高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)

合集下载

最新高考物理万有引力定律的应用答题技巧及练习题(含答案)

最新高考物理万有引力定律的应用答题技巧及练习题(含答案)

最新高考物理万有引力定律的应用答题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.一宇航员站在某质量散布平均的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为,引力常量为,求:R G(1)该星球表面的重力加快度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】 (1) g 2v0(2)3v0(3)v2v0 R t2πRGt t【分析】(1) 依据竖直上抛运动规律可知,小球上抛运动时间2v0 tg可得星球表面重力加快度: g 2v0 .t(2)星球表面的小球所受重力等于星球对小球的吸引力,则有:GMm mgR2gR22v0 R2得: MGtG4 R3由于V3M3v0则有:2πRGtV(3)重力供给向心力,故mg m v2R该星球的第一宇宙速度v gR2v0Rt【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力供给圆周运动向心力,掌握竖直上抛运动规律是正确解题的重点.2.土星是太阳系最大的行星,也是一个气态巨行星。

图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假定朱诺号绕土星做匀速圆周运动,距离土星表面高度为h。

土星视为球体,已知土星质量为M,半径为R,万有引力常量为G. 求:1 土星表面的重力加快度 g ;23朱诺号的运行速度v ;朱诺号的运行周期T 。

GM GMR h 【答案】1 ? R 22 ?3 ?2 R hR hGM【分析】【剖析】土星表面的重力等于万有引力可求得重力加快度;由万有引力供给向心力并分别用速度与周期表示向心力可求得速度与周期。

【详解】Mm(1)土星表面的重力等于万有引力:G R 2mgGM可得 gR 2(2)由万有引力供给向心力:Mmmv 2Gh)2R h( RGM可得: vhR(3)由万有引力供给向心力:GMm m R h ( 2)2( R h) 2T可得:T 2R h R hGM3. 一宇航员登上某星球表面,在高为 2m 处,以水平初速度 5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用 求:( 1 )该星球表面重力加快度( 2 )已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】( 1 ) 4m/s 2 ;( 2) 1;10【分析】(1)依据平抛运动的规律: x =v 0t得 t = x = 5s =1sv 0 5由 h =1gt 22得: g = 22h =222m / s 2=4m / s 2t1G M 星 m(2)依据星球表面物体重力等于万有引力:mg =R 星2G M 地 m地球表面物体重力等于万有引力:mg=R 地2M 星=gR 星241 )2 1 则2=( 210M 地 g R 地10点睛:本题是平抛运动与万有引力定律的综合题,重力加快度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4. 如下图,质量分别为m 和 M动,星球 A 和 B 二者中心之间距离为的两个星球L .已知A 和B 在引力作用下都绕 O 点做匀速圆周运A 、B 的中心和 O 三点一直共线, A 和 B 分别在 O 的双侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L, r= m L,( 2) 2πL 3【答案】 (1) R=m Mm MG M m【分析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力供给,则有:GmM 4 2 4 2L 2mR2Mr2TT 可得R = M,又由于 LR rrm因此能够解得: M L , rm L ;RMmMm(2)依据( 1)能够获得 : GmM4 2 4 2 M L 2m2 Rm2MLTTm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不可以把它们的距离当作轨道半径 .5.如下图,宇航员站在某质量散布平均的星球表面一斜坡上P 点沿水平方向以初速度v0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q,斜面的倾角为α,已知该星球半径为 R,万有引力常量为G,求:(1)该星球表面的重力加快度;(2)该星球的密度;(3)该星球的第一宇宙速度 v;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T.2v0 tan3v0 tan; (3)2v0Rtana Rt【答案】 (1); (2)t ;(4) 2t 2 GRt v0tan 【分析】【剖析】【详解】(1)小球落在斜面上,依据平抛运动的规律可得:y 1gt22gttanαv0t2v0x解得该星球表面的重力加快度:2v0 tanαgt(2)物体绕星球表面做匀速圆周运动时万有引力供给向心力,则有:GMmR2mg则该星球的质量:gR 2MG该星球的密度:M3g3v0tanα4R3 4 GR 2 GRt3(3)依据万有引力供给向心力得:G Mm m v2R2R该星球的第一宙速度为:v GMRgR2v0 Rtanat(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有 :2 R Tv因此:T 2 Rt 2Rtv 0 Rtan α v 0tan点睛:办理平抛运动的思路就是分解.重力加快度 g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.6. 宇航员在某星球表面以初速度 2.0m/s 水平抛出一小球,经过传感器获得如下图的运动轨迹,图中 O 为抛出点。

