发酵工程总结

合集下载

发酵工程知识点总结归纳

发酵工程知识点总结归纳

发酵工程知识点总结归纳一、发酵工程概述1. 发酵工程的定义发酵工程是一门研究微生物、酶等生物催化剂在工业生产中广泛应用的工程学科。

2. 发酵工程的历史发酵工程的历史可以追溯到几千年前,最早的酿酒技术可以追溯到古代民族。

随着人类对微生物的认识和技术的发展,发酵工程逐渐成为一门系统的学科。

3. 发酵工程的应用领域发酵工程广泛应用于食品、饮料、医药、生物制药、环保等领域,对人类的生活和健康有着重要影响。

二、发酵过程及机理1. 发酵过程发酵过程是利用微生物或酶对有机物进行生物催化反应,产生有机产物或能量的过程。

发酵过程通常包括菌种培养、发酵产物的分离提纯等步骤。

2. 发酵机理发酵的基本机理包括微生物的生长和代谢过程,包括物质的代谢途径、酶的作用、生理生化特性等。

三、发酵工程中的微生物1. 发酵微生物的分类发酵微生物包括细菌、真菌、酵母等。

不同的微生物在发酵过程中起到不同的作用。

2. 发酵微生物的培养发酵微生物的培养包括培养基的配制、发酵罐的设计等环节,培养条件对微生物的生长和代谢具有重要影响。

3. 发酵微生物的选育发酵工程中常用的微生物包括大肠杆菌、酵母菌等,针对不同的产品需要选择适合的微生物用于发酵生产。

四、发酵工程中的酶1. 酶的分类酶是生物催化剂,可以促进化学反应的进行。

按照其作用方式可以分为氧化酶、还原酶、水解酶等。

2. 酶的应用酶在发酵工程中有着广泛的应用,可以用于生产食品、医药、生物燃料等产品。

3. 酶的工程化酶的工程化包括酶的产生、提纯、改良等步骤,使其更好地适用于实际生产。

五、发酵工程中的设备1. 发酵罐发酵罐是用于放置和滋生微生物的设备,包括灭菌、通气、控温等功能。

2. 排气系统排气系统可以有效地排除产生的二氧化碳和其他代谢产物,以保证发酵过程的正常进行。

3. 分离设备分离设备包括离心机、膜分离等,用于分离提纯发酵产物。

六、发酵工程中的工艺控制1. 发酵条件的控制发酵过程中需要控制pH、温度、氧气供应等参数,以保证微生物的生长和产物的产生。

发酵工程实验报告总结

发酵工程实验报告总结

发酵工程实验报告总结发酵工程实验是一项非常重要且广泛应用的实验,通过实验,我们可以了解到发酵过程中的微生物生长和代谢规律,提高发酵过程的效率和产物质量。

本次实验主要涉及到发酵过程中的控制变量,发酵过程中微生物的生长和代谢规律的研究以及发酵过程中产物的分析等内容。

通过本次实验,我了解到了发酵过程中的一些基本原理和技术,对发酵工程有了更加深入的认识。

在实验中,我们首先进行了菌种的培养和优选。

通过实验,我们了解到菌种的选择和培养过程对发酵过程中的微生物生长和产物质量具有重要的影响。

通过对不同菌种的筛选和培养条件的优化,我们可以选择到合适的菌种,并使其生长状况良好,提高发酵过程的效率。

在实验中,我们还进行了发酵过程的控制变量的研究。

通过对发酵过程中温度、pH值、氧气供应等因素的控制,我们可以调节微生物的生长速度和产物的合成效率。

实验结果表明,控制变量对发酵过程中的微生物生长和产物质量具有明显的影响。

