或列表的方法列出所有等可能的结果,并求出两次都摸到白球的概率.35.如图,在Rt ABC ∆中,90C =∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为 .四、压轴题36.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.37.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).38.如图,已知矩形ABCD 中,BC =2cm ,AB =23cm ,点E 在边AB 上,点F 在边AD 上,点E 由A 向B 运动,连结EC 、EF ,在运动的过程中,始终保持EC ⊥EF ,△EFG 为等边三角形.(1)求证△AEF ∽△BCE ;(2)设BE 的长为xcm ,AF 的长为ycm ,求y 与x 的函数关系式,并写出线段AF 长的范围;(3)若点H 是EG 的中点,试说明A 、E 、H 、F 四点在同一个圆上,并求在点E 由A 到B 运动过程中,点H 移动的距离.39.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A C B →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<).(1)当47t <<时,BP = ;(用含t 的式子表示)(2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.40.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COF CDF S S =::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:sin 30°=12故选C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键. 2.C解析:C【解析】【分析】根据特殊角三角函数值,可得答案.【详解】解:由3sin2α=,得α=60°,故选:C.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.3.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.4.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.5.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A .【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.6.C解析:C【解析】【分析】利用两个根和的关系式解答即可.【详解】两个根的和=1122b a , 故选:C.【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 7.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴122OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.8.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC 和∠AOC 所对的弧为AC ,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.B解析:B【解析】【分析】根据题意由有唯一的众数4,可知x =4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x =4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B .本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数. 10.A解析:A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A.考点:圆周角定理.11.B解析:B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.B解析:B【解析】【分析】直接利用二次函数的性质分析判断即可.①y=x2+2x+3,a=1>0,函数的图象的开口向上,故①错误;②y=x2+2x+3的对称轴是直线x=221-⨯=﹣1,即函数的对称轴是过点(﹣1,3)且平行于y轴的直线,故②正确;③y=x2+2x+3,△=22﹣4×1×3=﹣8<0,即函数的图象与x轴没有交点,故③正确;④y=x2+2x+3,当x=0时,y=3,即函数的图象与y轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B.【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.13.C解析:C【解析】【分析】因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=()21x++2的顶点坐标.【详解】解:∵二次函数y=()21x++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.14.B解析:B【解析】【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.15.D解析:D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.