余热回收吸收式热泵应用前景共55页文档

合集下载

热泵在余热回收中的应用共52页文档

热泵在余热回收中的应用共52页文档

1
0















16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
热泵在余热回收中的应用
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散

吸收式热泵在余热回收领域的创新应用

吸收式热泵在余热回收领域的创新应用

吸收式热泵在余热回收领域的创
新应用
吸收式热泵在余热回收领域的创新应用
吸收式热泵是一种先进的能源回收技术,近年来在余热回收领域得到了广泛的创新应用。

它能够利用低温热能源,如废热、太阳能等,通过热量转移的方式,产生高温热能。

这种热泵技术的创新应用,为工业和生活提供了可持续的能源解决方案。

在工业领域,吸收式热泵被广泛应用于余热回收系统中。

工厂和制造业通常会产生大量的废热,传统上往往被浪费掉。

而吸收式热泵可以将这些废热转化为有用的高温热能。

通过回收和再利用废热,工厂可以降低能源消耗,减少对化石燃料的依赖,同时也降低了对环境的负面影响。

另外,吸收式热泵在生活领域也有创新的应用。

例如,在集中供暖系统中,吸收式热泵可以回收低温热水的热能,提供高温水供暖。

这种方式不仅可以提高供暖效率,减少能源消耗,还可以降低居民的能源开支。

此外,吸收式热泵还可以应用于热水供应系统,通过废热回收产生热水,满足家庭和商业需求。

除了工业和生活领域,吸收式热泵还在农业和温室种植领域有创新的应用。

农业生产通常需要大量的
热能,而吸收式热泵可以利用太阳能或废热为温室提供热能,使得温室内的作物生长更加稳定和高效。

这种方式不仅可以降低农业生产成本,还可以减少温室气体排放,对环境更加友好。

总的来说,吸收式热泵在余热回收领域的创新应用带来了许多好处。

它不仅可以提高能源利用效率,降低能源消耗,还可以减少环境污染。

随着技术的不断发展和创新,吸收式热泵有望在更多的领域得到应用,为可持续发展做出更大的贡献。

吸收式热泵回收余热技术的应用分析

吸收式热泵回收余热技术的应用分析

吸收式热泵回收余热技术应用分析一、吸收式热泵回收余热技术简介:溴化锂吸收式热泵包括蒸发器、吸收器、冷凝器、发生器、 泵和其他附件等。

它以蒸汽为驱动热源,在发生器内释放热量稀溶液并产生冷剂蒸汽。

冷剂蒸汽进入冷凝器,释放冷凝热传热管内的热水,自身冷凝成液体后节流进入蒸发器。

冷剂水经冷剂泵喷淋到蒸 发器传热管表面,吸收流经传热管内低温热源水的热量Qe 使热源水温度降低后流出机组,冷剂水吸收热量后汽化成冷剂蒸汽, 进入吸收器。

被发生器浓缩后 的溴化锂溶液返回吸收器后喷淋,吸收从蒸发器过来的冷剂蒸汽,并放出吸收热 Qa,加热流经吸收器传热管的热水。

热水流经吸收器、冷凝器升温后,输送给热用户。

吸收式热泵原理图吸收式热泵常以溴化锂溶液作为工质,对环境没有污染,不破坏大气臭氧 层,而且具有高效节能的特点。

可以配备溴化锂吸收式热泵,回收利用各种低品 位的余热或废热,达到节能、减排、降耗的目的。

二、热电分公司概况: 1、宇光高新热电: 一期建设:2X12MW 中温次高压抽凝式汽轮发电机组,4X 75t/h 循环流化床锅炉,总装机两 机四炉,总装机容量24MW/ 2005年3月投产。

二期建设:2008年新建一台12MV 抽背机组,2009年3月又新建一台75吨/时循环流化床 锅炉。

热交换器、屏蔽Qg,加热溴化锂 Qc 加热流经冷凝器 6底bnrt+Xa*tAJl亂需廈•IKE褴處Eli -i.」A皿三期建设:2009年7月,三期再建两台25MV机组,配套两台240t/h循环流化床锅炉,到2010年10月20日投产。