高考物理万有引力定律的应用解题技巧分析及练习题(含答案)

高考物理万有引力定律的应用解题技巧分析及练习题(含答案)

高考物理万有引力定律的应用解题技巧剖析及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.土星是太阳系最大的行星,也是一个气态巨行星。

图示为2017 年 7 月 13 日朱诺号飞行器近距离拍摄的土星表面的气体涡旋( 大红斑 ) ,假定朱诺号绕土星做匀速圆周运动,距离土星表面高度为h。

土星视为球体,已知土星质量为M,半径为R,万有引力常量为G.求:1 土星表面的重力加快度g;2 3朱诺号的运行速度v;朱诺号的运行周期T。

GM GM R h【答案】 1 ?R 2 2 ? 3 ?2 R hR h GM【分析】【剖析】土星表面的重力等于万有引力可求得重力加快度;由万有引力供给向心力并分别用速度与周期表示向心力可求得速度与周期。

【详解】(1)土星表面的重力等于万有引力:G Mm mgR2GM可得 gR2(2)由万有引力供给向心力:Mm mv2 Gh)2R h ( RGM可得: vhR(3)由万有引力供给向心力:GMm m R h (2)2( R h) 2T可得:T 2R h R hGM2.我国发射的“嫦娥一号”探月卫星沿近似于圆形的轨道绕月飞翔.为了获取月球表面全貌的信息,让卫星轨道平面迟缓变化.卫星将获取的信息连续用微波信号发回地球.设地球和月球的质量分别为M 和 m,地球和月球的半径分别为R 和 R1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为 r 和 r 1,月球绕地球转动的周期为T .假定在卫星绕月运行的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球遮挡而不可以抵达地球的时间(用 M 、m 、 R 、 R 1、 r 、 r 1 和 T 表示,忽视月球绕地球转动对遮 挡时间的影).【答案】 tT Mr 13arc cosR R 1arc cosR 1mr3rr 1【分析】 【剖析】 【详解】如图 ,O 和 O ′分别表示地球和月球的中心 .在卫星轨道平面上 ,A 是地月连心线 OO ′与地月球面 的公切线 ACD 的交点 ,D?C 和 B 分别是该公切线与地球表面 ?月球表面和卫星圆轨道的交点 .依据对称性 ,过 A 点的另一侧作地月球面的公切线 ,交卫星轨道于 E 点 .卫星在上运动时发出的信号被遮挡 .设探月卫星的质量为m 0,万有引力常量为G,依据万有引力定律有:Mm2m2Gr ①r 2Tmm 02m 02 ②Gr 1 r 12T 1式中 T 1 是探月卫星绕月球转动的周期.由 ①②式得2M r 1 3T 1 ③Tm r设卫星的微波信号被遮挡的时间为 t,则因为卫星绕月做匀速圆周运动 ,应用t T 1式,α=∠ CO ′A , β=∠ CO ′B ,由几何关系得④rcos α=R-R 1⑤ r 1cos β=R 1⑥由③④⑤⑥式得tT Mr 13arccosRR 1 arccos R 1mr3rr 13. 一宇航员登上某星球表面,在高为 2m 处,以水平初速度 5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用 求:( 1 )该星球表面重力加快度( 2 )已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】( 1 ) 4m/s 2;( 2) 1;10【分析】(1)依据平抛运动的规律: x =v 0t得 t = x = 5s =1sv 0 5由 h =1gt 22得: g = 22h =222m / s 2=4m / s 2t1G M 星 m(2)依据星球表面物体重力等于万有引力:mg=R 星2G M 地 m地球表面物体重力等于万有引力:mg=R 地2M 星=gR 星241 )2 1则2=( 210M 地 g R 地10点睛:本题是平抛运动与万有引力定律的综合题,重力加快度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4. 人类对未知事物的好奇和科学家们的不懈努力,令人类对宇宙的认识愈来愈丰富。

