计量作业计量经济学第三版李子奈
(NEW)李子奈《计量经济学》(第3版)课后习题详解

目 录第1章 绪 论第2章 经典单方程计量经济学模型:一元线性回归模型第3章 经典单方程计量经济学模型:多元线性回归模型第4章 经典单方程计量经济学模型:放宽基本假定的模型第5章 经典单方程计量经济学模型:专门问题第6章 联立方程计量经济学模型:理论与方法第7章 扩展的单方程计量经济学模型第8章 时间序列计量经济学模型第9章 计量经济学应用模型第1章 绪 论1什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:(1)计量经济学是经济学的一个分支学科,以揭示经济活动中客观存在的数量关系为主要内容,是由经济理论、统计学和数学三者结合而成的交叉学科。
(2)计量经济学方法通过建立随机的数学方程来描述经济活动,并通过对模型中参数的估计来揭示经济活动中各个因素之间的定量关系,是对经济理论赋予经验内容;而一般经济数学方法是以确定性的数学方程来描述经济活动,揭示的是经济活动中各个因素之间的理论关系。
2计量经济学的研究对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?答:(1)计量经济学的研究对象是经济现象,主要研究的是经济现象中的具体数量规律,即是利用数学方法,依据统计方法所收集和整理到的经济数据,对反映经济现象本质的经济数量关系进行研究。
(2)计量经济学的内容大致包括两个方面:一是方法论,即计量经济学方法或理论计量经济学;二是应用计量经济学。
任何一项计量经济学研究和任何一个计量经济学模型赖以成功的三要素是理论、方法和数据。
(3)计量经济学模型研究的经济关系的两个基本特征是随机关系和因果关系。
3为什么说计量经济学在当代经济学科中占据重要地位?当代计量经济学发展的基本特征与动向是什么?答:(1)计量经济学自20世纪20年代末30年代初形成以来,无论在技术方法还是在应用方面发展都十分迅速,尤其是经过20世纪50年代的发展阶段和60年代的扩张阶段,使其在经济学科占据重要的地位,主要表现在:①在西方大多数大学和学院中,计量经济学的讲授已成为经济学课程表中最具有权威的一部分;②从1969~2003年诺贝尔经济学奖的53位获奖者中有10位是与研究和应用计量经济学有关;③计量经济学方法与其他经济数学方法结合应用得到了长足的发展。
计量经济学实验三--李子奈

实验三 多元线性回归一 实验目的:(1) 掌握多元线性回归模型的估计方法 (2) 模型方程的F 检验,参数的t 检验 (3) 模型的外推预测与置信区间预测二 实验要求:应用教材P105习题11做多元线性回归模型估计,对回归方程和回归参数进行检验并做出单点预测与置信区间预测 三 实验原理:最小二乘法四 预备知识:最小二乘法估计原理、t 检验、F 检验、点预测和置信区间预测 五 实验内容:在一项对某社区家庭对某种消费品的消费需要调查中,得到书中的表所示的序号对某商品的消费支出Y 商品单价X1 家庭月收入X2 序号对某商品的消费支出Y 商品单价X1 家庭月收入X2 1 591.9 23.56 7620 6 644.4 34.14 12920 2 654.5 24.44 9120 7 680.0 35.3 14340 3 623.6 32.07 10670 8 724.0 38.7 15960 4 647.0 32.46 11160 9 757.1 39.63 18000 5 674.0 31.15 11900 10706.8 46.68 19300 归分析。
(1)估计回归方程的参数及及随机干扰项的方差2,计算2R 及2R 。
(2)对方程进行F 检验,对参数进行t 检验,并构造参数95%的置信区间. (3)如果商品单价变为35元,则某一月收入为20000元的家庭的消费支出估计是多少?构造该估计值的95%的置信区间。
六 实验步骤:6.1 建立工作文件并录入全部数据,如图1所示:图 16.2 建立二元线性回归模型01122Y X X βββ=++点击主界面菜单Quick\Estimate Equation 选项,在弹出的对话框中输入:Y C X1 X2点击确定即可得到回归结果,如图2所示图 2根据图2的信息,得到回归模型的估计结果为:626.51939.790610.02862(15.61)( 3.06)(4.90)Y X X =-+-20.902218R = 20.874281R = .. 1.650804D W =22116.847i e =∑ 32.29408F = (2,7)df =随机干扰项的方差估计值为22116.847302.40677σ∧==6.3 结果的分析与检验 6.3.1 方程的F 检验 回归模型的F 值为:32.29408F =因为在5%的显著性水平下,F 统计量的临界值为0.05(2,7) 4.74F =所以有 0.05(2,7)F F > 所以回归方程通过F 检验,方程显著成立。
计量经济学---第三版-李子奈---课后习题--答案