因此,合理地控制发酵过程中的各项参数是提高发酵效率和产物质量的关键。

在实验中,我们还对发酵过程中微生物的生长和代谢规律进行了研究。

通过对微生物数量、生物量、细胞代谢产物等指标的测定和分析,我们可以了解到微生物在不同生长阶段的代谢特点和变化规律。

实验结果表明,微生物生长和代谢过程中有明显的生长阶段和代谢阶段的变化,我们可以根据这些变化规律来调节发酵过程中的控制变量,提高发酵效率。

最后,在实验中,我们还对发酵过程中产物的分析进行了研究。

通过对发酵产物的组成、含量、纯度等指标的分析和测定,我们可以评估发酵过程的效果和产物质量。

实验结果表明,发酵产物的组成和含量与微生物的生长和代谢过程密切相关,通过调节好发酵过程中的控制变量和选择合适的菌种,我们可以获得高质量的发酵产物。

综上所述,发酵工程实验是一项非常重要和有意义的实验,通过实验,我们可以了解到发酵过程中的微生物生长和代谢规律,探索调节发酵过程的控制变量以提高发酵效率和产物质量的方法。

发酵工程重点总结

发酵工程重点总结

第一章发酵:通过微生物的生长繁殖和代谢活动,产生和积累人们所需产品的生物反应过程发酵工程:利用微生物(或动植物细胞)的特定性状,通过现代工程技术,在生物反应器中生产有用物质的技术体系。

该技术体系主要包括菌种选育与保藏、菌种扩大生产、代谢产物的生物合成与分离纯化制备等技术。

发酵工业的特点?(7点)1.发酵过程一般是在常温常压下进行的生化反应,反应安全,要求条件较简单。

2.可用较廉价原料生产较高价值产品。

3.反应专一性强。

4.能够专一性地和高度选择性地对某些较为复杂的化合物进行特定部位的生物转化修饰。

5.发酵过程中对杂菌污染的防治至关重要。

6.菌种是关键。

7.发酵生产不受地理、气候、季节等自然条件限制。

工业发酵的类型?厌氧发酵1. 按微生物对氧的不同需求需氧发酵兼性厌氧发酵液体发酵(包括液体深层发酵)2.按培养基的物理性状浅盘固体发酵深层固体发酵(机械通风制曲)分批发酵按发酵工艺流程补料分批发酵单级恒化器连续发酵连续发酵多级恒化器连续发酵带有细胞再循环的单级恒化器连续发酵发酵生产的基本工业流程?1. 用作种子扩大培养及发酵生产的各种培养基的配制;2. 培养基、发酵罐及其附属设备的消毒灭菌;3. 扩大培养出有活性的适量纯种,以一定比例接种入发酵罐中;4. 控制最适发酵条件使微生物生长并形成大量的代谢产物;5. 将产物提取并精制,以得到合格的产品;6. 回收或处理发酵过程中所产生的三废物质。

工业发酵的过程的工艺流程图?第二章1、发酵工业菌种分离筛选的一般流程?调查研究(包括资料查阅)试验方案设计含微生物样品的采集(如何使样品中所含微生物的可能性大?)样品预处理(如何在后续的操作中使这种可能性实现)菌种分离根据目的菌株及其产物特点分选择性分离方法随机分离方法(定向筛选←选择压力) (用筛选方案- 检测系统进行间接分离)富集液体培养固体培养基条件培养(初筛)菌种纯化复筛菌种纯化初步工艺条件摸索再复筛生产性能测试较优菌株1-3株保藏及进一步做生产试验某些必要试验和或作为育种的出发菌株毒性试验等2、菌种选育改良的具体目标。