四期建设:2013年7月,四期再建一台240t/h (168MWV循环流化床热水锅炉,2013年11 月20日投产。

2、热负荷发展估算表:如上表可计算:1)额定工况下供热能力:机组额定低压抽汽量(0.294MPa)为268.16t/h,其供热量为670.4GJ/h ;机组额定中压抽汽量(0.981MPa)为284 t/h,其供热量为710GJ/h。

利用热泵技术对某热电厂排汽余热进行回收

利用热泵技术对某热电厂排汽余热进行回收

利用热泵技术对某热电厂排汽余热进行回收【摘要】在热电厂热电机组的运行过程中,汽轮机排汽会产生大量的余热,这些余热被冷却塔进行冷却,造成了浪费,同时也造成了一定的汽水损失。

吸收式热泵具有回收低温热量的功能,可以吸收利用这些余热。

以北方某300MW热电机组为例,对利用吸收式热泵回收低温余热进行了可行性分析,通过分析得到吸收式热泵能够回收机组的排汽余热,增加了机组热效率,减少了余热的浪费,具有显著的经济、社会和环境效益。

【关键词】热电厂排汽余热吸收式热泵节能降耗1 前言国家十二五能源规划通过采取加快推进新能源研发,加强节能增效等手段实现对能源的合理利用,其中节能增效包括节约能源和提高能源效率两大方面。

随着国家经济的发展,城市的规模也迅猛扩张,我国很多地方出现了集中热源不足的问题。

而作为集中供热热源主力的热电厂却大多数存在大容量、高参数供热机组所产生的大量低压缸排汽余热没有得到利用,而是直接通过循环冷却水系统排放到大气环境,所以如何对热电厂排汽余热进行回收便显得尤为重要。

[1]本文以我国北方某热电厂300MW热电机组排汽余热回收项目为例,对利用吸收式热泵回收该热电机组排汽余热进行了可行性分析。

[2]2 项目概况考虑对该热电厂热电机组排汽余热进行回收,提高供热效率,扩大供热面积。

前期已完成热电厂部分相关信息调研,如表1所示。

该电厂供热参数中供回水温度设计值为130/70℃,但是实际运行中回水温度根本不能够达到70℃,按照实际运行温度热网回水55℃进行设计,供热水温度130℃,热网循环水流量按8000m3/h。

3 方案简介本方案按电厂首站改造增加吸收式热泵回收排汽冷凝进行设计。

本方案使用汽轮机部分供热抽汽作为热源,回收一台汽轮机部分凝汽器循环水的余热,通过吸收式热泵将供热回水从55℃加热至110.3℃,再利用原系统热网加热器将热网水加热到130℃提供给市政供热。

4 工艺系统流程图5 经济效益分析5.1 电厂余热回收供热收益分析本方案热泵额定运行工况下可回收循环水余热205.9MW,单位面积供热负荷按60W/㎡计算,可以增加供热面积343万平方米。

利用吸收式热泵回收余热技术介绍

利用吸收式热泵回收余热技术介绍

优点: 优点
机组在供热期和非供热期都有较高效率
不足: 不足
改造投资大,难度大;技术新,风险大; 改造投资大,难度大;技术新,风险大; 背压时以热定电,热负荷变化时影响机组发电量。 背压时以热定电,热负荷变化时影响机组发电量。
China HuaDian Electric Power Research Institute
7
China HuaDian Electric Power Research Institute
华电电力科学研究院
HUADIAN ELECTRIC POWER RESEARCH INSTITUTE
(二)“NCB”新型供热机组 ”
实现方法: 实现方法:
采用新型供热机组; 采用新型供热机组; 低压缸可根据需要切除; 低压缸可根据需要切除; 机组在抽凝与背压间转换
China HuaDian Electric Power Research Institute
4
华电电力科学研究院
HUADIAN ELECTRIC POWER RESEARCH INSTITUTE
(三)电厂(300MW机组)节能潜力分析 电厂(300MW机组) 机组
热泵回收余热的抽汽供热机组能流图
(四)集中设置吸收式热泵供热
实现方法: 实现方法: 在电厂利用吸收式热泵将热网水一次加热至90℃ 在电厂利用吸收式热泵将热网水一次加热至 ℃ ,抽汽二次加热至 120 ℃ ;0.5MPa饱和蒸汽驱动热泵 饱和蒸汽驱动热泵 优点: 优点 利用吸收式热泵回收 余热, 余热,耗电低 不足: 不足 热泵容量大,占地多; 热泵容量大,占地多; 抽汽量大, 抽汽量大,对发电有影响
供热机组回收循环水(排汽) 供热机组回收循环水(排汽)余热供 回收循环水 热技术介绍 热技术介绍