二、填空题16.【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】255【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,sin DEC∠的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=15 2AB= ,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=15 2MN,∵DM⊥BC,DC=DB,∴CM=BM=13 2BC=,∴EM=CE-CM=5-3=2,∵DM=14 2AC,∴由勾股定理得,DE=25,∵CD=CE=5,CN⊥DE,∴DN=EN=5 ,∴由勾股定理得,CN=25,∴sin∠DEC=255 CNCE.25.【点睛】本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.17.15【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长5()cm ==∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯=故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 18.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质.19.【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,C是黄金分割点,当AC>BC时,则有解析:5或1555【解析】【分析】计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,C是黄金分割点,当AC>BC时,则有×10=5,当AC<BC时,-,则有×10=5∴AC=AB-BC=10-(5)=15-,∴AC长为5 cm或1555 cm.故答案为:55或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.21.3【解析】【分析】把AE=2,EC=6,AB=12代入已知比例式,即可求出答案.【详解】解:∵=,AE=2,EC=6,AB=12,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.22.【解析】分析:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,则NF=x ,再利用矩形的性质和已知条件证明△AME ∽△FNA ,利用相似三角形的性质:对应边的比值相等可求出x 的解析:4103【解析】分析:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,则NF=2x ,再利用矩形的性质和已知条件证明△AME ∽△FNA ,利用相似三角形的性质:对应边的比值相等可求出x 的值,在直角三角形ADF 中利用勾股定理即可求出AF 的长.详解:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,∵四边形ABCD 是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴2x ,AN=4﹣x ,∵AB=2,∴AM=BM=1,∵AB=2,∴BE=1,∴=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,=,解得:x=4 3∴=故答案为3.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,23.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x,则AP=4-x,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(6-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x,则AP=4-x,根据题意可得,444x xx-=-,整理为:212160x x -+=,利用求根公式解方程得:x 6===±,∴16x =-264x =+>(舍去).故答案为:6-【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.24.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB 为整数及三角形三边关系,即可解析:6或7【解析】【分析】 因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)+≥2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】 解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB 长度的范围. 25.-4【解析】【分析】根据根与系数的关系即可求解.【详解】 ∵x1、x2 是关于 x 的方程 x2+4x5=0的两个根,∴x1 x2=-=-4,故答案为:-4.【点睛】此题主要考解析:-4【解析】【分析】根据根与系数的关系即可求解.【详解】∵x 1、x 2 是关于 x 的方程 x 2+4x -5=0的两个根, ∴x 1 + x 2=-41=-4, 故答案为:-4.【点睛】 此题主要考查根与系数的关系,解题的关键是熟知x 1 + x 2=-b a. 26.