发酵工程全部知识点总结

发酵工程全部知识点总结

发酵工程全部知识点总结一、发酵工程的基本概念1. 发酵的定义发酵是指利用微生物或其代谢物来改变物质的过程。

主要包括酵母、细菌、真菌等微生物。

2. 发酵工程的定义发酵工程是指利用发酵微生物代谢特性,通过合理调控环境条件,进行微生物发酵过程中的相关技术。

二、发酵微生物1. 酵母酵母是发酵工程中最常用的微生物,广泛应用于酒类、面包、啤酒等食品工业中。

2. 细菌细菌在发酵工程中也有重要的应用,如益生菌、酸奶中的乳酸菌等。

3. 真菌真菌发酵应用广泛,包括酵素生产、抗生素生产、食品添加剂等。

三、发酵工程的基本过程1. 液体发酵液体发酵是将发酵微生物培养在液体培养基中,通过控制培养基成分、通气、温度等条件来进行微生物代谢产物的生产。

2. 固体发酵固体发酵是将发酵微生物培养在固体底物中,通过控制底物成分、湿度、通气等条件来进行微生物代谢产物的生产。

3. 半固体发酵半固体发酵是将发酵微生物培养在半固体底物中,采用液态和固态发酵的优点来进行微生物代谢产物的生产。

四、发酵工程的主要设备和工艺1. 发酵罐发酵罐是发酵工程的主要设备之一,根据不同的发酵工艺和需求,可以采用不同类型的发酵罐。

2. 发酵工艺发酵工艺是指在发酵过程中,针对不同的微生物和产物特性,进行合理的发酵条件控制和操作流程。

3. 发酵控制系统发酵控制系统是指在发酵工程中,通过自动化设备和仪器,实现对发酵条件如温度、pH 值、通气、搅拌等的精确控制。

五、发酵工程的应用范围1. 食品工业发酵工程在食品工业中应用广泛,如酿造啤酒、制作酸奶、发酵面包、制作酱油等。

2. 医药工业发酵工程在医药工业中应用广泛,如生产抗生素、激素、酶制剂等。

3. 燃料工业发酵工程在燃料工业中也有应用,如生物乙醇、生物柴油等。

4. 化学工业发酵工程在化学工业中也有应用,如生产乳酸、丙酮、丙二醇等。

六、发酵工程的发展趋势1. 发酵工程技术的进步随着科技的不断进步,发酵工程的技术也在不断提高,发酵设备和工艺不断更新。

发酵工程知识点总结

发酵工程知识点总结

➢名词解释(每个3分)➢填空题➢单项选择题➢计算题(2题)➢简答题(4-5题)➢分析题(1-2题)➢论述或问答题(1题)第一章1发酵和发酵工程的概念发酵狭义:利用微生物在有氧或无氧条件下的生命活动,来制备微生物菌体或其代谢产物的过程。

广义:凡是培养细胞(动、植物和微生物细胞)来制得产品的过程。

发酵工程研究发酵工业生产过程中,各个单元操作的工艺和设备的一门科学2、发酵工程研究的内容※发酵工业用生产菌种的选育:◆自然选育◆诱变育种◆基因工程育种※发酵条件的优化与控制※生物反应器的设计※发酵产物的分离、提取和精制3、发酵类型1 按发酵产品的类型划分2 按发酵工艺是否需氧划分※厌氧发酵:如酒类发酵、酒精发酵、丙酮丁醇发酵、乳酸发酵和甲烷发酵※通风发酵:如酵母菌生产、抗生素发酵、有机酸发酵、氨基酸发酵和酶制剂生产等3 按发酵工艺培养基的状态划分※固态发酵:主要应用于传统酿造业。

※液态发酵:,是目前发酵工业所采用的主要工艺。

4、发酵工艺培养方法发酵工艺培养方法有:固态发酵工艺和液态发酵工艺1固态发酵工艺※固态薄层发酵※固态厚层(通风)发酵2 液态发酵工艺※液态表面发酵(浅盘发酵)工艺※液态深层通风发酵(Submerged fermentation)液态深层通风发酵是指在无菌条件下,在液体培养基内部进行微生物培养,获得产品的过程。

它包括向发酵罐中通入大量无菌空气、搅拌使空气均匀、培养基灭菌和无菌接种。

液态深层通风发酵是发酵工业使用的主要工艺。

5、分批发酵,分批补料发酵分批发酵(batch-process):在生物反应器内投入限量培养基后,接入微生物菌种进行培养,完成一个生长周期,获得产品的微生物培养方法。

是目前传统发酵工业所采用的主要发酵形式。

在分批补料发酵:发酵的开始投入一定量的培养基,在发酵过程的适当时期,开始连续补加碳或(和)氮源或(和)其他必需基质,直至发酵液体积达到发酵罐最大操作容积后,将发酵液一次放出,这种操作方式称为补料分批发酵。

