迈克尔逊干涉实计算仿真
迈克尔逊干涉仪的使用实验报告

先生物理实验陈述之杨若古兰创作实验名称迈克尔逊干涉仪的使用学院专业班级陈述人学号同组人学号同组人学号同组人学号理论课任课教师实验课指点教师实验日期报告日期实验成绩批改日期实验目的(1)了解迈克尔逊干涉仪的道理并把握其调节方法(2)观察等倾干涉、等候干涉的条纹,并能区别定域干涉和非定域干涉(3)测定He-Ne激光的波长(4)观察白光干涉条纹和测定钠光波长及相关长度实验仪器迈克尔逊干涉仪、He-Ne激光器.实验道理1.迈克尔逊干涉仪图1是迈克尔逊干涉仪实物图.图2是迈克尔逊干涉仪的光路示意图,图中M1和M2是在彼此垂直的两臂上放置的两个平面反射镜,其中M1是固定的;M2由精密丝杆控制,可沿臂轴前、后挪动,挪动的距离由刻度转盘(由粗读和细读2组刻度盘组合而成)读出.在两臂轴线订交处,有一与两轴成45°角的平行平面玻璃板G1,它的第二个平面上镀有半透(半反射)的银膜,以便将入射光分成振幅接近相等的反射光⑴和透射光⑵,故G1又称为分光板.G2也是平行平面玻璃板,与G1平行放置,厚度和折射率均与G1不异.因为它抵偿了光线⑴和⑵因穿越G1次数分歧而发生的光程差,故称为抵偿板.从扩展光源S射来的光在G1处分成两部分,反射光⑴经G1反射后向着M2前进,透射光⑵透过G1向着M1前进,这两束光分别在M2、M1上反射后逆着各自的入射方向返回,最初都达到E处.因为这两束光是相关光,因此在E处的观察者就能够看到干涉条纹.由M1反射回来的光波在分光板G1的第二面上反射时,如同平面镜反射一样,使M1在M2附近构成M1的虚像M1′,因此光在迈克尔逊干涉仪中自M2和M1的反射相当于自M2和M1′的反射.因而可知,在迈克尔逊干涉仪中所发生的干涉与空气薄膜所发生的干涉是等效的.当M2和M1′平行时(此时M1和M2严酷互相垂直),将观察到环形的等倾干涉条纹.普通情况下,M1和M2构成一空气劈尖,是以将观察到近似平行的干涉条纹(等厚干涉条纹).2.单色光波长的测定用波长为λ的单色光照明时,迈克尔逊干涉仪所发生的环形等倾干涉圆条纹的地位取决于相关光束间的光程差,而由M2和M1反射的两列相关光波的光程差为Δ=2dcosi (1)其中i为反射光⑴在平面镜M2上的入射角.对于第k条纹,则有2dcos ik=k λ (2) 当M2和M1′的间距d逐步增大时,对任一级干涉条纹,例如k级,肯定是以减少cosik的值来满足式(2)的,故该干涉条纹间距向ik变大(cos ik值变小)的方向挪动,即向外扩展.这时候,观察者将看到条纹好像从中间向外“涌出”,且每当间距d添加λ/2时,就有一个条纹涌出.反之,当间距由大逐步变小时,最靠近中间的条纹将一个一个地“堕入”中间,且每堕入一个条纹,间距的改变亦为λ/2.是以,当M2镜挪动时,若有N个条纹堕入中间,则标明M2绝对于M1移近了Δd=N (3) 反之,若有N个条纹从中间涌出来时,则标明M2绝对于M1移远了同样的距离.如果精确地测出M2挪动的距离Δd,则可由式(3)计算出入射光波的波长.3.测量钠光的双线波长差Δλ钠光2条强谱线的波长分别为λ1=589.0 nm和λ2=589.6 nm,挪动M2,当光程差满足两列光波⑴和⑵的光程差恰为λ1的整数倍,而同时又为λ2的半整数倍,即Δk1λ1=(k2+)λ2这时候λ1光波生成亮环的地方,恰好是λ2光波生成暗环的地方.如果两列光波的强度相等,则在此处干涉条纹的视见度应为零(即条纹消逝).那么干涉场中相邻的2次视见度为零时,光程差的变更应为ΔL=kλ1=(k+1)λ2(k为一较大整数)由此得λ1-λ2==因而Δλ=λ1-λ2==式中λ为λ1、λ2的平均波长.对于视场中间来说,设M2镜在接踵2次视见度为零时挪动距离为Δd,则光程差的变更ΔL应等于2Δd,所以Δλ=(4)对钠光=589.3 nm,如果测出在接踵2次视见度最小时,M2镜挪动的距离Δd ,就可以由式(4)求得钠光D双线的波长差.4.