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=,解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.27.【解析】【分析】设BE =x ,CF =y ,则EC =5﹣x ,构建二次函数了,利用二次函数的性质求出CF 的最大值,求出DF 的最小值即可解决问题.【详解】解:设BE =x ,CF =y ,则EC =5﹣x , 解析:254【解析】【分析】设BE =x ,CF =y ,则EC =5﹣x ,构建二次函数了,利用二次函数的性质求出CF 的最大值,求出DF 的最小值即可解决问题.【详解】解:设BE =x ,CF =y ,则EC =5﹣x ,∵AE ⊥EF ,∴∠AEF =90°,∴∠AEB +∠FEC =90°,而∠AEB +∠BAE =90°,∴∠BAE =∠FEC ,∴Rt △ABE ∽Rt △ECF , ∴AB EC =BE CF, ∴55x -=x y , ∴y =﹣15x 2+x =﹣15(x ﹣52)2+54, ∵﹣15<0, ∴x =52时,y 有最大值54, ∴CF 的最大值为54,∴DF的最小值为5﹣54=154,∴AF的最小值=22AD DF+=221554⎛⎫+ ⎪⎝⎭=254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.28.8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.29.【解析】【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行解析:163【解析】【分析】作OH⊥AB,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:==∴AB=∴四边形ABCD 的面积=AB ×GH=故答案为:.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD 是矩形.30.56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵==,∵,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故解析:56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵21220h t t =-++=2(23636)120t t -+-+-=2(6)56t --+,∵10a =-<,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故答案为:56.【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.三、解答题31.(1)30°;(2)33【解析】【分析】(1)由题意证明△CDE ≌△COE ,从而得到△OCD 是等边三角形,然后利用同弧所对的圆周角等于圆心角的一半求解;(2)由垂径定理求得AE=12AC=3,然后利用30°角的正切值求得DE=3,然后根据题意求得OD=2DE=23,直径BD=2OD=43,从而使问题得解.【详解】解:连接OA,OC∵弦AC 垂直平分OD∴DE=OE ,∠DEC=∠OEC=90°又∵CE=CE∴△CDE ≌△COE ∴CD=OC又∵OC=OD∴CD=OC=OD∴△OCD 是等边三角形∴∠DOC=60°∴∠DAC =30°(2)∵弦AC 垂直平分OD∴AE=12AC=3 又∵由(1)可知,在Rt △DAE 中,∠DAC =30°∴tan 30DE AE =,即333DE = ∴3∵弦AC 垂直平分OD∴3∴直径3∴-【点睛】本题考查垂径定理,全等三角形的判定和性质及锐角三角函数,掌握相关定理正确进行推理判断是本题的解题关键.32.(1)见解析;(2)145 【解析】【分析】(1)求三角形相似就要得出两组对应的角相等,已知了∠BFE =∠C ,根据等角的补角相等可得出∠ADE =∠AFB ,根据AB ∥CD 可得出∠BAF =∠AED ,这样就构成了两三角形相似的条件.(2)根据(1)的相似三角形可得出关于AB ,AE ,AD ,BF 的比例关系,有了AD ,AB 的长,只需求出AE 的长即可.可在直角三角形ABE 中用勾股定理求出AE 的长,这样就能求出BF 的长了.【详解】(1)证明:在平行四边形ABCD 中,∵∠D +∠C =180°,AB ∥CD ,∴∠BAF =∠AED .∵∠AFB +∠BFE =180°,∠D +∠C =180°,∠BFE =∠C ,∴∠AFB =∠D ,∴△ABF ∽△EAD .(2)解:∵BE ⊥CD ,AB ∥CD ,∴BE ⊥AB .∴∠ABE =90°.∴5AE ===.∵△ABF ∽△EAD ,BF AB AD EA∴=, 4752BF ∴=.145BF ∴=. 【点睛】本题主要考查了相似三角形的判定和性质,平行四边形的性质,等角的补角,熟练掌握相似三角形的判定和性质是解题的关键.33.4m【解析】【分析】由CD ∥EF ∥AB 得可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,故CD DF AB BF =,EF FG AB BG =,证DF FG BF BG =,进一步得3437BD BD =++,求出BD ,再得1.6312AB =; 【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴CD DF AB BF =,EF FG AB BG=, 又∵CD=EF , ∴DF FG BF BG=, ∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7, ∴3437BD BD =++ ∴BD=9,BF=9+3=12 ∴ 1.6312AB = 解得,AB=6.4m因此,路灯杆AB 的高度6.4m .