高中发酵工程的知识点总结

高中发酵工程的知识点总结

高中发酵工程的知识点总结一、发酵工程的基本概念1. 发酵工程的定义发酵工程是以微生物或酶等生物催化剂为基础,通过控制合适的环境条件,利用微生物或酶的代谢作用,进行有选择地生产物质或提取有用产品的工程技术。

2. 发酵工程的原理发酵工程利用生物催化剂在适宜的温度、pH、氧气供应等条件下对原料进行代谢作用,使其产生有用的化学产物。

发酵过程分为有氧发酵和无氧发酵,有氧发酵是指微生物在充分供氧的情况下进行代谢作用,而无氧发酵则是微生物在缺氧条件下进行代谢作用。

3. 发酵工程的应用发酵工程在食品、医药、酒类、饲料、化工等领域都有重要的应用,可以生产出酒精、乳酸、维生素、抗生素、酶等多种产品。

二、微生物学基础1. 微生物的分类微生物是一类极小的生物体,包括细菌、真菌、酵母菌、病毒等。

其中,细菌可分为革兰氏阳性菌和革兰氏阴性菌,酵母菌主要是酵母菌科的酵母菌,真菌包括霉菌和酵母菌。

2. 微生物的生长特性微生物的生长需要适宜的温度、pH值、氧气供应等条件,不同微生物的生长特性有所不同。

典型的微生物生长曲线包括潜伏期、对数生长期和平稳期。

3. 微生物的代谢特点微生物的代谢分为呼吸代谢和发酵代谢两种形式。

呼吸代谢需要有氧气,产生CO2和H2O,而发酵代谢不需要氧气,产生乳酸、酒精、醋酸等产物。

4. 微生物的培养方法微生物的培养方法包括液体培养和固体培养两种形式,培养基的选择对微生物的生长有重要影响。

三、发酵工程的工艺流程1. 发酵工程的基本流程发酵工程的基本流程包括发酵菌种的培养和保存、发酵罐的设计和运行、发酵过程的控制和调节、产品的分离和提取等步骤。

2. 发酵工程的发酵罐发酵罐是进行微生物发酵的设备,按照不同的设计要求可分为批式发酵罐和连续式发酵罐。

3. 发酵工程的发酵菌种发酵菌种是进行发酵的微生物,可以是细菌、酵母菌、真菌等。

合适的发酵菌种是发酵工程成功的关键。

4. 发酵工程的发酵过程控制发酵过程的控制包括温度、pH值、氧气供应、营养物质的添加等方面,需要根据不同的菌种和发酵产品进行调节。

发酵工程原理知识点总结

发酵工程原理知识点总结

发酵工程原理知识点总结发酵工程是一门研究微生物在发酵过程中生长、代谢和产物形成的工程学科。

其研究内容包括发酵微生物的筛选与培养、优化发酵条件、发酵过程监控与控制、发酵产物提取纯化与分离、罐内动力学和发酵机理等。

以下是发酵工程原理的相关知识点总结:1.发酵微生物的筛选与培养:(1)选材原则:产物多、投资少、筛选简单、培养容易、操纵方便;(2)常用的微生物包括细菌、酵母、霉菌等;(3)需考虑微生物生长的条件,如pH、温度、氧气供应等;(4)历经菌种筛选、单菌菌种的分离和纯化、菌种的贮藏等步骤;2.发酵条件的优化:(1)pH的控制:不同微生物对pH的要求不同,可以通过酸碱控制剂来调节pH;(2)温度的控制:温度是细胞生长和代谢的重要因素,一般通过水浴或发酵罐内加热来实现温度控制;(3)氧气供应的控制:氧气是许多微生物生长和代谢必需的,可以通过氧气流量的调节或增加曝气器的表面积来提供充足的氧气;(4)发酵液的搅拌速度和离心速度:搅拌可增强氧气传递和培养液的混合,离心可实现发酵产物的分离和提纯;3.发酵过程监控与控制:(1)发酵过程中需要监测的重要指标包括微生物生长速率、酸碱度、氧气浓度、温度、发酵产物浓度等;(2)监控手段有离线分析法、在线分析法和非破坏性检测法;(3)通过对监测指标的控制,实现对发酵过程的控制与优化,如调节酸碱度、温度以及添加营养物质来提高产量和产物质量;4.发酵产物的提取纯化与分离:(1)通过离心和过滤等物理方法,去除微生物和固体颗粒;(2)通过萃取、渗析、蒸馏、结晶等方法来提纯产物;(3)产物的纯化和分离过程需要进行监测和控制,以确保产物的纯度和产量;5.罐内动力学和发酵机理:(1)罐内动力学研究微生物的生长和代谢过程,了解微生物在不同发酵过程中的特性;(2)通过建立数学模型,可以预测发酵过程中微生物产物的生成速率和浓度变化;(3)对发酵机理的研究有助于进一步优化发酵条件,提高产物的产量和质量;以上是发酵工程原理的一些主要知识点总结。