吸收式热泵研究进展及应用现状

吸收式热泵研究进展及应用现状

14暖通空调HV&AC 2020年第50卷第10期吸收式热泵研究进展及应用现状**国家自然科学基金资助项目(编号= 51778115),中央高校基 本科研业务费资助项目(编号:N182502043)东北大学纪强仍韩宗伟厶沈阳群贺新能源科技有限公司张孝顺柯起厚吕鑫摘要梳理了吸收式热泵热力学分析与优化的理论研究成果,介绍了吸收式热泵在建筑 供热、温度转换和工业余热回收领域的应用现状。

在供热方面,吸收式热泵可有效利用空气、 土壤及地下水等低品位热源,降低化石燃料所占供热能源比例,减轻对大气污染。

在温度转换 与工业余热回收方面,应用吸收式热泵可提高系统能源利用效率,实现系统节能性与经济性双 收益。

关键词吸收式热泵清洁供热温度转换余热回收能源利用效率低品位热源Research progress and application status ofabsorption heat pumpsBy Ji Qiang^ , Han Zongwei , Zhong Xiooshun , Ke Qihou and Lu XinAbstract Reviews the theoretical researches of thermodynamic analysis and optimization ofabsorption heat pump (AHP), and presents the application status of AHP in building heating, temperature conversion and industrial waste heat recovery. In heating aspect , AHP can effectively utilize low-grade heat sources such as air, soil and groundwater, so as to reduce the proportion of fossil fuels in heating energy and reduce air pollution. In temperature conversion and industrial waste heat recovery aspects, the application of AHP can improve the energy utilization efficiency of the system, and achieve dual benefits of energy saving and economy.Keywords absorption heat pump, clean heating, temperature conversion , waste heat recovery, energy utilization efficiency, low-grade heat source★ Northeastern University, Shenyang, China0引言从2011年到2017年,我国一次能源总耗量由28. 5亿t 增长到48. 0亿t (以标准煤计),其中建 筑和工业领域为能耗大户,其能耗约占社会总能耗 的90%口切。