【点睛】考核知识点:相似三角形的判定和性质.理解相似三角形判定是关键.34.(1)13;(2)13,见解析 【解析】【分析】(1)袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种,摸到红球的概率即可求出;(2)分别使用树状图法或列表法将抽取球的结果表示出来,第一次共有3种不同的抽取情况,第二次有2种不同的抽取情况,所有等可能出现的结果有6种,找出两次都是白球的的抽取结果,即可算出概率.【详解】解:(1)∵袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种, ∴1P =3(摸到红球); (2)画树状图,根据题意,画树状图结果如下:。

2021-2022学年江苏省苏州市九年级(上)期末数学试卷

2021-2022学年江苏省苏州市九年级(上)期末数学试卷

2021-2022学年江苏省苏州市九年级(上)期末数学试卷1.(单选题,3分)已知一组数据:1,2,2,4,6,则这组数据的中位数是()A.2B.3C.4D.52.(单选题,3分)方程x2+x=0的解为()A.x=0B.x=-1C.x1=0,x2=-1D.x1=1,x2=-13.(单选题,3分)若线段a=2cm,线段b=8cm,则a,b的比例中项c为()A.4cmB.5cmC.6cmD.32cm4.(单选题,3分)已知⊙O的直径为10cm,圆心O到直线l的距离为5cm,则直线l与⊙O 的位置关系是()A.相离B.相切C.相交D.相交或相切5.(单选题,3分)据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了“小孔成像”实验,阐释了光的直线传播原理.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布上形成倒立的实像CD.若物体AB的高为6cm,小孔O到物体和实像的水平距离BE,CE分别为8cm,6cm,则实像CD的高度为()A.4cmB.4.5cmC.5cmD.6cm6.(单选题,3分)如图,在△ABC中,AB=AC=5,BC=6,则cosB的值为()A. 34B. 35C. 45D. 567.(单选题,3分)如图,在△ABC中,∠A=30°,∠C=45°,BC=2,则AB̂的长度为()A. π4B. π2C.πD.2π8.(单选题,3分)已知函数y=ax2-4ax-3(a≠0),当x=m和x=n时函数值相等,则当x=m+n时的函数值为()A.2B.1C.-2D.-39.(单选题,3分)如图,二次函数y=ax2+bx+c(a>0)的图象经过点A(-1,0),点B (m,0),点C(0,-m),其中2<m<3,下列结论:① 2a+b>0,② 2a+c<0,③ 方程ax2+bx+c=-m有两个不相等的实数根,④ 不等式ax2+(b-1)x<0的解集为0<x<m,其中正确结论的个数为()A.1B.2C.3D.410.(单选题,3分)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC沿AC翻折,得到△ADC,再将△ADC沿AD翻折,得到△ADE,连接BE,则tan∠EBC的值为()A. 819B. 413C. 25D. 51211.(填空题,3分)1995年,联合国教科文组织宣布4月23日为“世界读书日”.2021年世界读书日当天,中国新闻出版研究院发布了第18次全国国民阅读调查结果,其中2020年我国14至17周岁青少年课外读书的人均阅读量是13.07本.某中学课外阅读小组的5位成员在2020年的课外阅读量如表:成员成员1 成员2 成员3 成员4 成员513 14 14 16 18阅读量(单位:本)则这5位成员在2020年的平均课外阅读量为 ___ 本.12.(填空题,3分)用黑白两种全等的等腰直角三角形地砖铺成如图所示的方形地面,一只小虫在方形地面上任意爬行,并随机停留在方形地面某处,则小虫停留在黑色区域的概率是___ .13.(填空题,3分)已知关于x的方程x2-6x+m2-3m-5=0的一个根是-1,则m的值为 ___ .14.(填空题,3分)如图,在▱ABCD中,AB=8,AD=6,E为AD延长线上一点,且DE=4,连接BE,BE交CD于点F,则CF=___ .15.(填空题,3分)这是小明在阅读一本关于函数的课外读物时看到的一段图文,则被墨迹污染的二次函数的二次项系数为 ___ .由图象知,当x=-1时二次函数y=■x2+6x-5有最小值.16.(填空题,3分)如图,将半径为6cm的圆分别沿两条平行弦对折,使得两弧都经过圆心,则图中阴影部分的面积为 ___ cm2.17.(填空题,3分)我们给出定义:如果两个锐角的和为45°,那么称这两个角互为半余角.如图,在△ABC中,∠A,∠B互为半余角,且BCAC =2√23,则tanA=___ .18.(填空题,3分)如图,以面积为20cm2的Rt△ABC的斜边AB为直径作⊙O,∠ACB的平分线交⊙O于点D,若CDAB =√32,则AC+BC=___ .19.(问答题,5分)计算:sin60°-tan30°+ √2 cos45°.20.(问答题,5分)解方程:x2-4x=5.21.(问答题,6分)国家实施“双减”政策后,为了解学生学业负担的减轻情况,学校随机抽取部分学生进行问卷调查,调查设置“显著”,“一般”,“略有”,“未有”四个减轻程度的等级.根据收集到的数据绘制不完整的条形统计图和扇形统计图.(1)本次共调查了 ___ 名学生;(2)补全条形统计图;(3)若该校共有1800名学生,请根据抽样调查结果,估算该校学生学业负担“显著”和“一般”减轻的总人数.22.