发酵工程期末考点总结

发酵工程期末考点总结

第一章绪论狭义“发酵”的定义:在生物化学或生理学上发酵是指微生物在无氧条件下,分解各种有机物质产生能量的一种方式,或者更严格地说,发酵是以有机物作为电子受体的氧化还原产能反应。

广义“发酵”的定义:工业上所称的发酵是泛指利用生物细胞制造某些产品或净化环境的过程,它包括厌氧培养的生产过程,如酒精、丙酮丁醇、乳酸等,以及通气(有氧)培养的生产过程,如抗生素、氨基酸、酶制剂等的生产。

产品即有细胞代谢产物,也包括菌体细胞、酶等。

“发酵工程”的定义:应用微生物学等相关的自然科学以及工程学原理,利用微生物等生物细胞进行酶促转化,将原料转化成产品或提供社会性服务的一门科学。

发酵工程的特点:1)常温常压下进行的生物化学反应,反应安全,要求条件也比较简单。

2)发酵所用的原料简单粗放3)反应的专一性强,因而可以得到较为单一的代谢产物4)发酵过程中对杂菌污染的防治至关重要5)可以产生比较复杂的高分子化合物。

6)微生物菌种是进行发酵的根本因素7)工业发酵与其他工业相比,投资少,见效快,并可以取得显著的经济效益。

发酵过程的组成:繁殖种子和发酵生产所用的培养基组份确定;培养基、发酵罐及其附属设备的灭菌;培养出有活性、适量的纯种,接种入生产容器中;微生物在最适合于产物生长的条件下,在发酵罐中生长;产物提取和精制;过程中排出的废弃物的处理。

发酵产品的类型: 菌体、代谢产物、酶初级代谢产物:氨基酸、核苷酸、蛋白质、核酸、脂类和碳水化合物等。

次级代谢产物:有些微生物的稳定期培养物中所含有的化合物,并不在营养期时出现,而且未见到对细胞代谢功能有明显的影响。

例如,抗生素。

生物转化过程定义:生物细胞或其产生的酶能将一种化合物转化成化学结构相似,但在经济上更有价值的化合物。

特点:反应条件温和(30-40℃,常压,水相反应)反应选择性高反应产物纯度高(包括光学纯)反应底物简单便宜(一般无毒、不易燃)反应收率主要取决于菌种的性能设备简单第二章:生产菌种的来源微生物的特性及工业微生物的要求:1)微生物的特性:体积小、面积大;吸收快、转化快;生长旺、繁殖快;易变异、适应性强;种类多、分布广2)工业化菌种的要求:能够利用廉价的原料,有关合成产物的途径尽可能地简单,或者说菌种改造的可操作性要强遗传性能要相对稳定不易感染它种微生物或噬菌体产生菌及其产物的毒性必须考虑生产特性要符合工艺要求菌种在发酵过程中不产生或少产生与目标产品性质相近的副产物和其它产物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发酵工程总结一名词解释1.发酵:传统概念,是指微生物在无氧条件下分解代谢有机物质释放能量的过程。