回收电厂余热的新型吸收式热泵系统

回收电厂余热的新型吸收式热泵系统

回收电厂余热的新型吸收式热泵系统洪文鹏;何建军【摘要】火力发电厂中仍存在大量废热浪费的现象,回收该部分余热可有效提高电厂供热性能.提出一种由两级蒸发器串联耦合成的新型吸收式热泵系统以提升热泵机组性能与电厂能源利用率,新系统采用电厂锅炉排污水作为第二蒸发器的热源,同时回收循环冷却水与排污水余热,采用Aspen Plus软件进行模拟,以中国东北某200 MW火电机组典型供热系统为例与新系统进行对比分析.研究结果表明,新系统较典型系统COP提高6.21%,年节约煤资源15358.91吨,投资回收期约3.82年,新型吸收式热泵系统具有良好的社会经济效益,新系统的提出为火力发电厂能量梯级利用提供了理论支撑,对节能减排与环境保护有着重要意义.【期刊名称】《东北电力大学学报》【年(卷),期】2019(039)003【总页数】7页(P67-73)【关键词】吸收式热泵;余热利用;循环水;排污水;AspenPlus模拟【作者】洪文鹏;何建军【作者单位】东北电力大学能源与动力工程学院,吉林吉林132012;东北电力大学能源与动力工程学院,吉林吉林132012【正文语种】中文【中图分类】TK657.5能源问题是当今社会人们热议的话题之一,人类的各种生产活动离不开能源的支撑,人类社会的发展离不开优质能源的出现和先进能源技术的使用.目前我国对能源的需求不断增加,与此同时我国能源的利用率远低于发达国家,使得能源供应紧张及环境污染问题日趋严重.由于煤电在我国仍将长期占据主导地位,如何节约能耗是新时期政府和电力企业积极探索的新领域[1~3].吸收式热泵技术作为一种回收利用中低品位热源,实现从低温向高温输送热能,提高热能利用率的装置,目前已逐渐成熟并且广泛应用在石油、化工、冶金和电厂等各个领域[4~5].在相同的集中供热面积下,采用吸收式热泵技术供热将比传统供热方式在能源消耗方面节约40%左右,清洁生产与节能降耗效果显著.利用吸收式热泵回收电厂循环水余热,可三位一体实现缓解煤资源紧张、节能减排和电厂经济效益创收,为电厂变革以及新电厂建设提供了一种新思路、新措施[6~7].张学镭等[8]研究了回收循环水余热的热泵供热系统的可行性并建立了供热系统流程图,计算额定工况与变工况热泵系统性能,对系统进行了热力性能评价.刘媛媛[9]等为了充分发挥吸收式热泵在燃煤电厂供热系统中的节能性,提出一种由两级第一类溴化锂吸收式热泵串并联耦合而成的新系统.鲁敬妮[10]利用等效焓降法计算了12 MW的发电量和煤耗等指标通过净现值和动态投资回收期法对热泵余热回收系统进行经济性评价.刘刚[11]等通过建立相应的热经济性计算模型,分析了热泵投切的热负荷转折点、余热水温度以及抽汽流量、压力对机组热经济性的影响.Gogoi TK[12]等提出了一种复合式汽轮机发电循环和溴化锂蒸气吸收制冷系统的热力学分析,计算了各系统构件的功率循环、能量利用率和系统中各组分的不可逆工作效率.周振起[13]等提出了一种利用锅炉排污和汽轮机抽汽驱动吸收式热泵预热凝汽器凝结水的方案并验证了可行性.Aspen Plus作为大型通用模拟软件,在化工设计、动态模拟方面有着举足轻重的地位,刘金平[14]等应用Aspen Plus软件对自复叠式热泵进行了流程模拟,并分析了流程中各点参数.史俊杰[15]采用Aspen plus软件对热泵进行建模分析,从理论角度证明了吸收式热泵的热电联产供热方式比单独的热电联产供热方式更具有节能性.车德勇[16]等以某200 MW抽凝式机组及其供热系统为例,采用Aspen Plus软件建立单、双效溴化锂吸收式热泵模型,并进行变工况模拟对比分析.国内外学者都在不断开发研究更高效、更安全、更环保的吸收式热泵技术.对吸收式热泵热力学性能、循环优化、工程应用等方面进行了一系列研究,然而电厂中热泵机组供热量不足,所占份额不超过总供热量的一半,电厂中仍有排污水余热未利用直接排放,本文采用文献[9]对吸收式热泵的各关键部件数学建模,以Aspen Plus软件模拟系统流程,以中国东北某200 MW火电机组供热系统为例进行分析与研究,提出一种由两级蒸发器串联耦合成的新型吸收式热泵系统,并结合典型吸收式热泵系统分析新系统的热力性能、可行性与经济性.1 新型吸收式热泵系统及模拟本文以中国东北某200 MW火电机组现有的吸收式热泵系统为研究对象,电厂采用第一类增热型吸收式热泵系统,以高品位热能蒸汽(汽轮机抽汽)作为热泵机组的驱动热源,溴化锂-水作为工质对,回收电厂循环冷却水等低品位热能用于热网水升温后供热.热泵系统主要由发生器、冷凝器、蒸发器、吸收器、溶液热交换器、溶液泵和各种阀门组成,电厂实际运行时仍存在大量废热(如锅炉尾部烟气、排污水等)未利用,热泵系统供热量占整个供热系统约40 %,仍有很大发展空间.根据电厂实际需求,提出一种由两级蒸发器串联耦合成的新系统,第一蒸发器回收部分电厂冷却水余热,第二蒸发器回收锅炉排污水余热,加大余热回收力度,提高热泵机组性能.