周期信号的傅里叶变换
第三章――傅里叶变换周期信号的傅里叶级数分析

第三章 傅里叶变换3.1周期信号的傅里叶级数分析(一) 三角函数形式的傅里叶级数满足狄利赫里条件的周期函数()f t 可由三角函数的线性组合来表示,若()f t 的周期为1T ,角频率112T πω=,频率111f T =,傅里叶级数展开表达式为()()()0111cos sin n n n f t a a n t b n t ωω∞==++⎡⎤⎣⎦∑各谐波成分的幅度值按下式计算()0101t T t a f t dt T +=⎰()()0112cos t T n t a f t n t dt T ω+=⎰()()01012sin t T n t b f t n t dt T ω+=⎰其中1,2,n =⋅⋅⋅狄利赫里条件:(1) 在一个周期内,如果有间断点存在,则间断点的数目应是有限个;(2) 在一个周期内,极大值和极小值的数目应是有限个; (3) 在一个周期内,信号是绝对可积的,即()00t T t f t dt +⎰等于有限值。
(二) 指数形式的傅里叶级数周期信号的傅里叶级数展开也可以表示为指数形式,即()()11jn tnn f t F n eωω∞=-∞=∑其中()011011t T jn tn t F f t e dt T ω+-=⎰ 其中n 为从-∞到+∞的整数。
(三) 函数的对称性与傅里叶系数的关系(1) 偶函数由于()f t 为偶函数,所以()()1sin f t n t ω为奇函数,则()()01112sin 0t T n t b f t n t dt T ω+==⎰所以,在偶函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。
(2) 奇函数由于()f t 为奇函数,所以()()1cos f t n t ω为奇函数,则()0100110t T t a f t dt T +==⎰()()010112cos 0t T n t a f t n t dt T ω+==⎰ 所以,在奇函数的傅里叶级数中不会含有直流项和余弦项,只可能包含正弦项(3) 奇谐函数(()12T f t f t ⎛⎫=-+ ⎪⎝⎭)半波对称周期函数的傅里叶级数中,只会含有基波和奇次谐波的正、余弦项,而不会含有偶次谐波项,这也是奇谐函数名称的由来。
傅里叶算式

傅里叶算式
傅里叶变换是一种将时域信号转换为频域信号的数学工具。
它可以将任意复杂的周期信号分解成一系列简单的正弦和余弦函数的叠加,从而揭示信号的频谱特性。
傅里叶变换的数学表达式为:
F(ω) = ∫[f(t) * e^(-jωt)] dt
其中,F(ω)表示频域信号,f(t)表示时域信号,e^(-jωt)为复指数函数,ω为角频率。
傅里叶变换的逆变换为:
f(t) = ∫[F(ω) * e^(jωt)] dω / (2π)
其中,f(t)表示时域信号,F(ω)表示频域信号,e^(jωt)为复指数函数,ω为角频率。
傅里叶变换广泛应用于信号处理、图像处理、通信等领域,可以分析信号的频谱特性,提取信号的频域信息,实现信号的滤波、压缩、调制等操作。
傅里叶变换也有多种变体,如离散傅里叶变换(DFT)、快速傅里叶变换(FFT)等,用于处理离散信号或高效计算傅里叶变换。
周期信号和抽样信号的傅里叶变换

p样 yn à(nEcɡTsh)ōSua(
ns
2
),
Fs ()
E
Ts
n Sa( ns
n
2
) F (
ns )
f (t)
1 F ()
o p(t) E
τ
o
Ts
fs (t)
o
Ts
t 相t 卷 乘积
t
mom
t
p()
E s
2
s o
s
Fs () E
Ts
2
s
om s
第十五页,共27页。
③冲激抽样(chōu yànɡ)(理想抽样
第二十三页,共27页。
3.频域抽样(chōu yànɡ)及频域抽样(chōu yànɡ)定理
①频域抽样 (chōu yànɡ)
连续 F ()
f (t) 单脉冲
()抽样
重复?