ÿÿÿÿÿ******************************************************************************************************************************* ***********************ÿÿÿÿÿÿÿÿÿÿÿÿ第一章绪论(一)基本知识类题型1-1.什么是计量经济学?1-3.计量经济学方法与一般经济数学方法有什么区别?它在经济学科体系中的作用和地位是什么?1-6.计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?1-7.试结合一个具体经济问题说明建立与应用计量经济学模型的主要步骤。
1-9.计量经济学模型主要有哪些应用领域?各自的原理是什么?1-12.模型的检验包括几个方面?其具体含义是什么?1-17.下列假想模型是否属于揭示因果关系的计量经济学模型?为什么?⑴ S t其中S t为第t年农村居民储蓄增加额(亿元)、R t为第t年城镇居民可支配收入总额(亿元)。
⑵ S t1其中S t1为第(t1)年底农村居民储蓄余额(亿元)、R t为第t年农村居民纯收入总额(亿元)。
1-18.指出下列假想模型中的错误,并说明理由:(1)RS t RI t其中,RS t为第t年社会消费品零售总额(亿元),RI t为第t年居民收入总额(亿元)(城镇居民可支配收入总额与农村居民纯收入总额之和),IV t为第t年全社会固定资产投资总额1(亿元)。
(2)C t180其中,C、Y分别是城镇居民消费支出和可支配收入。
(3)ln Y t ln K t L t其中,Y、K、L分别是工业总产值、工业生产资金和职工人数。
李子奈《计量经济学》第三版例题及习题的stata解答

第二章例.1(p24)(1)表中E(Y|X=800)即条件均值的求法,将数据直接复制到stata 中。
程序:sum y if x==800程序:程序:(2)图的做法: 程序:twoway(scatter y x )(lfit y x ),title("不同可支配收入水平组家庭消费支出的条件分布图")xtitle("每月可支配收入(元)")ytitle("每月消费支出(元)")xtick(500(500)4000)ytick(0(500)3500)、例.1(p37)将数据直接复制到stata中程序:(1)total xiyixiyi 4974750 1507821 1563822 8385678Total Std. Err. [95% Conf. Interval]return listscalars:-r(skip) = 0r(first) = 1r(k_term) = 0r(k_operator) = 0r(k) = 0r(k_level) = 0r(output) = 1r(b) = 4974750r(se) =g a=r(b) in 1#Scatter表示散点图选项,lfit表示回归线,title表示题目,xtick表示刻度,(500(500)4000)分别表示起始刻度,中间数表示以单位刻度,4000表示最后的刻度。
要注意的是命令中的符号都要用英文字符,否则命令无效。
这个图可以直接复制的,但是由于我的软件出问题,只能直接剪切,所以影响清晰度。
Total表示求和,return list命令可以引用其中的数据,接下来在第一列生成一个新的变量代表xiyi的和,同样生成一个b代表xi平方的,a除以b即可得到batatotal xi2return listg b=r(b) in 1di a/b.67(2)mean Yigen m=r(b) in 1mean Xi(g n=r(b) in 1di m-n*由此得到回归方程:Y=+例.2(p53)程序:(1)回归reg y x(2) >(3) 求X 的样本均值和样本方差:mean xx 11363.69 591.7041 10155.27 12572.11 Mean Std. Err. [95% Conf. Interval] Mean estimation Number of obs = 31sum x ,d (d 表示detail 的省略,这个命令会产生更多的信息)99% 20667.91 20667.91 Kurtosis 4.73926795% 19977.52 19977.52 Skewness 1.69197390% 16015.58 18265.1 Variance 1.09e+0775% 12192.24 16015.58Largest Std. Dev. 3294.46950% 9898.75 Mean 11363.6925% 9267.7 9000.35 Sum of Wgt. 3110% 9000.35 8941.08 Obs 31 5% 8920.59 8920.591% 8871.27 8871.27 Percentiles Smallest xdi r(Var)(特别注意Var 的大小写)例(P56) (1)reg Y X>Source SS df MS Number of obs = 29 F( 1, 27) = 2214.60 Model 2.4819e+09 1 2.4819e+09 Prob > F = 0.0000 Residual 30259023.9 27 1120704.59 R-squared = 0.9880 Adj R-squared = 0.9875 Total 2.5122e+09 28 89720219.8 Root MSE = 1058.6 Y Coef. Std. Err. t P>|t| [95% Conf. Interval]X .4375268 .0092973 47.06 0.000 .4184503 .4566033 _cons 2091.295 334.987 6.24 0.000 1403.959 2778.632(2)图的绘制:twoway (line Y X year),title("中国居民可支配总收入X与消费总支出Y 的变动图")~第三章例(p72)reg Y X1 X2&Source SS df MS Number of obs = 31F( 2, 28) = 560.57Model 166971988 2 83485994.2 Prob > F = 0.0000Residual 4170092.27 28 148931.867 R-squared = 0.9756Adj R-squared = 0.9739Total 171142081 30 5704736.02 Root MSE = 385.92Y Coef. Std. Err. t P>|t| [95% Conf. Interval]X1 .5556438 .0753076 7.38 0.000 .4013831 .7099046X2 .2500854 .1136343 2.20 0.036 .0173161 .4828547_cons 143.3266 260.4032 0.55 0.586 -390.0851 676.7383例.1(p85)g lnP1=ln(P1)g lnP0=ln(P0)g lnQ=ln(Q)g lnX=ln(X)Source SS df MS Number of obs = 22 F( 3, 18) = 258.84 Model .765670868 3 .255223623 Prob > F = 0.0000 Residual .017748183 18 .00098601 R-squared = 0.9773 Adj R-squared = 0.9736 Total .783419051 21 .037305669 Root MSE = .0314 lnQ Coef. Std. Err. t P>|t| [95% Conf. Interval]lnX .5399167 .0365299 14.78 0.000 .4631703 .6166631 lnP1 -.2580119 .1781856 -1.45 0.165 -.632366 .1163422 lnP0 -.2885609 .2051844 -1.41 0.177 -.7196373 .1425155 _cons 5.53195 .0931071 59.41 0.000 5.336339 5.727561 drop lnX lnP1 lnP0g lnXP0=ln(X/P0)g lnP1P0=ln(P1/P0)?reg lnQ lnXP0 lnP1P0Source SS df MS Number of obs = 22F( 2, 19) = 408.93Model .765632331 2 .382816165 Prob > F = 0.0000Residual .01778672 19 .000936143 R-squared = 0.9773Adj R-squared = 0.9749Total .783419051 21 .037305669 Root MSE = .0306lnQ Coef. Std. Err. t P>|t| [95% Conf. Interval]lnXP0 .5344394 .0231984 23.04 0.000 .4858846 .5829942lnP1P0 -.2753473 .1511432 -1.82 0.084 -.5916936 .040999_cons 5.524569 .0831077 66.47 0.000 5.350622 5.698515练习题13(p105)g lnY=ln(Y)g lnK=ln(K)g lnL=ln(L)reg lnY lnK lnLSource SS df MS Number of obs = 31 F( 2, 28) = 59.66 Model 21.6049266 2 10.8024633 Prob > F = 0.0000 Residual 5.07030244 28 .18108223 R-squared = 0.8099 Adj R-squared = 0.7963 Total 26.6752291 30 .889174303 Root MSE = .42554 lnY Coef. Std. Err. t P>|t| [95% Conf. Interval]lnK .6092356 .1763779 3.45 0.002 .2479419 .9705293 lnL .3607965 .2015915 1.79 0.084 -.0521449 .7737378 _cons 1.153994 .7276114 1.59 0.124 -.33645 2.644439第二问:test b_[lnk]+b_[lnl]==1*第四章¥例.4 (P116)(1)回归g lnY=ln(Y)g lnX1=ln(X1)g lnX2=ln(X2)reg lnY lnX1 lnX2Source SS df MS Number of obs = 31 F( 2, 28) = 49.60 