高考物理万有引力定律的应用答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.我国发射的“嫦娥一号”探月卫星沿近似于圆形的轨道绕月飞行.为了获得月球表面全貌的信息,让卫星轨道平面缓慢变化.卫星将获得的信息持续用微波信号发回地球.设地球和月球的质量分别为M 和m ,地球和月球的半径分别为R 和R 1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r 和r 1,月球绕地球转动的周期为T .假定在卫星绕月运行的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(用M 、m 、R 、R 1、r 、r 1和T 表示,忽略月球绕地球转动对遮挡时间的影).【答案】311131cos cos Mr R R R Tt arc arc mr r r π⎛⎫-=- ⎪⎝⎭【解析】 【分析】 【详解】如图,O 和O ′分别表示地球和月球的中心.在卫星轨道平面上,A 是地月连心线OO ′与地月球面的公切线ACD 的交点,D 、C 和B 分别是该公切线与地球表面、月球表面和卫星圆轨道的交点.根据对称性,过A 点的另一侧作地月球面的公切线,交卫星轨道于E 点.卫星在上运动时发出的信号被遮挡.设探月卫星的质量为m 0,万有引力常量为G ,根据万有引力定律有:222Mm G m r r T π⎛⎫= ⎪⎝⎭①20012112mmG m r r T π⎛⎫= ⎪⎝⎭②式中T 1是探月卫星绕月球转动的周期.由①②式得2311T r M T m r ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭③ 设卫星的微波信号被遮挡的时间为t,则由于卫星绕月做匀速圆周运动,应用1t T αβπ-=④ 式,α=∠CO ′A ,β=∠CO ′B ,由几何关系得r cos α=R -R 1⑤ r 1cos β=R 1⑥由③④⑤⑥式得111arccosarccos R R R t r r ⎫-=-⎪⎭2.为了探测月球的详细情况,我国发射了一颗绕月球表面飞行的科学实验卫星.假设卫星绕月球做圆 周运动,月球绕地球也做圆周运动.已知卫星绕月球运行的周期为 T0,地球表面重力加速度为 g ,地球半径为 R0,月心到地心间的距离为 r0,引力常量为 G ,求: (1)月球的平均密度; (2)月球绕地球运行的周期.【答案】(1)203GT π(2) T = 【解析】 【详解】(1)月球的半径为R ,月球质量为M ,卫星质量为m由于在月球表面飞行,万有引力提供向心力:22204mM G m R R T π=得23204R M GT π=且月球的体积V =43πR 3 根据密度的定义式 M V ρ=得232023043 43R GT GT R ππρπ== (2)地球质量为M 0,月球质量为M ,月球绕地球运转周期为T由万有引力提供向心力2202004 r GM M M r Tπ=根据黄金代换GM 0=gR 02 得002r r T R gπ=3.如图所示,A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R ,地球自转角速度为ω0,地球表面的重力加速度为g ,O 为地球中心.(1)求卫星B 的运行周期.(2)如卫星B 绕行方向与地球自转方向相同,某时刻A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)32()2B R h T gR +=23()t gR R h ω=-+ 【解析】 【详解】(1)由万有引力定律和向心力公式得()()2224B MmGm R h T R h π=++①,2Mm G mg R =②联立①②解得:()322B R h T R g+=(2)由题意得()02B t ωωπ-=④,由③得()23B gR R h ω=+代入④得()203t R gR h ω=-+4.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期.【答案】(1) R=m M M +L, r=m M m+L,(2)2π()3L G M m +【解析】(1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+两星做圆周运动时的向心力由万有引力提供,则有:2222244mM G mR Mr L T Tππ==可得 RMr m=,又因为L R r =+ 所以可以解得:M R L M m =+,mr L M m=+; (2)根据(1)可以得到:2222244mM MG m R m L L T T M m ππ==⋅+则:()()23342L L T M m GG m M ππ==++ 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.5.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192nGtπ;(2)1237mtt mn(,,)==⋯【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tTn=,由万有引力提供向心力有:222MmG m RR Tπ⎛⎫= ⎪⎝⎭又:343M Rρπ=,联立得:22233192nGT Gtππρ==.(2)设飞船在轨道I上的角速度为1ω、在轨道III上的角速度为3ω,有:112Tπω=所以332Tπω=设飞飞船再经过t时间相距最近,有:312t t mωωπ''=﹣所以有:1237mtt mn(,,)==⋯.考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.6.如图所示,A是地球的同步卫星.另一卫星 B的圆形轨道位于赤道平面内.已知地球自转角速度为0ω,地球质量为M ,B离地心距离为r ,万有引力常量为G,O为地球中心,不考虑A和B之间的相互作用.(图中R、h不是已知条件)(1)求卫星A的运行周期AT(2)求B做圆周运动的周期BT(3)如卫星B绕行方向与地球自转方向相同,某时刻 A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】(1)02A T πω=(2)32B r T GMπ=(3)03t GM r ω∆=- 【解析】 【分析】 【详解】(1)A 的周期与地球自转周期相同 02A T πω=(2)设B 的质量为m , 对B 由牛顿定律:222()BGMm m r r T π= 解得: 32B r T GMπ= (3)A 、B 再次相距最近时B 比A 多转了一圈,则有:0()2B t ωωπ-∆= 解得:03t GMr ω∆=- 点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.7.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.【答案】(1) 2r T π;(2) 23224r T R π;2324rT Rπ【解析】【详解】(1)嫦娥三号做匀速圆周运动线速度:2rv r Tπω==(2)由重力等于万有引力:2GMmmg R = 对于嫦娥三号由万有引力等于向心力:2224GMm m rr Tπ= 联立可得:23224r g T Rπ=(3)第一宇宙速度为沿月表运动的速度:22GMm mv mg R R== 可得月球的第一宇宙速度:2324r v gR T Rπ==8.今年6月13日,我国首颗地球同步轨道高分辨率对地观测卫星高分四号正式投入使用,这也是世界上地球同步轨道分辨率最高的对地观测卫星.如图所示,A 是地球的同步卫星,已知地球半径为R ,地球自转的周期为T ,地球表面的重力加速度为g,求:(1)同步卫星离地面高度h (2)地球的密度ρ(已知引力常量为G )【答案】(122324gR TR π(2)34g GR π 【解析】 【分析】 【详解】(1)设地球质量为M ,卫星质量为m ,地球同步卫星到地面的高度为h ,同步卫星所受万有引力等于向心力为()2224()R h mMG mR h T π+=+ 在地球表面上引力等于重力为2MmGmg R= 故地球同步卫星离地面的高度为22324gR T h R π=- (2)根据在地球表面上引力等于重力2MmGmg R = 结合密度公式为233443gR M g G V GR R ρππ===9.已知某行星半径为,以其第一宇宙速度运行的卫星的绕行周期为,该行星上发射的同步卫星的运行速度为.求(1)同步卫星距行星表面的高度为多少? (2)该行星的自转周期为多少? 【答案】(1) (2).【解析】 【分析】 【详解】(1)设同步卫星距地面高度为 ,则: ,以第一宇宙速度运行的卫星其轨道半径就是R ,则联立解得:.(2)行星自转周期等于同步卫星的运转周期.10.已知火星半径为R ,火星表面重力加速度为g ,万有引力常量为G ,某人造卫星绕火星做匀速圆周运动,其轨道离火星表面高度等于火星半径R ,忽略火星自转的影响。