点光源的非定域干涉景象激光器发出的光,经凸透镜L后会聚S点.S点可看做一点光源,经G1(G1未画)、M1、M2′的反射,也等效于沿轴向分布的2个虚光源S1′、S2′所发生的干涉.因S1′、S2′发出的球面波在相遇空间处处相关,所以观察屏E放在分歧地位上,则可看到分歧外形的干涉条纹,故称为非定域干涉.当E垂直于轴线时(见图3),调整M1和M2的方位也可观察到等倾、等厚干涉条纹,其干涉条纹的构成和特点与用钠光照明情况不异,此处不再赘述.实验步调1.观察扩展光源的等倾干涉条纹并测波长①点燃钠光灯,使之与分光板G1等高而且位于沿分光板和M1镜的中间线上,动弹粗调手轮,使M1镜距分光板G1的中间与M1镜距分光板G1的中间大致相等(拖板上的标记线在主尺32 cm 地位).②在光源与分光板G1之间拔出针孔板,用眼睛透过G1直视M2镜,可看到2组针孔像.细心调节M1镜后面的 3 个调节螺钉,使 2 组针孔像重合,如果难以重合,可略微调节一下M2镜后的3个螺钉.当2组针孔像完整重合时,就可去掉针孔板,换上毛玻璃,将看到有明暗相间的干涉圆环,若干涉环模糊,可轻轻动弹粗调手轮,使M2镜挪动一下地位,干涉环就会出现.③再细心调节M1镜的2个拉簧螺丝,直到把干涉环中间调到视场地方,而且使干涉环中间随观察者的眼睛摆布、上下挪动而挪动,但干涉环不发生“涌出”或“堕入”景象,这时候观察到的干涉条纹才是严酷的等倾干涉④测钠光D双线的平均波长.先调仪器零点,方法是:将微调手轮沿某一方向(如顺时针方向)旋至零,同时留意观察读数窗刻度轮扭转方向;坚持刻度轮旋向不变,动弹粗调手轮,让读数窗口基准线对准某一刻度,使读数窗中的刻度轮与微调手轮的刻度轮彼此配合.⑤始终沿原调零方向,细心动弹微调手轮,观察并记录每“涌出”或“堕入”50个干涉环时,M1镜地位,连续记录6次.⑥根据式(5-8),用逐差法求出钠光D双线的平均波长,并与尺度值进行比较.2.观察等厚干涉和白光干涉条纹①在等倾干涉基础上,挪动M2镜,使干涉环由精密变粗疏,直到全部视场条纹酿成等轴双曲线外形时,说明M2与M1′接近重合.细心调节水平式垂直拉簧螺丝,使M2与M1′有一很小夹角,视场中便出现等厚干涉条纹,观察和记录条纹的外形、特点.②用白炽灯照明毛玻璃(钠光灯不熄灭),细心缓慢地扭转微动手轮,M2与M1′达到“零程”时,在M2与M1′的交线附近就会出现黑色条纹.此时可挡住钠光,再极当心肠扭转微调手轮找到地方条纹,记录观察到的条纹外形和色彩分布.3.测定钠光D双线的波长差①以钠光为光源调出等倾干涉条纹.②挪动M2镜,使视场中间的视见度最小,记录M2镜的地位;沿原方向继续挪动M2镜,使视场中间的视见度由最小到最大直至又为最小,再记录M2镜地位,连续测出6个视见度最小时M2镜地位.③用逐差法求Δd的平均值,计算D双线的波长差.4.点光源非定域干涉景象观察方法步调自拟.迈克尔逊干涉仪系精密光学仪器,使用时应留意防尘、防震;不克不及触摸光学元件光学概况;不要对着仪器说话、咳嗽等;测量时动作要轻、要缓,尽量使身体部位离开实验台面,以防震撼.实验数据与结果波长(1)记录的地位并用逐差法计算挪动的距离、He-Ne激光的的地位读数d(cm)挪动的距离(cm)/“冒进”或“缩进”的条纹数50 = ==50 = ==50 = ==50 = ==50 = ==50 = =50 =50 =50 =50 =(2)讲结果与公认值(632.8nm)比较,计算绝对误差x100%=4.1%实验结果分析1.在实际测量中,出现了一下情况:随测量次数的增多,圆心肠位发生了变更,这类景象是与理论相悖的,缘由是因为M1与M2’未达到完整平行或调整仪器时未调整好,而且圆心偏移速度越快越说明M1与M2’平行度越差2.