(问答题,7分)如图,电路图上有A,B,C,D4个开关和1个小灯泡,同时闭合开关A,B,或同时闭合开关C,D都可以使小灯泡发亮.(1)在开关A闭合的条件下,任意闭合开关B,C,D中的一个,小灯泡发亮的概率为 ___ ;(2)任意闭合开关A,B,C,D中的两个,求小灯泡发亮的概率(请用列表或画树状图的方法求概率).23.(问答题,7分)如图,二次函数y=a(x-1)2-4a(a≠0)的图象与x轴交于A,B两点,与y轴交于点C(0,- √3).(1)求二次函数的表达式;(2)连接AC,BC,判定△ABC的形状,并说明理由.24.(问答题,7分)2022年北京冬奥会吉祥物“冰墩墩”意喻敦厚、健康、活泼、可爱,象征着冬奥会运动员强壮的身体、坚韧的意志和鼓舞人心的奥林匹克精神.随着北京冬奥会开幕日的临近,某特许零售店“冰墩墩”的销售日益火爆.据统计,该店2021年10月的销量为3万件,2021年12月的销量为3.63万件.(1)求该店“冰墩墩”销量的月平均增长率;(2)假设该店“冰墩墩”销量的月平均增长率保持不变,求2022年1月“冰墩墩”的销量.25.(问答题,8分)图① 是某小区折叠道闸的实景图,图② 是其工作示意图,道闸由垂直于地面的立柱AB,CD和折叠杆“AE-EF”组成,其中AB=CD=1.2m,AB,CD之间的水平距离BD=2.5m,AE=1.5m.道闸工作时,折叠杆“AE-EF”可绕点A在一定范围内转动,张角为∠BAE(90°≤∠BAE≤150°),同时杆EF始终与地面BD保持平行.(参考数据:√2≈1.414,√3≈1.732)(1)当张角∠BAE为135°时,求杆EF与地面BD之间的距离(结果精确到0.01m);(2)试通过计算判断宽度为1.8m,高度为2.45m的小型厢式货车能否正常通过此道闸?26.(问答题,9分)如图,△ABC内接于⊙O,D为AB延长线上一点,过点D作⊙O的切线,切点为E,连接BE,CE,AE.(1)若BC || DE,求证:△ACE∽△EBD;,求⊙O的半径.(2)在(1)的条件下,若AC=9,BD=4,sin∠BAE= 3527.(问答题,10分)如图,二次函数y=-x2+bx+c的图象经过点A(-1,0),点B(3,0),与y轴交于点C,连接BC.(1)填空:b=___ ,c=___ ;(2)过点C作CD || x轴,交二次函数y=-x2+bx+c的图象于点D,点M是二次函数y=-x2+bx+c图象上位于线段CD上方的一点,过点M作MN || y轴,交线段BC于点N.设点M 的横坐标为m,四边形MCND的面积为S.① S与m的函数表达式,并求S的最大值;② 点P为直线MN上一动点,当S取得最大值时,求△POC周长的最小值.28.(问答题,12分)如图,在矩形OABC中,顶点A在x轴上,顶点C在y轴上,顶点B 的坐标为(8,4),∠EAF=90°,且∠EAF的一边与线段OC交于点E,∠EAF的另一边与线段CB的延长线交于点F,连接EF,作AG⊥EF,垂足为G(m,n),连接OG.(1)当点E由点O移动到点C时,点F运动的路程为 ___ ;(2)求n与m的函数表达式,并说明点B在直线OG上;时,求线段OE的长度.(3)当△AOE与△GOE的面积之差为35。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每小题3分,共30分)(请把正确选项填在下面的表格内)
1.如右图中,圆与圆之间的位置关系有( ▲ ). A .2种 B .3种 C .4种
D .5种
2.已知四边形ABCD 内接于圆,∠A =2∠C ,则∠C 等于( ▲ ). A .90°
B .60°
C .45°
D .30°
3.要判断小刚的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的( ▲ ).
A .平均数
B .中位数
C .方差
D .众数
4.二次函数y =-2(x -1)2
+3的图象如何移动就得到y =-2x 2
的图象( ▲ ). A .向左移动1个单位,向上移动3个单位 B .向右移动1个单位,向上移动3个单位 C .向左移动1个单位,向下移动3个单位 D .向右移动1个单位,向下移动3个单位 5.下列说法正确的是( ▲ ).
A .垂直于半径的直线是圆的切线
B .经过三点一定可以作圆
C .圆的切线垂直于圆的半径
D .每个三角形都有一个内切圆
6.已知圆锥的底面半径为4,高为3,则它的侧面积是( ▲ ). A .20π
B .15π
C . 12π
D . 6π
7.若关于x 的一元二次方程(a -1)x 2
+x +a 2
-1=0有一个根为0,则a 的值等于( ▲ ). A .-1
B .0
C .1
D .1或-1
8.如图,边长为1的菱形ABCD 绕点A 旋转,当B 、C 两点恰好落在扇形AEF 的EF 时,BC 的长度等于( ▲ ). A .
6π B .4π C .3
π
D .
2
π
9.若抛物线y =ax 2
+bx +c(a ≠0)只经过第一、二、四象限,则该抛物线的顶点一定在( ▲ ).
A .第一象限
B .第二象限
C .第三象限
D .第四象限
10.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a>2),半径为2,函数y =x 的图像被⊙P 截得的弦AB 的长为23,则a 的值是( ▲ ). A .22
B .2+2
C . 23
D . 2+3
二、填空题(每小题3分,共24分)
11.在一个暗箱中,只装有a个白色乒乓球和10个黄色乒乓球,每次搅拌均匀后,任意摸出一个球后又放回,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,则a=▲.
12.方程x(x-1)=2(x-1)的解是▲.