系统流程图,如图1所示.G—发生器;C—冷凝器;E1—第一蒸发器;E2—第二蒸发器;A—吸收器图1 新型吸收式热泵系统流程图1.1 评价准则吸收式热泵的热力经济性用热力系数COP表示为(1)公式中:Qh为制热量;Qg为发生器的热负荷;Qe为蒸发器的热负荷;Wp为溶液泵的耗功量,溶液泵的耗功量Wp相对于其他部件的换热量来说相对较小,通常忽略不计.节煤量:ΔA=Qr·t·λ,(2)公式中:ΔA为节煤量;Qr为系统热能节约量,即热泵余热回收量;t为时间;λ为当量热力折算标煤数,根据2008年发布的《综合能耗计算通则》,λ为0.034 12 t/GJ.1.2 Aspen Plus模拟假定热泵系统模拟时处于稳定状态和热平衡条件下运行,系统中各部件的压力损失及热损失均忽略不计,工质不存在发热和吸热不足情况,均为饱和状态,节流阀内为绝热节流.采用Aspen Plus中HeatX、Mixer、Pump、Valve和Flash2等模块进行模拟,用HeatX模拟发生器、冷凝器、蒸发器和吸收器,发生器选择闪蒸管来满足水蒸汽与溶液分离要求,吸收器选择混合器满足水蒸汽与浓溶液混合要求,溶液泵的工作效率取66 %,选择适当模块按照工作原理将它们用物流连接,建立完整的模拟系统.以电厂机组实际运行为例,选用循环冷却水参数为33 ℃、0.2 MPa、3 000 t/h,热网水参数为50 ℃、0.2 MPa、2 000 t/h,以0.2 MPa、250 ℃的汽轮机抽汽作为驱动热源,对新型吸收式热泵系统进行模拟计算.模拟流程图,如图2所示.模拟中各个模块说明,如表1所示.图2 新型吸收式热泵系统Aspen Plus模拟流程图表1 模型中单元操作模块说明模块名称模拟部件模块名称模拟部件FSQ1第一发生器ZFQ1第一蒸发器FSQ2第二发生器ZFQ2第二蒸发器LNQ冷凝器XSQ1第一吸收器JLF节流阀XSQ2第二吸收器RYF溶液阀RYB溶液泵RJHQ热交换器1.3 锅炉排污水余热回收的可能性分析在汽包锅炉正常运行过程中,常常通过排出一定量被污染锅水的方式来保证锅水的品质,锅炉排污分为连续排污和定期排污.锅炉排污不仅量大,而且温度较高,直接排放会造成热浪费与热污染情况.锅炉排污水经排污扩容系统回收部分工质,饱和蒸汽引至除氧器,剩余浓缩污水经引流汇总后排至吸收式热泵蒸发器内.需要特殊说明的是,电厂实际运行时的疏放水,轴封漏气等余热均可一同回收.国内对于锅炉的排污率有着严格的控制,排污率规定凝汽器式电厂锅炉的允许排污率为2%~3%,但在实际运行当中,考虑电厂折旧,人为操作等情况,大多数锅炉的排污率都会超过允许值.排污扩容器的能量平衡方程为Gphpφ=Gqhq+Gshs,(3)排污扩容器的质量平衡方程为Gp=Gq+Gs,(4)公式中:Gp为锅炉排污量;Gq为扩容器饱和蒸汽量;Gs为扩容器疏水量;hp 为汽包压力下饱和水比焓;hq为扩容压力下饱和蒸汽比焓;hs为扩容压力下饱和水比焓;φ为扩容器热效率,一般取0.98.扩容器的疏水量为(5)该电厂有6台同类型的200 MW机组,电厂机组排污系统参数如表5所示,根据公式(3)~公式(5)计算,可知额定工况下排污水量为3.23 kg/s,假设6台机组运行工况相同,则6台机组汇总后的排污水量为19.38 kg/s.因排污水中含有钾、钠、镁的化合物以及重碳酸化合物,需在管道加设污水处理装置,第二蒸发器选用耐腐蚀材料.200 MW机组排污系统参数,如表2所示.表2 200 MW机组排污系统参数参数数值参数数值参数数值锅炉蒸发量t/h670汽包压力/MPa14.82汽包排污水温度/℃341.45扩容器压力/MPa0.71扩容疏水温度/℃165.53扩容器效率/%98锅炉排污率/%3G-发生器;C-冷凝器;E-蒸发器;A-吸收器图3 典型吸收式热泵系统流程图2 系统对比分析选用典型吸收式热泵系统对比分析新系统的优劣,典型系统流程图如图3所示,模拟流程图如图4所示.为了便于分析对比二者性能,新系统与参比系统部分参数相同:汽轮机抽汽和排汽流量与温度、循环冷却水进口流量与温度、热网水进口流量和温度.模拟得到各状态点的组分,质量流量等未知参数,计算结果如表3所示. 图4 典型吸收式热泵系统Aspen Plus模拟流程图表3 