在测量完第一组数据后,反向扭转时会在扭转相当多圈后才会出现中间圆环的由吞吐变吐,这个改变不是立即就完成的,这是因为仪器右边的旋钮为微调旋钮,使用它对干涉仪的性质改变影响较小,故有吞变吐须要扭转相当一段时间,此时应扭转中部大旋钮,再使用微调,但不要健忘刻度盘调零.3.两组数据所测得的结果相差较大,这可能是因为测量过程的误差或操纵失误所惹起的,应尽量防止.4.实验中还观察到很多景象,如M1上出现很多光斑,其中有亮有暗,同心圆的粗细和疏密变更等等.但因为理论常识的缺乏,我们尚没法给出上述成绩的完满解释,须要我们进一步的进修与探索.一进行分析讨论.从数据表格可以看到,在误差答应范围内,测量波长与理论波长分歧,验证了这类测试方法的可行性.误差分析①实验中空程没能完整清除;②实验对每一百条条纹的开始计数点和计数结束点的判定存在误差;③实验中读数时存在随机误差;④实验器材受环境中的振动等身分的干扰发生偏差.3)实验结果:经分析,当顺时针动弹旋钮时,“吐”出圆环,此时测得一波长,当逆时针动弹旋钮时,“吞”出圆环,此时亦测得一波长.将二者取平均值得测得光的波长:一个迈克尔逊实验,不单让我领悟到迈克尔逊设计干涉仪的巧妙和聪明,也更让我晓得了做实验要有耐心和恒心,哪怕实验再麻烦,也必须坚持不懈,重视细节,如许才干真正地把实验做、为何白光干涉不容易观察到?答:两光束能发生干涉景象除满足同频、同向、相位差恒定三个条件外,其光程差还必须小于其相关长度.而白光的相关长度只要微米量级,所以只能在零光程附近才干观察到白光干涉.、讨论干涉条纹吐出或吞入时的光程差变更情况.答:吞入时,光程差变小.而吐出时,光程差则变大.、试总结迈克尔逊尔涉仪的调整要点及规律.答:调整要点:1、粗调时,尽量使两像点重合在一路,为后面的细调节省时间.2、细调时,朝吞吐减少的方向调,需耐心及细心.3、鼓轮测量前须调零,且朝同一方向调节,以避免发生空回误差.4、做白光干涉实验,调粗调鼓轮,使干涉条件不竭地在吞,此时即为向零光程地位调节.教师评语。
大学物理仿真实验迈克尔逊干涉仪

大学物理仿真实验迈克尔逊干涉仪大学物理仿真实验------迈克尔逊干涉仪实验名称:迈克尔逊干涉仪实验目的:1了解迈克尔孙干涉仪的原理、结构和调节方法。
2观察非定域干涉条纹。
3测量氦氖激光的波长。
4并增强对条纹可见度和时间相干性的认识。
实验仪器:迈克尔逊最早为了研究光速问题而精心设计了该装置。
它是一种分振幅的干涉装置,它将一路光分解成相互垂直的两路相干光,然后通过反射再重新汇聚在另一个方向上。
基于其结构原因,它是光源、两个反射镜、接收器(屏或眼睛)四者完全分立,东南西北各据一方,便于光路中安插其它器件。
如利用白光测玻璃折射率,测定气体折射率等。
迈克尔逊干涉仪可以使等厚干涉、等倾干涉及各种条纹的变动做到非常易于调整,很方便进行各种精密测量。
它的设计精巧,用途广泛,在许多科研领域都有它应用的身影。
迈克尔逊干涉仪原理图A,B是分光板和补偿板;M1,M2是反射镜;S是光源;O是观察点,可以用观察屏来获得实像,也可以直接观察镜中虚像。
图中的M2'是等效的M2位置。
M1可在光线行进方向移动,产生与M2'的不同光程差。
M1的位置使用粗调和细调旋钮调节,并且移动轨道上设有标尺。
A,B是分光板和补偿板;M1,M2是反射镜;S是光源;O是观察点,可以用观察屏来获得实像,也可以直接观察镜中虚像。
图中的M2'是等效的M2位置。
M1可在光线行进方向移动,产生与M2'的不同光程差。
M1的位置使用粗调和细调旋钮调节,并且移动轨道上设有标尺。
分光板、补偿板和反射镜A和B是取自同一块玻璃上的厚度和折射率一样的两个玻璃板,其中一块A 的背面镀上半透半反膜,它使光线分成光强大致相等的两束相干光。
另一块是补偿板,它的作用是在两个反射镜在等臂时光程相等;因为若没有补偿板,一路反射光通过A三次,而另一路透射光只通过A一次;这对于单色光时没有影响,对于复色光时则影响测量结果。
其背面有三个可调螺钉,在实验中它充当三维角度调整;其中一个镜子的虚像(M2')和另一个镜子(M1)之间形成"空气夹层"。