高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析

高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析

高考物理万有引力定律的应用的技巧及练习题及练习题( 含答案 ) 及分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间为 R,己知万有引力常量为G,求:t,又已知该星球的半径(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2所以该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.一名宇航员抵达半径为R、密度均匀的某星球表面,做以下实验:用不行伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕 O 点在竖直面内做圆周运动,测得绳的拉力大小 F 随时间 t 的变化规律如图乙所示. F1、F2已知,引力常量为G,忽视各样阻力.求:(1)星球表面的重力加快度;(2)卫星绕该星的第一宇宙速度;(3)星球的密度.F1F2( 2)(F1 F2)R F1 F2【答案】(1)g6m (3)6m8 GmR【分析】【剖析】【详解】(1)由图知:小球做圆周运动在最高点拉力为 F2,在最低点拉力为 F1设最高点速度为 v2,最低点速度为 v1,绳长为l在最高点:F2mv22mg①l在最低点:F1mv12mg②l由机械能守恒定律,得1mv12mg 2l 1mv22③22由①②③,解得F1 F2 g6m(2)GMmmg R2GMm mv2R2=R两式联立得:v=(F1F2)R6mGMm(3)在星球表面:R2mg④M星球密度:⑤V由④⑤,解得F1F2 8 GmR点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳索的拉力与重力的协力供给向心力,由牛顿第二定律能够求出重力加快度;万有引力等于重力,等于在星球表面飞翔的卫星的向心力,求出星球的第一宇宙速度;而后由密度公式求出星球的密度.3.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为常量为 G,行星半径为求:r,周期为T,引力(1)行星的质量M;(2)行星表面的重力加快度g ;(3)行星的第一宇宙速度v.【答案】(1)( 2)( 3)【分析】【详解】(1)设宇宙飞船的质量为m,依据万有引力定律求出行星质量(2)内行星表面求出 :(3)内行星表面求出 :【点睛】此题重点抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.4.已知某半径与地球相等的星球的第一宇宙速度是地球的1倍.地球表面的重力加快度2为 g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加快度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能蒙受的最大拉力?【答案】1s 2 g0(3)T1s2(1) g星= g0 (2) v04H[1] mg0 4L42(H L)L【分析】【剖析】【详解】(1)由万有引力等于向心力可知G Mm m v2R2R G Mm mgR2v2可得gR则 g星=1g0 4(2)由平抛运动的规律: H L 1g星t 22s v0ts2g0解得v0H L4v2(3)由牛顿定律,在最低点时:T mg星= mL1s2解得:T1mg042( H L)L【点睛】此题考察了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度 g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的根源是解决此题的重点.5.在地球大将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体 P 置于弹簧上端,用力压到弹簧形变量为3x0 处后由静止开释,从开释点上涨的最大高度为4.5x0,上涨过程中物体 P 的加快度 a 与弹簧的压缩量 x 间的关系如图中实线所示。