新型、典型吸收式热泵系统模拟状态点参数对比状态点位置温度/℃压力/kPa蒸汽分率浓度/%质量流量/(kg·s-1)1发生器1出口91.59/91.5958.40/58.400.07/0.0759.00/59.00267.5/267.52发生器2水蒸汽出口128.67/145.958.40/58.401.00/1.000.00/0.0016.99/16.993发生器2溶液出口128.67/145.958.40/58.400.00/0.0062.94/62.94250.76/250.764冷凝器出口85.03/85.0358.40/58.400.00/0.000.00/0.0016.99/16.995节流阀出口11.20/11.201.33/1.330.11/0.130.00/0.0016.99/16.996第一蒸发器出口11.20/11.201.33/1.331.00/1.000.00/0.0016.99/16.997第二蒸发器出口164.00/—1.33/—1.00/—0.00/—16.99—8热交换器浓溶液出口55.30/55.3058.40/58.400.00/0.0062.94/62.94250.76/250.769溶液阀出口55.36/55.361.33/1.330.00/0.0062.94/62.94250.76/250.7610吸收器1出口132.53/124.271.33/1.330.19/0.0059.0059.00267.5/267.511吸收器2出口47.23/47.231.33/1.330.00/0.0059.0059.00267.5/267.512溶液泵出口47.26/47.2658.40/58.400.00/0.0059.00/59.00267.5/267.514热交换器稀溶液出口91.52/91.5258.40/58.400.07/0.0759.00/59.00267.5/267.5CQ汽轮机抽汽250.00/250.00200.00/200.001.00/1.000.00/0.0013.03/13.03FQ汽轮机乏汽138.00/138.00200.00/200.001.00/1.000.00/0.0013.03/13.03XHS1循环水进口33.00/33.00200.00/200.000.00/0.000.00/0.00833.33/833.33XHS2循环水出口22.43/22.43200.00/200.000.00/0.000.00/0.00833.33833.33PWS1排污水进口165.53/—710.00/—0.00/—0.00/—19.38/—PWS2排污水出口165.04—/710.00/—0.88/—0.00/—19.38/—RWS1热网水进口50.00/50.00200.00/200.000.00/0.000.00/0.00555.56/555.56RWS2热网水经吸收器后70.78/68.68200.00/200.000.00/0.000.00/0.00555.56/555.56RWS3热网水经冷凝器后88.36/86.26200.00/200.000.00/0.000.00/0.00555.56/555.562.1 对比分析新系统是由两级蒸发器串联耦合而成,以典型吸收式热泵系统为参比系统,研究讨论新系统的热力性能.经Aspen Plus模拟软件模拟后,新系统与参比系统各部件热力性能如表4所示(已忽略溶液泵所做功),可以看出:(1)在两系统相同额定工况下,新系统供热量为89.18 MW,参比系统为84.30MW,热泵机组性能整体提高5.79 %,根据公式(1)计算热力系数COP提高约为6.21 %,这是由于新系统第二级蒸发器多回收的排污水余热使热网水温度升高,以某一小区为例,居民采暖热负荷为60 W/m2,新系统新增加供热面积8.13×104 m2,加强了电厂供热能力.(2)参比系统回收的余热为36.78 MW,新系统回收余热为41.68 MW,多回收余热为4.9 MW,根据公式(2)计算电厂节约标准煤炭量,以东北为例,在一年中按3 000 h的供暖期计算,节约煤炭为15 358.91 t,参比系统节煤量为13 553.28 t,新系统较参比系统节约煤量有明显提升,约为13.32%.表4 新系统和参比系统的热力性能参数新系统参比系统参数新系统参比系统热网水回水温度/℃50.0050.00热网水供水温度/℃88.3686.26发生器部件换热量/MW47.4845.72冷凝器部件换热量/MW40.9440.94蒸发器部件换热量/MW41.6836.78吸收器部件换热量/MW48.2443.36热交换器部件换热量/MW45.3945.39COP1.881.772.2 经济性分析能源的综合梯级利用与转换问题绝不仅仅是单纯的热力学计算问题,系统的提出与改进必将有材料、研制等方面费用,本文提出新系统与参比系统相比结构复杂,因此很有必要对新系统进行经济性分析,同样选用典型吸收式热泵系统作为对比系统,以投资回收期作为指标[10],计算公式为(6)公式中:tp为系统投资回收期;Dtot为系统总投资成本;Dr为单位热价;ty为年运行小时;Qr为余热回收量;Dt为系统设备折旧费;t1为设备使用寿命;Dw 为年运行维护费用.系统总投资成本Dtot=dAHPQAHP+Dcon,dAHP为热泵设备单位成本(以供热量计);QAHP为热泵供热量;Dcon为系统安装成本.系统经济性分析所用原始数据,如表6所示.