迈克尔逊干涉仪实(“干涉仪”相关文档)共10张

实验仪器
迈克尔逊干涉仪
M1在导轨上由粗动手轮和微动手轮的转动而前后移动。 转动手轮,移动M1,使干涉条纹对比度为零(或最大),记下M1的位置d1。 熟悉迈克尔逊干涉仪的结构和工作原理; 微动手轮:每转一圈读数窗口内刻度盘转动一格,即M1移动0.
1018m83m年,物□理□由学读家数迈窗克口尔内逊刻和度莫盘雷读合出作。,为证明“以太”存在设计制造了第一台用于精密测量的干涉仪--迈克尔逊干涉仪,它是在平板或薄膜
干涉现象的基础上发展起来的。
测量三次取平均,有效数字取三位。
(λ1=589.0nm λ2=589.6nm)
5. 实验注意事项
光学元件表面严禁触摸,精密仪器操作耐心细致, 反射镜粗到微动螺丝不能出现拧紧拧死现象,出现不好调 节情况及时报告指导教师。
2
M1在位导置轨的上读由数粗为动:手××轮. 和微动手轮的转动而前后移动。
粗迈动克手 尔轮逊:还每用转该一干圈涉可仪动测全量反出镜太移阳动系以1m外m星,球读的数大窗小口。内刻度盘转动一圈共100个小格,每小格为0. 测再量继纳 续黄移光动双M1谱,线使的干波涉长条差纹;对比度再次为零(或最大),记下M1的位置d2。
半导体激光器 测量三次取平均,有效数字取三位。
再继续移动M1,使干涉条纹对比度再次为零(或最大),记下M1的位置d2。 测量三次取平均,有效数字取三位。 了解光源的时间相干性 。 测量三次取平均,有效数字取三位。
钠光灯
溴钨灯
迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准。 发现真空中的光速为恒定值,为爱因斯坦的相对论奠定了基础。 M1位置的读数为:××. M1在导轨上由粗动手轮和微动手轮的转动而前后移动。 M1位置的读数为:××. 粗动手轮:每转一圈可动全反镜移动1mm,读数窗口内刻度盘转动一圈共100个小格,每小格为0. M1在导轨上由粗动手轮和微动手轮的转动而前后移动。 01mm,□□由读数窗口内刻度盘读出。 迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。 1883年物理学家迈克尔逊和莫雷合作,为证明“以太”存在设计制造了第一台用于精密测量的干涉仪--迈克尔逊干涉仪,它是在平板或薄膜 干涉现象的基础上发展起来的。 纳黄光双谱线的波长差的测量原理和测量方法 转动手轮,移动M1,使干涉条纹对比度为零(或最大),记下M1的位置d1。 0001mm,还可估读下一位。 可动全反镜移动及读数 测量三次取平均,有效数字取三位。 了解光源的时间相干性 。
迈克尔逊干涉仪

Northeastern University
用迈克尔逊干涉仪测量物质折射率
用迈克尔逊干涉仪的白光干涉条纹可以测量M1镜 用迈克尔逊干涉仪的白光干涉条纹可以测量M1镜 M1 的位置。将待测薄玻璃片置入有M1镜的臂中, M1镜的臂中 的位置。将待测薄玻璃片置入有M1镜的臂中,再 次调出白光干涉条纹, 这时, 可以测到M1 M1镜的新 次调出白光干涉条纹, 这时, 可以测到M1镜的新 位置。 位置。 参考实验4.9 用迈克尔逊干涉仪测量物质折射率 参考实验4.9
物理实验教学中心
Nor理
物理实验教学中心
Northeastern University
(1)迈克尔逊干涉仪的结构与光路
分光板G 分光板 1 刻度盘 补偿板G 补偿板 2
可动镜M 可动镜 2
固定镜M 固定镜 1
粗调手轮
倾度微调 倾度微调
微调手轮
物理实验教学中心
33+0.52+0.00246= 33+0.52+0.00246=33.52246mm
物理实验教学中心
Northeastern University
主尺
粗动手轮读数窗口
微动手轮
最后读数为:? 32.52215mm 最后读数为:?