13.相交两圆的半径分别为2和8,则其圆心距d的取值范围是▲.
14.抛物线y=(x+5)(x-1)的对称轴是直线▲.
15.如图,以点P为圆心的圆弧与x轴交于A、B两点,点P的坐标为(4,2),点A的坐标(2,0),则点B的坐标为▲.
16.如图,以坐标原点为圆心的⊙O交y轴的负半轴于点A,交x轴的正半轴于点B,C为⊙O位于第一象限部分上的任一点,则∠ACB=▲°.
17.如图,一个扇形铁皮OAB.已知OA=60cm,∠AOB=120°,小华将OA、OB合拢制成了一个圆锥形烟囱帽(接缝忽略不计),则烟囱帽的底面圆的半径为▲ cm.
18.如图,在平面直角坐标系中,二次函数y=ax2+2m
a
(a≠0)的图象经过正方形ABOC
的三个顶点A、B、C,则m的值为▲.三、解答题(76分)
19.(本题6分)解方程:()2
2
22
60
x x
x x
--
--=.
20.(本题6分)如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.
(1)一只自由飞翔的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率;
(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少?(用树状图或列表法求解)
21.(本题6分)已知抛物线y =ax 2
+bx +c 经过(-1,0)、(3,0)、(0,-3)三点. (1)求此抛物线的解析式和顶点坐标;
(2)若点A(x 1,y 1)和点B(x 2,y 2)在该抛物线上,若x 1<x 2<1,试比较y 1和y 2的大小.
22.(本题6分)已知,关于x 的方程()221104
x k x k -++=. (1)k 取何值时,方程有两个不相等的实数根; (2)若方程两实根x 1,x 2满足12x x =,求k 的值.
23.(本题6分)如图,在单位长度为1的正方形网格中,一段圆弧经过格点A 、B 、C . (1)请在图中标出该圆弧所在圆的圆心O 的位置; (2)请在(1)的基础上,完成下列问题: ①⊙O 的半径为_______(结果保留根号); ②ABC 的长为_______(结果保留π);
③试判断直线CD 与⊙O 的位置关系,并说明理由.
24.(本题6分)如图,有一圆锥形粮堆,其轴截面是一个边长为6米的正△ABC ,粮堆母
线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠.
(1)求该圆锥的侧面展开图的圆心角的度数;
(2)求小猫到达P处的最短路线长.(结果不取近似值,取精确值)
25.(本题7分)已知,抛物线y=x2+2x+m+2与x轴交于A、B两点,且与y轴交于C 点,且A点和B点在原点O的两侧.
(1)求m的范围;(2)当AB=4时,求m的值;
(3)试问△ABC能否是以AB为底边的等腰三角形,若能,请求出△ABC的周长;若不能,请说明理由.
26.(本题7分)在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于一点E,连结DE并延长,与BC的延长线交于点F.
(1)求证:BD=BF;
(2)若DE=5,CF=1,试求⊙O的直径.
27.(本题8分)如图,OA=4,线段OA的中点为B,点C在⊙O上,AC交⊙O于D,且AD =CD.
(1)求BD和AD的长:
(2)求cos∠ODB的值.
28.(本题8分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y
=-
1
100
x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月
利润为w内(元)(利润=销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x
(件)时,每月还需缴纳
1
100
x2元的附加费,设月利润为W外(元)(利润=销售额-成本
-附加费).
(1)当x=1000时,y=_______元/件,w内=_______元;
(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.
29.(本题10分)如图,在平面直角坐标系中,顶点为(4,-1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).
(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;
(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.
(1)2
1234
y x x =
-+ (2)相交.
证明:连接CE ,则CE ⊥BD ,
(3)如图,过点P 作平行于y 轴的直线交AC 于点Q ;
可求出AC 的解析式为1
32
y x =-+ 设P 点的坐标为(m ,
12m 2
-2m+3), 则Q 点的坐标为(m ,-1
2
m+3);
∵S △PAC =S △PAQ +S △PCQ
∴当m=3时,△PAC 的面积最大为274
此时,P 点的坐标为(3,-3
4
).。

相关文档
最新文档