高中物理万有引力定律的应用解题技巧分析及练习题(含答案)及解析

高中物理万有引力定律的应用解题技巧分析及练习题(含答案)及解析

高中物理万有引力定律的应用解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.土星是太阳系最大的行星,也是一个气态巨行星。

图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h 。

土星视为球体,已知土星质量为M ,半径为R ,万有引力常量为.G 求:()1土星表面的重力加速度g ; ()2朱诺号的运行速度v ; ()3朱诺号的运行周期T 。

【答案】()())(21?2?3?2GM GM R hR h R R h GMπ+++【解析】 【分析】土星表面的重力等于万有引力可求得重力加速度;由万有引力提供向心力并分别用速度与周期表示向心力可求得速度与周期。

【详解】(1)土星表面的重力等于万有引力:2MmG mg R= 可得2GM g R=(2)由万有引力提供向心力:22()Mm mv G R h R h=++可得:GMv R h=+(3)由万有引力提供向心力:()222()()GMm m R h R h Tπ=++ 可得:(2R h T R h GMπ+=+2.我国发射的“嫦娥一号”探月卫星沿近似于圆形的轨道绕月飞行.为了获得月球表面全貌的信息,让卫星轨道平面缓慢变化.卫星将获得的信息持续用微波信号发回地球.设地球和月球的质量分别为M 和m ,地球和月球的半径分别为R 和R 1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r 和r 1,月球绕地球转动的周期为T .假定在卫星绕月运行的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(用M 、m 、R 、R 1、r 、r 1和T 表示,忽略月球绕地球转动对遮挡时间的影).【答案】311131cos cos Mr R R R Tt arc arc mr r r π⎛⎫-=- ⎪⎝⎭【解析】 【分析】 【详解】如图,O 和O ′分别表示地球和月球的中心.在卫星轨道平面上,A 是地月连心线OO ′与地月球面的公切线ACD 的交点,D 、C 和B 分别是该公切线与地球表面、月球表面和卫星圆轨道的交点.根据对称性,过A 点的另一侧作地月球面的公切线,交卫星轨道于E 点.卫星在上运动时发出的信号被遮挡.设探月卫星的质量为m 0,万有引力常量为G ,根据万有引力定律有:222Mm G m r r T π⎛⎫= ⎪⎝⎭①20012112mmG m r r T π⎛⎫= ⎪⎝⎭②式中T 1是探月卫星绕月球转动的周期.由①②式得2311T r M T m r ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭③设卫星的微波信号被遮挡的时间为t,则由于卫星绕月做匀速圆周运动,应用1t T αβπ-=④ 式,α=∠CO ′A ,β=∠CO ′B ,由几何关系得r cos α=R -R 1⑤ r 1cos β=R 1⑥由③④⑤⑥式得311131arccos arccos Mr R R R Tt mr r r π⎛⎫-=- ⎪⎝⎭3.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期.(2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?【答案】(1)36RTgπ=(2)133tgRω-V=【解析】【分析】【详解】(1)对卫星运用万有引力定律和牛顿运动定律可得()222433MmG m RTRπ⋅=地球表面的物体受到重力等于万有引力2Mmmg GR=联立解得36RTgπ=;(2)以地面为参照物,卫星再次出现在建筑物上方时,建筑物随地球转过的弧度比卫星转过弧度少2π.ω1△t-ω0△t=2π,所以1000222133tgT RV===πππωωωω---;5.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m的物体P置于弹簧上端,用力压到弹簧形变量为3x0处后由静止释放,从释放点上升的最大高度为4.5x0,上升过程中物体P的加速度a与弹簧的压缩量x间的关系如图中实线所示。