物理实验教学中心
Northeastern University
迈克尔逊干涉仪原理图
物理实验教学中心
Northeastern University
设两混叠区间距Δd0, 相应的Δk记作Δk0, 对λ1来 设两混叠区间距Δd 相应的Δk记作Δk Δk记作
2d 0 2d 0 λ 2= 来说, 说 λ1= , 对λ2来说, k 2 k1
从而
λ2 λ = 1
基于Matlab对迈克尔逊干涉实验仿真的分析研究

摘
要:从光的干涉理论出发,分析了迈克尔逊干涉实验原理和光程差表达式,利用Matlab改变参
数对迈克尔逊干涉实验现象进行二维和三维仿真模拟,通过仿真提供了更加直观清晰的实验图像,这对
于迈克尔逊干涉仪的实验教学起到很好的相辅作用。
关 键 词:迈克尔逊干涉仪;Matlab;干涉条纹;仿真
中图分类号:O4-39 文献标志码:A D0l:10.14139/22-1228.2021.03.022
[7] 王培霞,汤洪明.迈克尔逊干涉仪光程差公式及条 纹特点详解[J].大学物理实验,2008,21 (1) : 17-19.
Analysis and Research of Michelson Interference Experiment Simulation Based on Matlab
FENG Mingchun,WANG Yujie
-0.01
0.01 -0.015 -0.01 -0.005 0 0.005 0.01 0.015
-0.01 0
0.01 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 4001---------- ■---------- ■---------- ■---------- ■---------- ■----------
1 基本原理
根据光的干涉条件:只有两列光波的频率相 同,相位差恒定,振动方向一致的相干光源,才能 产生光的干涉。获得相干光波的方法可分为两 种:分波阵面法和分振幅法。杨氏双缝、菲涅尔双 面镜和洛埃镜是分波阵面干涉装置,牛顿环和迈 克尔逊干涉仪是分振幅干涉装置[1],谭毅等人对 迈克尔逊干涉实验进行了仿真模拟和分析 讨论[2-7]。
( School of Mechanical and Electrical Engineering , Chuzhou University,Chuzhou 239000,China)
基于Matlab的迈克尔逊干涉仪仿真模拟

基于 Matlab的迈克尔逊干涉仪仿真模拟 一、原理
迈克尔逊干涉仪结构示意图如下:
二、仿真结果
仿真参数如下:
1)模拟光束传播至透镜(焦距为40cm) 2)传播至分束镜,分光比设置为50% 3)一束光传播至倾斜反射镜2,并对反射镜2进行倾斜,在返回至分束镜 4) 模拟参考光,传播至反射镜1,并从反射镜1反射回分束镜 5) 物光与参考光传播至屏幕,并进行叠加,求其强度。
最后仿真结果如下:
上述仿真matlab程序可从以下链接处获取:
迈克尔逊干涉仿Βιβλιοθήκη 结果
大学物理实验之迈克尔逊干涉仪的调整与应用方法及步骤详解

迈克尔逊干涉实验实验前请认真阅读本要点:(1)听完课后,同学们结合仪器请仔细阅读教材的相关容,特别是P189的干涉仪光路图(图5-61)、P191公式(5-123、5-124)的由来及应用、P193至P194的仪器说明与练习一。
测量固体试件的线膨胀系数还要阅读教材的P136与P138的实验容1。
注:迈克尔逊干涉仪有仿真实验,同学们可以在实验之前用其进行预习。
仿真实验位于:桌面\大学物理仿真实验\大学物理仿真实验 v2.0(第二部分),其中大学物理仿真实验 v2.0(第二部分).exe为正式版,大学物理仿真实验示教版 v2.0(第二部分).exe为示教版,同学们在使用之前可先看示教版。
(2)实验容1)掌握迈克尔逊干涉仪的调节方法,并记录位置改变时干涉条纹的变化,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。