Model 2.9609923 2 1.48049615 Prob > F = 0.0000 Residual .835744123 28 .029848004 R-squared = 0.7799 Adj R-squared = 0.7642 Total 3.79673642 30 .126557881 Root MSE = .17277 lnY Coef. Std. Err. t P>|t| [95% Conf. Interval]lnX1 .1502137 .1085379 1.38 0.177 -.072116 .3725435 lnX2 .4774534 .0515951 9.25 0.000 .3717657 .5831412 _cons 3.266068 1.041591 3.14 0.004 1.132465 5.39967于是得到方程:lnY=++(2)绘制参差图:"predict e, residg ei2=e^2scatter ei2 lnX2,title("图异方差性检验图")xtick(6ytick(0predict在回归结束后,需要对拟合值以及残差进行分析,需要使用此命令。
计量经济学李子奈第三版STATA答案

[856.20328+2.356*17.39*sqrt(1+4.5389992), 856.20328-2.356*17.39*sqrt(1+4.5389992) ] =[ 759.77809, 952.51758] 均值E(Y0)的置信区间: 856.20328+2.356*17.39*sqrt(4.5389992), 856.20328-2.356*17.39*sqrt(4.5389992) ] =[ 768.58,943.82]
2
yt xt
• 作为数理经济学模型是正确的,作为计量经济学模型则 不是正确的。计量经济学模型中必须包含随机误差项。 (2) y xt
t
t
正确。作为计量经济学模型它是正确的。该模型是经济计量模型的 理论模型,理论模型由被解释变量、解释变量、随机误差项、待估 计的参数和运算符构成。
• 7.下列假设模型是否属于揭示因果关系的计量经济模型?为什 么? • (1)St=112.0+0.12Rt • 其中St为第t年农村居民储蓄增加额(亿元), Rt为第t年城镇居 民可支配收入总额(亿元)。 • (2)St-1=4432.0+0.30Rt • 其中St-1为第t-1年农村居民储蓄增加额(亿元),Rt为第t年农村 居民可支配收入总额(亿元)。 • 解: (1)式不是揭示因果关系的计量经济模型。根据经济学理 论,储蓄额是由收入决定的,农村居民的储蓄额应由农村居民的 纯收入总额决定,而不是由城镇居民可支配收入总额决定。 (2)式中还存在时间动态上的逻辑错误,当年的收入不可能确 定上一年的储蓄,即今日事件确定昨日(已经发生)的事件。 1
. adjust x1=35 x2=20000,ci stdf Dependent variable: y Command: regress Covariates set to value: x1 = 35, x2 = 20000
《计量经济学》第三版课后题答案李子奈

第一章绪论(一)参考重点:计量经济学的一般建模过程第一章课后题(1.4.5)1.什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。
计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。
4.建立与应用计量经济学模型的主要步骤有哪些?答:建立与应用计量经济学模型的主要步骤如下:(1)设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;(2)收集样本数据,要考虑样本数据的完整性、准确性、可比性和—致性;(3)估计模型参数;(4)检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。
5.模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。
在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
第二章经典单方程计量经济学模型:一元线性回归模型参考重点:1.相关分析与回归分析的概念、联系以及区别?2.总体随机项与样本随机项的区别与联系?3.为什么需要进行拟合优度检验?4.如何缩小置信区间?(P46)由上式可以看出(1).增大样本容量。
样本容量变大,可使样本参数估计量的差减小;同时,在同样置信水平下,n越大,t分布表中的临界值越小。
李子奈第三版计量经济学常考简答题

李子奈第三版计量经济学常考简答题1回归分析与相关分析的联系和区别?回归分析是讨论被解释变量与一个或多个解释变量之间具体依存关系的分析方法。
相关分析是讨论变量之间线性相关程度的分析方法。
联系:两者都是研究非确定性变量间的统计依赖关系,并能度量线性依赖程度大小。
区别:1)研究的目的不同,相关分析着重讨论变量间的关联程度,而回归分析却要进一步探寻变量间具体依赖关系。
2)对变量的处理不同,相关分析堆成的处理相互联系的变量,而回归分析必须明确解释变量与被解释变量。
2什么是随机干扰项?主要包括哪些因素?和残差的区别?随机干扰项是指总体观测值与回归方程理论值之间的偏差。