表6 经济性分析原始数据参数数值参数数值建设安装费Dcon/元30%Dtota热泵设备投资单位成本dAHP/(元/kW)260a热泵使用寿命t1/年20年运行时间/h3000b年运行维护费用Dw/(元/年)4%Dtota设备折旧费Dt/元5%Dtota单位热价Dr/(元/GJ)22c注:a-由电科院提供;b-根据北方地区集中供暖时常确定;c-根据北方地区燃煤热电厂平均供暖热价确定.根据公式(6)计算表6新系统和参比系统的热力性能,结果如表7所示.明显看出,新系统总投资成本与维护费用均高于参比系统,但是新系统余热回收量较参比系统要多,投资回收期较参比系统要少,新系统的收益高于参比系统.回收排污水余热可增强热泵系统的供热能力并减少电厂投资回收期限.表7 新系统与参比系统投资回收期参数新系统参比系统参数新系统参比系统热泵设备投资单位成本dAHP/(元/kW)260260热泵供热量QAHP/MW89.1884.30余热回收量Qr/MW41.6836.78系统总投资成本Dtot万元33123 131.1设备折旧费Dt/万元165.62156.56年运行维护费用Dw/(万元/年)132.50125.24投资回收期tp/年3.824.143 结论本文采用Aspen Plus软件,模拟研究了东北某200 MW燃煤热电厂中的吸收式热泵系统,考虑在实际生产中电厂存在排污水的余热仍有利用空间,同时吸收式热泵系统供热能力可以继续提升,提出由双蒸发器串联耦合成的新型吸收式热泵系统,并讨论了回收排污水的可能性,计算获得排污水流量.通过对新系统与典型系统热力性能和经济性对比分析,得出以下结论:(1)热泵系统性能提高.新系统供热量为89.18 MW,参比系统为84.30 MW,热泵机组性能提高5.79 %,新系统增大了电厂供热面积,加强了电厂供热能力.(2)新系统余热回收量增加.新系统不仅回收循环水余热,还将排污水余热有效利用起来,新系统回收余热为41.68 MW,参比系统回收余热为36.78 MW,多回收余热为4.9 MW.(3)节煤量明显增加.新系统节约煤碳为15 358.91 t,参比系统节约煤碳为13 553.28 t,节煤量提高为13.32 %.(4)经济性效果显著.新系统投资回收期为3.82年,相对于参比系统投资回收期为4.14年,回收期与经济效益方面都有着明显优势.因此本文所提出的双蒸发器串联耦合回收电厂余热的新型吸收式热泵系统,同时吸收循环水与排污水余热以提升热泵机组性能,并为电厂带来了可观的经济性效益,具有一定的工程实践指导意义.参考文献【相关文献】[1] 杨勇平,杨志平,徐刚,等.中国火力发电能耗状况及展望[J].中国电机工程学报,2013,33(23):1-11.[2] 毕夏,史长东,程竹.低碳背景下我国新能源行业利用现状及发展前景分析[J].东北电力大学学报,2012,32(5):86-90.[3] 洪文鹏,滕达.分布式冷热电联供系统集成及应用分析[J].东北电力大学学报,2018,38(5):54-63.[4] 戴永庆.溴化锂吸收式制冷技术及应用[M].北京:机械工业出版社,2000.[5] 陈红,谢继红.热泵技术及其应用[M].北京:化学工业出版社,2006:1-39.[6] 陈光明,石玉琦.吸收式制冷(热泵)循环流程研究进展[J].制冷学报,2017(4):1-22.[7] 郭培军,隋军,金红光.立式升温型溴化锂吸收式热泵的设计与变工况研究[J].工程物理学报,2012,33(6):907-912.[8] 张学镭,陈海平.回收循环水余热的热泵供热系统热力性能分析[J].中国电机工程学报,2013,33(8):1-8.[9] 刘媛媛,隋军,刘浩.燃煤热电厂串并联耦合吸收式热泵供热系统研究[J].中国电机工程学报,2016,36(22):6148-6155.[10] 鲁敬妮,屠珊,王红娟,等.吸收式热泵回收机组余热经济性分析[J].热力发电,2017,46(2):136-140.[11] 刘刚.吸收式热泵在供热机组中适用性及经济性研究[J].汽轮机技术,2018,80(3):216-220.[12] T.K.Gogoi,K.Talukdar.Exergy based parametric analysis of a combined reheat regenerative thermal power plant and water-libr vapor absorption refrigerationsystem[J].Energy Conversion & Management,2014,83(7):119-132.[13] 周振起,马玉杰,王静静,等.吸收式热泵回收电厂余热预热凝结水的可行性研究[J].流体机械,2010,38(12):73-76.[14] 刘金平,朱海明,刘雪峰.基于Aspen Plus的自复叠热泵模拟[J].制冷,2010,29(1):1-8.[15] 史俊杰.吸收式热泵与热电联产耦合供暖的热力系统建模[D].北京:华北电力大学,2012.[16] 车德勇,吕婧,高龙,等.溴化锂吸收式热泵回收循环水余热的模拟研究[J].热力发电,2014(12):38-43.。