离散 F1()
f1(t) 周期性脉冲(màichōn
F1() F () () 其中 () ( n1)
n
F [ (t nT1)] 1 ( n1)
Sa( 2
)
2
G
()
Sa(100t)
2
200
G200 ()
m 100, 2m 200
f (t) 1
F ()
2 200
o 2
200
t
100 o 100 (m )
第二十一页,共27页。
解: ②
F
[Sa(100t) cos(1000t)]
1[
2 100
G200 (
1000)
100
G200 (
----时域抽样定理
第十三页,共27页。
周期信号的傅立叶变换

H ( j) YZS ( j) F( j)
H ( j) 是线性系统的频率传输函数,有时也叫系统频响 函数。它的定义是零状态响应傅氏变换与激励傅氏变换 之比。
X
2、H ( j)与 h(t)的关系
Q yzs (t) f (t)*h(t) 令 f (t) (t) 则yzs (t) h(t)
F [h(t)] Y(j) H(j)F(j) H(j)
抽样原理图:
f (t)
fs (t ) A/D
f (n)
量化编码
周期 信号
p( t )
需解决的问题
:
fs (t) Fs j与F
由fs t能否恢复f
j 的关系
t
X
二.抽样信号的频谱(单位冲激序列抽样)
f(t)
f(t)
连续信号
1
F j
1
F jft
抽样信号
fs t
o
ot
t
p(t) f(tp)(f(t)t)
F n e jn1t
n
FT j F fT t
F
n
•
F
n
e jn1t
n
•
F
nF
e jn1t
•
F n 2π n1 n
•
2π F n n1 n
X
几点认识
•
FT j 2π F n n1
1 fTt的频谱由冲激序列组成;
(2)这些冲激函数位于谐波频率处: n1 谐波频率
mommoommoomPPPmmmmjjj
(1p(()(11((11tp)))))(t)EEEE
o
ooo TTTSSS o TffSSSfTS(((ttS))t) fS(ftS)(t)
傅里叶变换公式

连续时间周期信号傅里叶级数:⎰=T dt t x Ta )(1⎰⎰--==T tTjkT tjk k dt et x Tdt et x Ta πω2)(1)(1离散时间周期信号傅里叶级数:[][]()∑∑=-=-==Nn nN jk Nn njkwk e n x Ne n x Na /2110π连续时间非周期信号的傅里叶变换:()⎰∞∞--=dt e t x jw Xjwt )(连续时间非周期信号的傅里叶反变换:()dw e jw X t x jwt ⎰∞∞-=π21)(连续时间周期信号傅里叶变换:∑+∞-∞=⎪⎪⎭⎫⎝⎛-=k k kw a jw X T 22)(πδπ连续时间周期信号傅里叶反变换:()dw e w w t x jwt ⎰∞∞--=0221)(πδπ离散时间非周期信号傅里叶变换:∑∞-∞=-=nnj e n x eX ωωj ][)(离散时间非周期信号傅里叶反变换:⎰=π2d e )(e π21][ωωωn j j X n x离散时间周期信号傅里叶变换:∑+∞-∞=-=kk k a X )(π2)e (0j ωωδω离散时间周期信号傅里叶反变换:[]ωωωδωd e n n j ⎰--=π20πl)2(π2π21][x拉普拉斯变换:()dt e t s Xst -∞∞-⎰=)(x拉普拉斯反变换:()()s j21t x j j d e s X st ⎰∞+∞-=σσπZ 变换:∑∞-∞=-=nnz n x X ][)z (Z 反变换: ⎰⎰-==z z z X r z X n x n nd )(πj21d )e ()(π21][1j π2ωω。
信号课件第三章傅里叶变换