现代概念,利用微生物在有氧或无氧条件下的生命活动来制备微生物菌体或其代谢产物的过程。

2.发酵工程:采用现代化工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。

3.微生物的生物转化:是利用生物细胞对一些化合物某一特定部位的作用,是它转化成结构相类似但是更具有经济价值的化合物。

4.生产微生物细胞物质:是以获得具有多种用途的微生物菌体细胞为目的产品的发酵工业。

5.筛选:采用与生产相近的培养基和培养条件,通过三角瓶的容量进行小型发酵实验,以求得适合于工业生产用菌种。

方法有a平皿快速检测法(变色圈法、透明圈法、生长圈法、抑菌圈法、梯度平板法)b摇瓶培养法。

6.诱变育种:就是利用物理或化学诱变剂处理均匀分散的微生物细胞群,提高基因突变频率,再通过适当的筛选方法获得所需要的高产优质菌种的育种方法。

7.基因突变:指的是DNA碱基发生变化即点突变。

8.自然选育:在生产过程中,不经过人工诱变处理,利用菌种的自发突变选育出优良菌种的过程。

9.回复突变:高产菌株在传代的过程中,由于自然突变导致高产性状的丢失,生产性能下降的情况。

10.菌种退化:是指在较长时期传代保藏后,菌种的一个或多个生理性状和形态特征逐渐减退或消失的现象。

11.狭义的菌种复壮:指在菌种已发生衰退的情况下,通过纯种分离和测定生产性能等方法,从衰退群体中找出少数尚未衰退的个体,从而达到恢复浓菌原有典型性状的目的。

广义的复壮是一项积极的措施,指在菌种的典型特征或生产性状尚未衰退前,就经常有意识地采取纯种分离和生产性状的测定工作,以期从中选择到自发的正变个体12.种子扩大培养:是指将保存在砂土管、冷冻干燥管中处于休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级放大培养而获得一定数量和质量的纯种过程。

13.基本培养基MM:凡是能满足野生型菌株营养要求的最低成分的合成培养基。

14.完全培养基CM:满足一切营养缺陷性菌株生长的天然或半合成培养基。

15.补充培养基SM:在基本培养基中有针对性的加入一种或几种营养成分以满足相应营养缺陷型菌株生长的合成培养基。

16.天然培养基:是采用化学成分还不清楚或化学成分还不恒定的各种植物和动物组织或微生物的浸出物、水解液等物质制成的。

17.合成培养基:也称组合培养基(多用于定量研究);是用化学成分和数量完全了解的物质配制而成的。

18.半合成培养基:多数培养基配制是采用一部分天然有机物作碳源、氮源和生长因子的来源,再适当加入一些化学药品以补充无机盐成分,使其更能充分满足微生物对营养的需要。

19.生长曲线:定量描述液体培养基中微生物群体生长规律的实验曲线。

20.初级代谢产物:是指微生物通过代谢活动所产生的自身生长和繁殖所必需的物质。

(糖,氨基酸,脂肪酸,核苷酸,高分子化合物)21.次级代谢产物:是指微生物生长到一定阶段才产生的化学结构十分复杂,对该生物无明显生理功能,或并非是微生物生长和繁殖所必需的物质。