高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)含解析

高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)含解析

高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性变化,其发现者由此获得2010年诺贝尔物理学奖.用石墨烯超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现.科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球之间便捷的物质交换.(1)若“太空电梯”将货物从赤道基站运到距地面高度为h 1的同步轨道站,求轨道站内质量为m 1的货物相对地心运动的动能.设地球自转的角速度为ω,地球半径为R . (2)当电梯仓停在距地面高度h 2=4R 的站点时,求仓内质量m 2=50kg 的人对水平地板的压力大小.取地面附近的重力加速度g=10m/s 2,地球自转的角速度ω=7.3×10-5rad/s ,地球半径R=6.4×103km . 【答案】(1)22111()2m R h ω+;(2)11.5N 【解析】试题分析:(1)因为同步轨道站与地球自转的角速度相等,根据轨道半径求出轨道站的线速度,从而得出轨道站内货物相对地心运动的动能.(2)根据向心加速度的大小,结合牛顿第二定律求出支持力的大小,从而得出人对水平地板的压力大小. 解:(1)因为同步轨道站与地球自转的角速度相等, 则轨道站的线速度v=(R+h 1)ω, 货物相对地心的动能.(2)根据,因为a=,,联立解得N==≈11.5N .根据牛顿第三定律知,人对水平地板的压力为11.5N .3.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行.如果物块和斜面间的摩擦因数3μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求: (1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR =mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度. 【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.4.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星“北极”距该行星地面附近h 处自由释放-个小球(引力视为恒力),落地时间为.t 已知该行星半径为R ,万有引力常量为G ,求:()1该行星的第一宇宙速度; ()2该行星的平均密度.【答案】(()231 2?2hGt R π. 【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求出质量与运动的周期,再利用MVρ=,从而即可求解. 【详解】()1根据自由落体运动求得星球表面的重力加速度212h gt =解得:22h g t =则由2v mg m R=求得:星球的第一宇宙速度v ==()2由222Mm hG mg m Rt==有:222hR M Gt =所以星球的密度232M h V Gt R ρπ== 【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.5.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。

高考物理万有引力定律的应用及其解题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用及其解题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用及其解题技巧及练习题 ( 含答案 ) 含分析一、高中物理精讲专题测试万有引力定律的应用1.“嫦娥一号 ”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知 “嫦娥一号 ”绕月飞翔轨道近似为圆形,距月球表面高度为 H ,飞翔周期为 T ,月球的半径为R ,引力常量为 G .求:(1) 嫦“娥一号 ”绕月飞翔时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运转的线速度应为多大.【答案】 (1)2 RH (2)42R H32 R HR H ( 3) TGT 2TR【分析】( 1) “嫦娥一号 ”绕月飞翔时的线速度大小2π(R H )v 1.T( 2 )设月球质量为 M . “嫦娥一号 ”的质量为 m .Mm2H )依据牛二定律得 Gm 4π (RT 2(R H)223解得 M4π (R H ) .GT 2()设绕月飞船运转的线速度为Mm 0 V23V ,飞船质量为 m 0 ,则 G2m 0又RR23M 4π (R 2 H ) .GT联立得 V2π R HR HTR2. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为 求:(1) 行星的质量 M ;(2) 行星表面的重力加快度g ; (3) 行星的第一宇宙速度v .【答案】 (1) ( 2)( 3)【分析】【详解】(1)设宇宙飞船的质量为 m ,依据万有引力定律求出行星质量(2)内行星表面求出 :(3)内行星表面求出 :【点睛】此题重点抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.3. 土星是太阳系最大的行星,也是一个气态巨行星。