2)根据逐差法的要求确定如何合理测量数据,规记录实验数据及已知参数等。
3)拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,并利用仿真实验来验证实验方案。
4)(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等。
(3)阅读F盘上的数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)),了解需测量的数据要求(处理需用逐差法),确定如何进行数据测量。
根据需测量的数据,在实验仪器上进行预测量与观察相应的实验现象,即先测量一小部份数据,弄清测量的重点与难点,确定测量方法,然后进行正式测量。
(4)测波长与测线膨胀系数的主要调节方法是一样的,需掌握迈克尔逊干涉光路的调节方法,并了解干涉条纹的变化情况,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。
(一些问题详见附录4 疑难解答)测量He-Ne激光的波长的同学还要掌握如何正确使用读数结构(包括如何读数、校零、消空程等)。
Zemax激光光学设计实例应用013迈克尔逊干涉仪仿真

013:迈克尔逊干涉仪仿真在这一节的实例中,我们要采用干涉分析等工具来仿真物理光学现象。
下面,我们一边建模一边讨论。
图13-1 理想成像LDE 编辑器列表图13-2 理想成像结构及像差分析图列表我们先建立一个简单的理想光学成像系统(4F 系统),系统设置中,物方类型选择物面数值孔径(随意设置一个合理的值);波长为默认;视场为默认0 度。
在透镜数据编辑器中输入如图13-1 所示的数据。
停止面(Surface 1)的类型选择“Paraxial XY”(傍轴光线),这样就可以将这个面设置为“理想薄透镜”。
注意,“Paraxial”为旋转对称理想透镜,“Paraxial XY”为两轴分离理想薄透镜,可以分别设置两个轴不同的光焦度,即单独设置一个轴就成为“理想柱面镜”。
其参数“X-Power”和“Y-Power”分别为两个轴的光焦度,即理想焦距的倒数。
然后打开3D Layout 查看光路结构,同时调出各种像差分析图,例如点列图、光扇图、光程差OPD 图表等等,看看理想情况想的像差分析图表是什么样子的。
如图13-2 所示,像差图分析结果像差均为0,点列图为理想点。
再来看看理想情况下的成像效果。
点击Analysis→Image Simulation→Image Simulation打开成像仿真器,默认情况下的成像仿真为网格线条模式,如图13-3 所示。
图13-3 理想成像仿真分析(网格线条模式)点击设置菜单,更改输入文件,根据自己的喜好选择物方图像。
软件自带了一个BMP 格式的演示图片(高一点的版本才有),可以用来模拟拍照实际成像效果。
参数设置如图13-4所示,其中视场高度(Field Height)选项与系统设置中的视场类型有关,如果系统设置中视场类型为视场角度,那么这里应该是指物面对停止面STO 的张角(全角),所以视场高度若再设为0,则表示物面尺寸为0,可能无法看到成像。
将视场高度(Field Height)的值设为5(度),表示物面高度(Y 方向)尺寸设定为tan5*50=4.4mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南交通大学
个性化实验项目结题报告迈克尔逊干涉实验的计算仿真
班级:电气(电牵)2012级班学生姓名:
指导教师:邱春蓉
完成时间:2015年5月23日
1.在项目中的分工
在项目中我主要负责代码的撰写和实验结果的采集调试。
2.查阅资料、方案确定等准备工作
迈克尔逊干涉实验是一个基本的光学物理实验。
光的干涉现象是波相干迭加的必然结果,证明了光的波动性。