(抗生素,毒素,激素,色素,生物碱)22.操纵子:是指基因组DNA分子的一个片段,这个片段由启动子,调节基因,操纵基因和结构基因组成。

23.前体:指一些添加到培养基中的物质,能直接被微生物在生物合成过程中结合到产物分子上去,自身结构基本不变,产物产量却因此有较大提高。

24.促进剂:指那些既不是营养物又不是前体,却能提高产量的添加剂。

25.抑制剂:一些对生产菌代谢途径有某种调节能力的物质。

26.氨基糖反应:还原糖与氨基酸之间产生的呈色反应。

值:糖化液中还原糖含量占干物质的百分率,用于表示淀粉糖的糖组成。

28.灭菌:是指采用化学或物理的方法杀灭或去除物料及设备中一切有生命的有机体的过程。

29.射线灭菌原理:利用高能量的电磁辐射与菌体核酸的光化学反应造成菌体死亡。

常用:紫外线、x射线和γ射线30.化学灭菌原理:药物与微生物细胞中的成分反应,使蛋白质变性,酶失活。

范围:器皿、双手和实验室、无菌室的环境灭菌。

31.干热灭菌原理:利用高温对微生物有氧化,蛋白质变性和电解质浓缩作用而杀灭微生物。

范围:玻璃及金属用具及砂土管灭菌32.湿热灭菌原理:蒸汽冷凝放出大量潜热,具有穿透力,且在高温有水分条件下,蛋白质易变性。

范围:培养基和发酵设备。

水煮常压灭菌:100℃饱和蒸汽灭菌:一般121℃,30min33.过滤除菌原理:利用微生物不能透过滤膜除菌。

范围:用于压缩空气、酶溶液及其他不耐热化合物溶液除菌。

34.火焰灭菌原理:利用火焰直接杀死微生物。

范围:接种针、玻璃棒、三角瓶35.临界氧:满足微生物呼吸的最低氧浓度。

(呼吸临界氧)。

对产物而言是不影响产物合成所允许的最低氧浓度(合成临界氧);36.补料分批发酵:是指分批培养过程中,间歇或连续的补加新鲜培养基的培养方法。

优点:a可以出去快速利用碳源的阻遏效应,并维持适当的菌体浓度,使不至于加剧供氧的矛盾。

b克服养分的不足,避免发酵过早结束。

37.分批发酵:在一个封闭的培养系统内,含有初始限制量的机制的发酵方式,即一次性投料,一次性发货产品。

38.连续发酵:培养基料液连续输入发酵罐,并同时放出含有发酵产品的发酵液的培养方法。

39.半连续发酵:指在补料分批发酵的基础上,间歇的放掉部分发酵的培养方法。

40.发酵染菌:指在发酵过程中生产菌以外的其他微生物侵入了发酵系统,从而使发酵过程失去真正意义上的纯种培养。

41.污染时间:是指用无菌检测方法确准的污染时间,不是杂菌窜入培养液的时间。

二简答获得发酵产品的条件:1.适宜的微生物2.保证或控制微生物进行代谢的各种条件3.进行微生物发酵的设备4.精制成产品的方法和设备。

机械搅拌通气发酵罐:主要部件包括罐体,搅拌器,挡板,轴封,空气分布器,传动装置,冷却装置,消泡器,视镜,呈圆筒状,罐高/径多为。

搅拌器作用:1,打碎空气气泡,增加气液接触界面以提高气液间的传至效率。

2,使发酵液充分混合。

轴封作用:防止染菌和泄露。

发酵罐灭菌的注意点;1.升温降温时注意缓冲性 2.灭菌时蒸汽从夹套中进去,如从罐中进去,蒸汽冷凝产生冷凝水,无法接种,容易污染3.冬天温度低,散热快,低于30度需加温,加温时蒸汽由下进入从上而出。

如从25度到30度,加热到28度时即可关蒸汽阀。

4.微生物代谢发酵时产生大量热,使温度大于30度需考虑适当降温。

冷却时冷却水由下进入从上而出,注意缓冲性,不要降至30度才关5.小型罐50L~7T用夹套系统冷;大型罐7吨,用冷却管。

发酵罐接种的三种方法:a火圈直接倒种b注射器接种c压力差接种菌种选育的目的:1.防止菌种退化2.解决生产实际问题3.提高生产力4.提高产品质量5.开发新产品工业微生物分离的程序:定方案,采样,增殖,分离,发酵性能测定。

诱变育种的程序:出发菌株的选择——制备菌悬液——前培养——诱变处理——突变菌株的筛选——保藏和扩大试验原生质体融合的步骤:选育亲株—制备原生质体—原生质体融合—原生质体再生—筛选优良性状融合重组子菌种退化的原因:1.菌种连续传代导致自发突变或回复突变是菌种发生退化的直接原因2.菌种保藏方法不当 3.菌种生长的条件要求没有得到满足,或是遇到不利的条件,或是失去某些需要的条件。

防止菌种退化的措施:a 创造良好的培养条件b控制传代次数c利用不同类型的细胞进行移种传代d采用有效的菌种保藏方法e选用合适的培养基菌种保藏方法:1,冷冻干燥或真空干燥保藏2,超低温或在液氮中冷冻保藏。