图示为 2017 年 7 月 13 日朱诺号飞行器近距离拍摄的土星表面的气体涡旋 ( 大红斑 ) ,假定朱诺号绕土星做匀速圆周运动,距离土星表面高度为h 。

土星视为球体,已知土星质量为M ,半径为 R ,万有引力常量为G. 求:12土星表面的重力加快度g ;朱诺号的运转速度 v ;3 朱诺号的运转周期T 。

高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)

高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)

高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T ,已知万有引力常量为G .求: (1)该行星的质量.(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?【答案】(1)2324r M GT π=(2)22400rg T π=【解析】(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则有:2224Mm G m r r T π=,可得2324r M GT π=(2)由21()10MmGmg r =,则得:222400100GM r g r T π==2.为了探测月球的详细情况,我国发射了一颗绕月球表面飞行的科学实验卫星.假设卫星绕月球做圆 周运动,月球绕地球也做圆周运动.已知卫星绕月球运行的周期为 T0,地球表面重力加速度为 g ,地球半径为 R0,月心到地心间的距离为 r0,引力常量为 G ,求: (1)月球的平均密度; (2)月球绕地球运行的周期.【答案】(1)203GT π(2)T = 【解析】 【详解】(1)月球的半径为R ,月球质量为M ,卫星质量为m由于在月球表面飞行,万有引力提供向心力:22204mM G m R R T π=得23204R M GT π=且月球的体积V =43πR 3 根据密度的定义式 M V ρ=得232023043 43R GT GT R ππρπ== (2)地球质量为M 0,月球质量为M ,月球绕地球运转周期为T由万有引力提供向心力2202004 r GM M M r Tπ=根据黄金代换GM 0=gR 02得T =3.我国科学家正在研究设计返回式月球软着陆器,计划在2030年前后实现航天员登月,对月球进行科学探测。

宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出小球,测量出小球的水平射程为L (这时月球表面可以看成是平坦的),已知月球半径为R ,万有引力常量为G 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试万有引力定律的应用1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .(1)求静止轨道卫星的角速度ω;(2)求静止轨道卫星距离地面的高度h 1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)23124GMT h R π(3)h 1= h 2 【解析】【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度;(2)根据万有引力提供向心力可以求出静止轨道到地面的高度;(3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度;【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=T ω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()Mm Gm R h R h T++ 解得:2312=4πGMT h R(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,22222=()()()Mm Gm R h R h Tπ++ 解得:23224GMT h R π 因此h 1= h 2.故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π(3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.2.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求:(1)月球表面的重力加速度大小g 月;(2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt;(3)022Rt v 【解析】【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月 月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=Mm G mg R 月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期 022Rt T v π= 3.如图所示,P 、Q 为某地区水平地面上的两点,在P 点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO 方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P 点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),,PQ x =求空腔所引起的Q 点处的重力加速度反常;(2)若在水平地面上半径为L 的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L 的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.【答案】(1)223/2()G Vd d x ρ+(2)22/3.(1)L k V G k δρ=- 【解析】【详解】(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力来计算,2Mm G r=mΔg① 式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量.M=ρV②而r 是球形空腔中心O 至Q 点的距离22d x +Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小。Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg′是这一改变在竖直方向上的投影Δg′=d r Δg④ 联立①②③④式得Δg′=223/2()G Vd d x ρ+⑤ (2)由⑤式得,重力加速度反常Δg′的最大值和最小值分别为(Δg′)max =2G V dρ⑥ (Δg′)min =223/2()G Vd d L ρ+⑦ 由题设有(Δg′)max =kδ,(Δg′)min =δ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为22/32/3d .(1)1L k V G k k δρ==--4.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求:(1)用题中的已知量表示此卫星距地面高度h 的表达式(2)此高度的数值为多少?(保留3位有效数字)【答案】(1)2GM h R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GM h R v =- (2)将(1)中结果代入数据有h=8.41×107m考点:考查了万有引力定律的应用5.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T ,已知万有引力常量为G .求:(1)该行星的质量.(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?【答案】(1)2324r M GT π=(2)22400r g T π= 【解析】(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则有:2224Mm G m r r T π=,可得2324r M GTπ= (2)由21()10Mm G mg r =,则得:222400100GM r g r T π==6.双星系统由两颗彼此相距很近的两个恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的共同质量中心做周期相同的匀速圆周运动。