• 任何周期函数在满足狄义赫利的条件下,可以展成正交函 数线性组合的无穷级数。如果正交函数集是三角函数集或 指数函数集,此时周期函数所展成的级数就是“傅里叶级 数”。
T1 T1 T1 2
f (t) sin n1tdt 0
2 T1
a0 T1
2
an T1
2 T1
T21
2 T1
2
f (t)dt
f (t) c
2f T1 0
osn1tdt
(t)dt
4 T1
T1 2
0
f (t) cosn1tdt
所以,在偶函数的傅里叶级数中不会有正弦项,只可能 含有(直流)和余弦分量。
α>0
F (w) f (t)e jwt dt ete jwt dt 1
0
jw
f (t) 1
t
F(w) 1
2 w2
1/ F( j)
(
)
arctan(
)
( )
/2
/2
2、双边指数信号
f (t)
f (t) e t α>0
1
2/ F()
F (w) f (t)e jwt dt
dt
E
e jnw1t
/2
E
e jnw1 / 2 e jnw1 / 2
T / 2
T
jnw1
T
/ 2
jnw1
Ts
t
2E T
e jnw1 / 2 e jnw1 / 2 2 jnw1
第4章_6周期信号的傅立叶变换
4.13bc 4.207
4.14e
4.23
4.41 4.45 4.48
上式表明,周期信号的傅里叶变换(或频谱密度函
数)由无穷多个冲激函数组成,这些冲激函数位于信
号的各谐波角频率 n(n 0,1,2, )处,其强度
为各虚指数分量相应幅度 Fn 的 2 倍。
例4.6-1 求周期性矩形脉冲信号 PT (t) 的频谱函数。
pT t
1
解:
Fn
Sa( n
2
)
(
n)
n
2 s in(n
2 n
)
(
n)
ℱ[pT(t)]
-Ω 0 Ω
图 4.6-2 周期矩形脉冲的傅立叶变换 T 4
例4.6-2 求周期性单位冲激函数序列 T (t)的频谱。
T (t) (t mT ) ( m为整数) n T(t )
周期冲激序列的傅立叶变换
可见:时域中周期为 T 的单位冲激序列,在频域中是
周期为 ,强度为
的冲激序列。其中
2
T
方法二
设周期信号 fT (t),从该信号中截取一个周期信号,
令其为 f0 (t) 。
fT (t) f0(t)T (t)
fT (t ) F0 ( j ) ( )
2
T
F0( jn) (
n
n)
Fn
1 T
F0 (
j ) n
可见,周期信号的傅里叶系数等于F0 ( j ) 在n处
的值乘上 1 。 T
傅里叶变换的许多性质也可适用于傅里叶级数,这提 供了求周期信号傅里叶系数的另一种方法。
傅里叶变换概念
傅里叶变换概念傅里叶变换(Fourier Transform)是一种数学技术,用于将一个函数从时域(时间域)表示转换为频域表示。
傅里叶变换广泛应用于信号处理、图像处理、通信系统等领域,具有重要的理论和实际意义。
傅里叶变换的概念可以通过将一个信号分解成多个正弦波和余弦波的叠加来解释。
任何复杂的周期信号都可以被视为多个不同频率的正弦波的叠加。
傅里叶变换就是将这个信号从时域分解成它不同频率的正弦波和余弦波分量的过程。
傅里叶变换的数学表示如下:F(ω)= ∫ f(t) * e^(-jωt) dt其中,F(ω)表示频域函数,f(t)表示时域函数,e^(-jωt)是欧拉公式中的复指数函数,ω是变量频率。
根据傅里叶变换的定义,我们可以将一个复杂的时域信号分解成多个频率分量,并且这些分量对应于频域函数F(ω)的不同频率部分。
傅里叶变换提供了一种量化信号在频域上的能力,揭示了信号的频谱特征,可以从中提取出信号中的频率、幅度、相位等信息。
傅里叶变换的应用非常广泛。
在信号处理领域,傅里叶变换常用于滤波、降噪、频谱分析等任务。
例如,在音频处理中,可以使用傅里叶变换将声音信号从时域转换到频域,通过分析频谱可以得知声音中包含的不同音调的频率和强度。