因素:(1)众多细小因素的影响;(2)未知因素的影响;(3)数据测量误差或残缺;(4)模型形式不完善;(5)变量的内在随机性。
随机误差项与残差不同,残差是样本观测值与回归方程理论值之间的偏差。
残差项是随机误差项的一个样本估计量。
3为什么用可决系数评价拟合优度,而不用残差平方和?可决系数与相关系数的联系和区别?可决系数R*2=ESS/TSS=1-RSS/TSS,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣,该值越大说明拟合得越好,而残差平方和与样本容量关系密切,当样本容量比较小时,残差平方和的值也比较小,尤其是不同样本得到的残差平方和是不能作比较的。
此外作为检验统计量的一般应是相对量而不能用绝对量,因而不能使用残差平方和判断模型的拟合优度。
4、简述最小二乘估计量的特征及高斯马尔可夫定理。
答:(1)线性性,即它是否是另一随机变量的线性函数;(2)无偏性,即它的均值或期望值是否等于总体的真实值;(3)有效性,即它是否在所有线性无偏估计量中具有最小方差。
(4)渐近无偏性,即样本容量趋于无穷大时,是否它的均值序列趋于总体真值;(5)一致性,即样本容量趋于无穷大时,它是否依概率收敛于总体的真值;(6)渐近有效性,即样本容量趋于无穷大时,是否它在所有的一致估计量中具有最小的渐近方差。
《计量经济学》李子奈第三版课后习题Eviews实验报告

《计量经济学》实验报告实验一:EViews5.0软件安装及基本操作1.Eviews5.0的安装过程解压安装包,双击“Setup.exe”,选择安装路径进行安装;安装完毕后,复制“eviews5.0破解文件夹”下的“eviews5.reg文件”和“eviews5.exe文件”到安装目录下;双击“Eviews5.reg”进行注册,安装完毕。
2.基本操作(数据来源于李子奈版课后习题P61.12)运行Eviews,依次单击file→new→work file→unstructed→observation 31。
命令栏中输入“data y gdp”,打开“y gdp”表,接下来将数据输入其中。
做出“y gdp”的散点图,依次单击quick→graph→scatter→gdp y。
结果如下:开始进行LS回归:回归方程为:Y = -10.39340931 + 0.0710********GDP对回归方程做检验:斜率项t值9.59大于t在5%显著水平下的检验值2.045,拒绝零假设;截距项t 值0.121小于2.045,接受零假设。
可决系数0.76,拟合较好,方程F检验值91.99通过F检验。
下面进行预测:拓展工作空间:打开work file窗口,单击 Proc→Structure,将End date 的数据31→32;确定预测值的起止日期:打开work file窗口,点击Quick→Sample,填入“1 32”。
打开GDP数据表,在GDP的最下方填,按回车键。
在出现的Equation界面,点击Forecast出现相应界面如下:实验二:回归模型的建立与检验(数据来源于李子奈版课后习题P105.11)运行Eviews,依次单击file→new→work file→unstructed→observation 10。
命令栏中输入“data y x1 x2”,打开“y x1 x2”表,接下来将数据输入其中。
开始进行LS回归:估计方程:依次单击view→representations,得到回归方程为:Y = 626.5092847 - 9.790570097*X1 + 0.028*********X2,参数估计完毕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量作业计量经济学第
三版李子奈
文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
计量经济学第三版李子柰
12 下表是中国内地2007年各地区税收Y和国内生产总值GDP的统计资料。
单位:(亿元)
Y GDP
3357065
594
625
434
9200
88
629
要求,以手工和运用Eviews软件(或其它软件):
(1)做出散点图,建立税收随国内生产总值GDP变化的一元线性回归方程,并解释斜率的经济意义;
(2)对所建立的回归方程进行检验;
(3)若2008年某地区国内生产总值为8500亿元,求该地区税收入的预测值机预测区间。
解:下图是运用Eviews软件分析出的结果。
Dependent Variable: Y
Method: Least Squares
Date: 09/17/11 Time: 15:13
Sample: 2 32
Included observations: 31
Variable Coefficient Std. Error t-Statistic Prob.
GDP
Adjusted R-squared . dependent var
. of regression Akaike info criterion
Sum squared resid 2760310. Schwarz criterion
Log likelihood F-statistic
Durbin-Watson stat Prob(F-statistic)。