现有一个天文观测活动小组为了测量一双星系统中的两个恒星的质量m 1和m 2,进行了如下测量:测出了该双星系统的周期T 和质量为m 1和m 2的两个恒星的运动半径r 1和r 2。

是根据上述测量数据计算出两个恒星的质量m 1和m 2。

(万有引力恒量为G ) 【答案】,【解析】 试题分析:根据万有引力定律得:,解得:,考点:考查了万有引力定律的应用7.如图所示,A 是地球的同步卫星.另一卫星 B 的圆形轨道位于赤道平面内.已知地球自转角速度为0ω ,地球质量为M ,B 离地心距离为r ,万有引力常量为G ,O 为地球中心,不考虑A 和B 之间的相互作用.(图中R 、h 不是已知条件)(1)求卫星A 的运行周期A T(2)求B 做圆周运动的周期B T(3)如卫星B 绕行方向与地球自转方向相同,某时刻 A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】(1)02A T πω=(2)32B r T GM =3)03t GM r ω∆=-【解析】【分析】【详解】(1)A 的周期与地球自转周期相同 02A T πω=(2)设B 的质量为m , 对B 由牛顿定律:222()BGMm m r r T π= 解得:2B T = (3)A 、B 再次相距最近时B 比A 多转了一圈,则有:0()2B t ωωπ-∆=解得:t ∆= 点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.8.2019年4月20日22时41分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为r 的匀速圆周运动。

卫星的质量为m ,地球的半径为R ,地球表面的重力加速度大小为g ,不计地球自转的影响。

求:(1)卫星进入轨道后的加速度大小g r ;(2)卫星的动能E k 。

【答案】(1)22gR r(2)22mgR r 【解析】【详解】(1)设地球的质量为M ,对在地球表面质量为m '的物体,有:2Mm G m g R''= 对卫星,有:r 2Mm G mg r = 解得:2r 2g gR r= (2)万有引力提供卫星做匀速圆周运动所需的向心力,有:22Mm v G m r r= 卫星的动能为:2k 12E mv = 解得:2k 2mgR E r=9.“神舟”十号飞船于2013年6月11日17时38分在酒泉卫星发射中心成功发射,我国首位 80后女航大员王亚平将首次在太空为我国中小学生做课,既展示了我国在航天领域的实力,又包含着祖国对我们的殷切希望.火箭点火竖直升空时,处于加速过程,这种状态下宇航员所受支持力F 与在地球表面时重力mg 的比值后F k mg=称为载荷值.已知地球的半径为R =6.4×106m (地球表面的重力加速度为g =9.8m/s 2)(1)假设宇航员在火箭刚起飞加速过程的载荷值为k =6,求该过程的加速度;(结论用g 表示)(2)求地球的笫一宇宙速度;(3)“神舟”十号飞船发射成功后,进入距地面300km 的圆形轨道稳定运行,估算出“神十”绕地球飞 行一圈需要的时间.(π2≈g )【答案】(1) a =5g (2)37.9210m/s v =⨯ (3)T =5420s【解析】【分析】(1)由k 值可得加速过程宇航员所受的支持力,进而还有牛顿第二定律可得加速过程的加速度.(2)笫一宇宙速度等于环绕地球做匀速圆周运动的速度,此时万有引力近似等于地球表面的重力,然后结合牛顿第二定律即可求出;(3)由万有引力提供向心力的周期表达式,可表示周期,再由地面万有引力等于重力可得黄金代换,带入可得周期数值.【详解】(1)由k =6可知,F =6mg ,由牛顿第二定律可得:F -mg =ma即:6mg -mg =ma解得:a =5g(2)笫一宇宙速度等于环绕地球做匀速圆周运动的速度, 由万有引力提供向心力得:2v mg m R=所以:37.9210m/s v ===⨯(3)由万有引力提供向心力周期表达式可得:222()Mm Gm r T π= 在地面上万有引力等于重力:2Mm G mg R=解得:5420s T === 【点睛】本题首先要掌握万有引力提供向心力的表达式,这在天体运行中非常重要,其次要知道地面万有引力等于重力.10.在某一星球上,宇航员在距离地面h 高度处以初速度v 0沿水平方向抛出一个小球,小球落到星球表面时与抛出点的水平距离为x ,已知该星球的半径为R ,引力常量为G ,求:(1)该星球表面的重力加速度g ;(2)该星球的质量M ;(3)该星球的第一宇宙速度v 。

相关文档
最新文档