在图像处理领域,傅里叶变换可以提供图像的频域信息,用于图像增强、去噪、压缩等任务。
通过傅里叶变换,我们可以将一个图像分解成不同空间频率上的分量,从而更好地理解图像的特征和结构。
在通信系统中,傅里叶变换常用于信号调制、解调、信道估计等任务,以提高通信信号的传输质量和效率。
此外,傅里叶变换还有着重要的数学和物理意义。
傅里叶变换将一个函数从时域转换到频域,可视化了函数在不同频率上的分布情况。
通过傅里叶变换,我们可以将一个函数中的周期性模式展示出来,并且可以通过重建时域函数来还原原始信号。
为了实现傅里叶变换,通常使用快速傅里叶变换(FFT)算法。
FFT算法通过利用对称性质和迭代计算来大大加快傅里叶变换的计算速度,使得实时处理和大规模数据分析成为可能。
信号与系统第3章傅里叶变换
*本章要点
1.利用傅立叶级数的定义式分析周期信号的离散谱。 2.利用傅立叶积分分析非周期信号的连续谱。 3.理解信号的时域与频域间的关系。 4.用傅立叶变换的性质进行正逆变换。 5.掌握抽样信号频谱的计算及抽样定理
将信号表示为不同频率正弦分量的线性组合意义
1.从信号分析的角度 将信号表示为不同频率正弦分量的线性组合,为不同信号之 间进行比较提供了途径。
发展历史
•1822年,法国数学家傅里叶(J.Fourier,1768-1830)在研究热传导 理论时发表了“热的分析理论”,提出并证明了将周期函数展 开为正弦级数的原理,奠定了傅里叶级数的理论基础。 •泊松(Poisson)、高斯(Guass)等人把这一成果应用到电学中去, 得到广泛应用。 •19世纪末,人们制造出用于工程实际的电容器。 •进入20世纪以后,谐振电路、滤波器、正弦振荡器等一系列具 体问题的解决为正弦函数与傅里叶分析的进一步应用开辟了广 阔的前景。 •在通信与控制系统的理论研究和工程实际应用中,傅里叶变换 法具有很多的优点。 •“FFT”快速傅里叶变换为傅里叶分析法赋予了新的生命力。
一.三角函数形式的傅里叶级数
1.正交三角函数集
三角函数系1, cos x,sin x, cos 2x,sin 2x,..., cos nx,sin nx,...
在区间[-π,π]上正交,是指在三角函数系中任何不同的两个函 数的乘积在区间的积分等于零,即
cosnxdx 0(n 1,2,3,...)
傅里叶生平
1768年生于法国 1807年提出“任何周期信号
都可用正弦函数级数表示” 1829年狄里赫利第一个给出
收敛条件 拉格朗日反对发表 1822年首次发表“热的分析
理论”中
第四章(1)周期信号的傅里叶级数和频谱
1 j n jnt f ( t ) An e e 2 n
1 j n j n 令复数量 2 An e Fn e Fn
,称其为复
Fn
傅里叶系数,简称傅里叶系数。其模为
,
相角为 n , 则得傅里叶级数的指数形式为 :
f (t )
n
F e
n
jnt
复傅里叶系数
n 2 , 4 , 6 , 8 ,...... n 1 , 3 , 5 , 7 ,.....
, 0 bn 4 n ,
4
1 1 1 f t [sin t sin3t sin5t .... sinnt ...] 3 5 n
2
0
T 2
2 an 0 T
n 0,1 , 2 , 3,.......
2 bn T 2 T
0
T 2 T 2
f ( t ) si nnt dt
2 T2 (1) si nnt dt T
0
T 2 0
si nnt dt
T 2
2 1 2 1 cosnt cosnt T T n T n 0
a0 an cos(nt ) bn sin(nt ) 2 n1 n 1 2 其中 an , bn 称为傅里叶系数, 。 T
那么,傅里叶系数如何求得呢?