3,转接培养或斜面传代保藏4,土壤或陶瓷珠等载体干燥保藏扩大培养种子必须满足的条件:1,菌种细胞的生长活力强,移种至发酵罐后迅速生长,迟缓期短。

2,生理性状稳定3,菌体总量及浓度能满足大容量发酵罐的要求4,无杂菌污染5,保持稳定的生产能力。

放线菌孢子制备工艺流程:菌种—母斜面—子斜面—摇瓶种子—种子罐—发酵罐(琼脂斜面培养基,28度,5到14天)好氧培养试管→三角瓶→摇床→种子罐厌氧培养试管→三角瓶→卡式罐→种子罐种子质量的控制1.影响孢子质量的因素:培养基、培养条件、培养时间、冷藏时间。

2.影响种子质量的因素:培养基、培养条件、孢子的质量、种龄、接种量。

3.细胞或菌体、生化指标、产物生成量、酶活力4.种子的异常状况:菌种生长缓慢或过快、菌丝结团、菌丝粘壁5.种子质量的控制措施:菌种稳定性检查、无(杂)菌检查、提供合适的培养条件代谢调节方式:1.代谢途径区域化2.代谢流向的调控3. 代谢速度的调控4.细胞透性的调节5.能荷调节代谢速度的调控:<一>酶合成的调节(粗调)是在基因表达水平上起作用的a酶合成的诱导1,协同诱导:一种诱导剂可以同时诱导产生若干种酶的现象。

2,顺序诱导:一种诱导剂产生的酶的反应产物可继续诱导产生下一个酶,连续诱导产生一系列酶的现象。

b酶合成的阻遏:终点产物反馈阻遏,分解代谢物阻遏。

c酶合成调节的遗传基质:操纵子学说.<二>酶活性的调节(细调)a酶活性的激活:前体激活和代谢中间产物的反馈激活。

b酶活性的抑制:反馈抑制。

c:酶活性调节的分子机制:别构调节理论,酶分子的化学修饰理论积累代谢产物的有效措施:a反馈抑制作用的解除b反馈阻遏作用的解除c遗传阻遏d使细胞膜透性增大。

人工控制微生物代谢的手段:<1>生物合成途径的遗传控制:a代谢缺陷型菌株b利用抗代谢类似物的突变积累氨基酸c产物降解缺失突变株d细胞膜组分的缺失突变<2>微生物发酵条件的控制:主要有温度,PH,氧气含量,离子浓度等。

氨的导入有三种方式:—酮戊二酸还原氨基化(谷氨酸)2.由天冬氨酸或丙酮酸通过氨基转移,将氨基转给a—酮戊二酸3.谷氨酸合成酶途径。

配置培养基的原则:1,根据不同微生物的营养需要配置不同的培养基。

2,注意各营养物质的浓度和配比。

3,调节适宜的物理化学条件。

4,根据培养微生物的目的配置。

5,尽量使用廉价易得的原料。

影响培养基灭菌的因素:微生物种类、初始菌量、培养基成份、传热与混合状况、培养基中固体颗粒的存在影响热穿透。

蒸汽中空气的存在降低蒸汽分压和灭菌温度。

pH空气净化的方法:a热杀菌:基于加热后微生物体内的蛋白质热变性而得以实现。

b静电除菌:是利用静电引力来吸附静电粒子而达到除尘灭菌的目的。

c过滤除菌:是让含菌空气通过过滤介质以阻截空气中所含微生物,而取得无菌空气的方法。

d辐射除菌介质过滤除菌的原理:布朗扩散截留作用,拦截截留作用,惯性撞击截留作用,重力沉降作用,静电吸引作用。

空气净化的一般流程:空气吸气口→粗过滤器→空气压缩机→空气储罐→一级空气冷却器→旋风分离器→二级空气冷却器→丝网除沫器→空气加热器→空气总过滤器→空气分过滤器→无菌空气发酵过程中泡沫的产生:通入大量的无菌空气,剧烈的搅拌,菌体代谢产生CO2,加上发酵液中糖、蛋白质和代谢物等发泡物质的存在,使发酵液含有一定数量的泡沫。

相关文档
最新文档