吸收式热泵余热回收技术原理及在热电厂中的应用

吸收式热泵余热回收技术原理及在热电厂中的应用

吸收式热泵余热回收技术原理及在热电厂中的应用柳立慧新疆电力科学研究院(乌鲁木齐830011)摘要:介绍了吸收式热泵余热回收技术的基本原理和特点,该技术可回收利用大量循环冷却水的低温余热,回收的余热用于冬季供暖,可大大增加现有热源的供热能力,节能节水效益显著。

关键词:热泵;余热;热电厂0概述2009年的哥本哈根气候变化谈判会议上,我国政府明确量化碳减排目标(到2020年,单位G D P二氧化碳排放比2005年下降40%至45%),展示了中国在应对气候变化、履行大国责任方面的积极态度。

这充分表明我国不再单纯追求经济的增长速度,而是更加强资源的有效利用,关注可持续增长“节能减排”降耗已被摆在前所未有的高度。

而提高能源利用率、加强余热回收利用是节约能源、降低碳排放、保护环境是根本措施。

吸收式热泵余热回收技术以其高效节能和具备显著经济效益的特点,尤为引人注目。

1吸收式热泵原理吸收式热泵是一种利用低品位热源,实现将热量从低温热源向高温热源泵送的循环系统。

是回收利用低温位热能的有效装置,具有节约能源、保护环境的双重作用。

吸收式热泵可以分为两类。

第一类吸收式热泵,也称增热型热泵,是利用少量的高温热源,产生大量的中温有用热能。

即利用高温热能驱动,把低温热源的热能提高到中温,从而提高了热能的利用效率。

第一类吸收式热泵的性能系数大于1,一般为1.5~2.5。

第二类吸收式热泵,也称升温型热泵,是利用大量的中温热源产生少量的高温有用热能。

即利用中低温热能驱动,用大量中温热源和低温热源的热势差,制取热量少于但温度高于中温热源的热量,将部分中低热能转移到更高温位,从而提高了热源的利用品位。

第二类吸收式热泵性能系数总是小于1,一般为0.4~0.5。

两类热泵应用目的不同,工作方式亦不同。

但都是工作于三热源之间,三个热源温度的变化对热泵循环会产生直接影响,升温能力增大,性能系数下降。

目前,吸收式热泵使用的工质为L i Br—H2O或N H3—H2O,其输出的最高温度不超过150℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档