T 2 T 2
a0 1 2 T
f ( t )dt
T 2 2 an T f ( t ) cos(nt )dt T 2 T b 2 2 f ( t ) sin( t )dt n n T T 2
A0 1 1 j n jnt j n jnt Ane e Ane e 2 2 n 1 2 n 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第17讲 周期信号的傅里叶变换
周期信号进行傅里叶变换的目的
将周期信号用傅里叶级数展开得到周期信号的离散 频谱,令周期信号的周期趋近无穷大引出非周期信 号,从傅里叶级数在周期趋于无穷大的极限导出傅 里叶变换,由周期信号的离散谱过渡到连续谱,引 出频谱密度函数的概念
周期信号进行傅里叶变换的目的
f ( t )
F n . e j n 1t
n
根据傅里叶变换的线性和频移特性
F T [ f (t)] 2 Fn ( n1 )
n
3.一般的周期信号的傅立叶变换
F ( j) 2 Fn( n1)
n
周期信号的频谱是离散的,而傅里叶变换反映 的是频谱密度的概念,因此周期信号的傅里叶 变换不同于其傅里叶系数,它不是有限值,而 是冲激函数,这表明在谐波频率点处,即无穷小 的频带范围内取得了无穷大的频谱值。
1.复指数信号的傅里叶变换
因为
1 2 ()
对于复指数
f (t) e j0t
由频移特性,可知
e j0t 2 ( 0)
2. 余弦和正弦信号信号的傅里叶变换
对于正弦和余弦信号,根据欧拉公式,并利用
e j0t 2 ( 0)
得到其频谱函数分别为
cos0t [ ( 0 ) ( 0 )]
sin0t j[ ( 0 ) ( 0 )]
3.一般的周期信号的傅立叶变换
F( j) 2 Fn ( n1)
n
周期信号的傅里叶变换是由无穷多个频域上的 冲激函数组成,这些冲激函数位于信号的各谐
波频率 n1处,其强度为相应傅里叶级数系数
Fn 的 2 倍。
4、周期单位冲激序列的傅里叶变换
T (t)
n
(t nT1)
F n . e j n 1t
5.周期信号的傅立叶级数与其单周期信
号 的傅立叶变换的关系
由FS
Fn
1 T1
T1
2 T1 2
f ( t ) . e j n 1t d t
取f(t)的一个周期 f 0 ( t ) ,其FT为 F0( j)
T1
F 0 ( j
)
2
T1 2
f 0 ( t ) . e jt d t
所以
Fn
周期信号不满足绝对可积的条件,但引入冲激 函数后,可对周期信号进行傅里叶变换,从频 谱密度的角度观察周期信号的离散频谱。
对周期信号进行傅里叶变换,将周期信号和非 周期信号的分析方法用傅里叶变换工具统一起 来。
周期信号的傅立叶变换
复指数信号的傅里叶变换 正弦余弦信号的傅立叶变换 一般周期信号的傅立叶变换 周期单位冲激序列的FS和FT 周期信号的FS与其单周期信号的FT的关系
n
1
e j n1 t
T1 n
F T [ T ( t ) ]
2
1 T1 n
(
n1 )
F ( j) FT [T (t)] 1 ( n1 )
n
(t)
(1)
F0( j)
1
0
T (t)
T1
FT
t
FS t F ( j)
1
0
1 Fn T1
1 0 1 21
21 1 0 1 21
1 T1
F 0(
j)
n1
4.周期信号的傅立叶级数与其单周期信号 的傅立叶变换的关系
f (t)
Fn
f0 (t)
Fn
1 T1
F0 (j)
n1
F0( j )
5、周期矩形脉冲的FS和FT的关系
f0 (t)
A
FT
t
周
202
期
重
f (t)
复
A
FS
t FT
T1
T1
F0 ( j)
A
2 0
2
Fn A
T1
F ( j)
F T [cos1 t] [ ( 1 ) ( 1 )]
( 1 )
F ( j) ( 1 )
1
0
1
FT[sin 1 t] j[ ( 1 ) ( 1 )]
jF ( j) ( 1 )
1
0
( 1 )
1
3.一般的周期信号的傅立叶变换
周期信号 f (t) 的指数形式的傅里级数展开式为
A S a (
T1
n1 )
2
FS
f ( t )
A
T1
n
Sa
n
2
1
.
e
j n 1t
FT
F ( j )
A1
n
Sa
n
12
(
n1 )
思考与练习
1 周期信号有几种表示形式?各是什么? 2 周期信号既可以用傅里叶级数展开,又可以
用傅里叶变换表示,两者表示有何不同?
A1
5.周期矩形脉冲与单矩形脉冲的关系
F n
1 T1
T1
2 T1 2
f ( t ) . e j n 1t d t
T1
F 0 ( j
)
2
T1 2
f 0 ( t ) . e jt d t
Fn
1 T1F 0(j) Nhomakorabean1
F0 ( j)
A
S
a
2
由单脉冲联想FS的Fn
Fn
1 T1
F
0(
j)
n1