根据光强分布的理论公式,通过编程得到数值曲线,这种计算机仿真方法可以不受仪器、场地的限制,实验效果形象、直观,扩展了等倾干涉,等厚干涉问题的研究途径。
应用 Matlab 仿真这两种干涉方式,并与实验结果类比。
我首先复习了大学物理实验关于迈克尔逊干涉实验中的部分,初步理解了迈克尔逊干涉实验的原理和结果。
然后复习了数学实验中MATLAB 软件的应用。
在做完这一切之后,我开始试图思考MATLAB 中仿真迈克尔逊实验图样的方法,即通过解析式生成函数图样。
我发现我的物理知识和书本内容不足够描述干涉图样,在上网查阅专著后,我们解决了这个问题。
最终编写了代码。
3.项目实施过程描述
3.1 二、实验原理
光的干涉现象是光的波动性的一种表
现。
当一束光被分成两束,经过不同路径再
相遇时,果光程差小于该束光的相干长度,
将会出现干涉现象。
迈克尔逊干涉仪是一种
利用分割光波振幅的方法实现干涉的精密光
学仪器。
自1881年问世以来,迈克尔逊曾用
它完成了三个著名的实验:否定“以太”的
迈克尔逊—莫雷实验,光谱精细结构和利用
光波波长标定长度单位。
迈克尔逊干涉仪结
构简单、光路直观、精度高,其调整和使用
具有典型性。
迈克尔逊干涉仪利用两个完全相同、斜
置的玻璃板,将两个几乎垂直的平面镜等效
为接近平行的情况,以至于只需要用螺丝进
行微调即可,同时使一束光成为两束相关光,发生干涉现象。
可以认为,是平面镜与另一个平面镜等效位置之间的空气薄膜发生了干涉。
光程差推导计算式为:
θcos 2d =∆
其中d 为薄膜厚度,θ为入射角。
根据理论公式,迈克尔逊干涉仪成像会是一群同性圆环,其各点处光强公式为:
δcos 22121I I I I I ++=
其中,δ是两列光波的相位差。
由此可以构造xOy 坐标轴下的轨迹方程集合,由这个原理编写程序。
3.2 程序设计与运行
根据原理撰写代码如下:
f = 0.2;
lambda = 632.8*10^(-9); %取入射波波长为 632.8nm
d = 2.5* 10^( -4) ;
theta = 0.20;
rMax = f* tan( theta /2) ;
N = 501;
for i = 1: N
x( i) = ( i-1) * 2* rMax /( N-1) -rMax;
for j = 1: N
y( j) = ( j-1) * 2* rMax /( N-1) -rMax;
r( i,j) = sqrt( x( i) ^2 + y( j) ^2) ;
delta( i,j) = 2* d /sqrt( 1 + r( i,j) ^2 /f^2) ;
Phi( i,j) = 2* pi* delta( i,j) /lambda;
B( i,j) = 4* cos( Phi( i,j) /2) ^2;
end
end
NCLevels = 255; Br = ( B /4.0) * NCLevels;
figure( 1) ; image( x,y,Br) ;
colormap( gray( NCLevels) ) ;
axis square;
4.最终成果
运行结果为:
-0.02-0.015-0.01-0.00500.0050.010.0150.02
-0.02
-0.015
-0.01
-0.005
0.005
0.01
0.015
0.02
利用Matlab 模拟光学干涉实验,可以直观的显示出干涉条纹图像,在程序段中方便的改变空气薄膜厚度,入射倾角等参数,观察不同参数下干涉条纹的变化。
与迈克尔逊干涉仪实验紧密联系,对实验操作起到形象的指导作用。
计算机仿真等虚拟技术也积极扩展了实验教学手段。
5.收获体会
本次个性化实验活动经历了半个学期,通过自主查阅资料,自主实施实验,基本了解了迈克尔逊干涉实验的原理,通过MA TLAB仿真,完成了干涉图样的再现,进一步加深了对光的波动性的理解。
我曾经在数学实验课程上学习了MATLAB的使用,但是基本上处于一个纯粹理论状态,仅仅作为一种计算工具来使用,而没有进一步明白其多样的功能。
这次活动,提高了我学以致用的能力。