最新人教版八年级下册数学十八章18.2.1矩形第二课时

合集下载

人教版八年级数学下册18.2 特殊的 平行四边形第二课时 矩形的性质课件

人教版八年级数学下册18.2  特殊的   平行四边形第二课时  矩形的性质课件

(1)证明:∵AO=OC, BO=OD, ∴四边形ABCD是平行四边形. 又∵∠AOB=2∠OAD,∠AOB=∠OAD+∠ADO, ∴∠OAD=∠ADO,∴AO=OD. ∵AC=AO+OC=2AO,BD=BO+OD=2OD, ∴AC=BD,∴四边形ABCD是矩形.
(2)解:设∠AOB=4x,∠ODC=3x, 则∠OCD=∠ODC=3x. ∵∠DOC+∠OCD+∠CDO=180°, ∴4x+3x+3x=180°,解得x=18°, ∴∠ODC=3×18°=54°, ∴∠ADO=90°-∠ODC=90°-54°=36°.
(1)证明:方法一 ∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC,AB=DC. ∵CE=BC,∴AD=CE. 又∵AD∥CE,∴四边形ACED是平 行四边形. ∵AB=AE,∴DC=AE, ∴四边形ACED是矩形.
证明:方法二 ∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC,AB=DC. ∵CE=BC,∴AD=CE. 又∵AD∥CE, ∴四边形ACED是平行四边形. ∵AB=AE,BC=CE, ∴AC⊥BE,∴∠ACE=90°, ∴四边形ACED是矩形.
几何语言
∵四边形ABCD是平行四边形 且AC=BD ∴四边形ABCD是矩形
A
D
O
B
C
小试牛刀
1.如图,下列条件不能判定四边形ABCD是矩形的是( C )
A.∠DAB=∠ABC=∠BCD=90° B.AB∥CD,AB=CD,AB⊥AD C.AO=BO,CO=DO D.AO=BO=CO=DO
2.如图 ABCD 中, ∠1= ∠2中.此时四边形ABCD是矩
解:∵四边形ABCD是平行四边形,
∴OA=OC=
1 2
AC,OB=OD= 1

2021年人教版八年级数学下册第十八章《18.2.1 矩形(2)》优质课件.ppt

2021年人教版八年级数学下册第十八章《18.2.1 矩形(2)》优质课件.ppt
∵∠AOB= 60
∴∠AOD= 120 又AO=DO
∴∠ADC= 90
∴四边形ABCD是矩形 AC=8 ,DC=4, AD= 4 3 ∴平行四边形ABCD面积为 16 3
四、归纳小结
1、矩形的判定定理: (1)(定义)_有__一__个__角__是__直__角__的_平__行__四__边__形__是__矩__形__; (2)对__角__线__互__相__平__分__且__相__等__的__平__行__四__边__形__是__矩__形__; (3)_有__三__个__角__是__直__角__的__四__边__形__是__矩__形_______.
两组对边 相_等

两组对角 _相等_
四个角都是 相等_
对角线 互相 平分_____
互相 平 且_相__等_ 分
二、学习目标
1、掌握矩形的判定方法; 2、经历探索四边形是矩形的条件过程,在活 动中发展探究意识和有条理的表达能力.
三、研读课文
认真阅读课本第54至55页的内容,完成下面练习 并体验知识点的形成过程.

识矩
点形
一 :
的 判 定


1、(定义) 有一个角是直角 四边形是矩形.
符号语言,如图,在口ABCD中,
∵∠ A =
∴口ABCD是 平行四边形 .
的平行
三、研读课文

识矩
点形
一 :
的 判 定


2、对角线_互__相__平__分__且相等的平行四边形 是矩形.
已知: 如图,在口ABCD中, AC=_B_D_ ,
答:(1)需要再搬来38盆红花。根据矩形 对角线相等,以及对角线交点处不放花。
(2)需要再搬来48盆红花。根据矩形对 角线相等,以及对角线交点处要放花。

人教版八年级数学下册--18_2_1 矩形(第2课时 矩形的判定)练习】

人教版八年级数学下册--18_2_1 矩形(第2课时 矩形的判定)练习】

第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:,使四边形DF AE是矩形.12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是(写出一种情况即可).13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=°时,四边形AEDF是矩形.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习答案一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD【解答】解:需要添加的条件是AC=BD,理由如下:∵四边形ABCD的对角线AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形(对角线相等的平行四边形是矩形);故选:B.2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC【解答】解:因为有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形,故选:B.3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC【解答】解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴▱ABCD为矩形,故选项A不符合题意;B、∠A=∠C不能判定▱ABCD为矩形,故选项B符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴▱ABCD是矩形,故选项C不符合题意;D、∵AB⊥BC,∴∠B=90°,∴▱ABCD为矩形,故选项D不符合题意;故选:B.4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC【解答】解:A.根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B.根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C.根据邻边相等的平行四边形是菱形能判定平行四边形ABCD为菱形,不能判定平行四边形ABCD 为矩形,故此选项符合题意;D.∵平行四边形ABCD中,AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD=∠ADC,∴∠BAD=∠ADC=90°,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意.故选:C.5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个【解答】解:①∵∠1+∠3=90°,∴∠ABC=90°,∴▱ABCD是矩形,故①正确;②∵四边形ABCD是平行四边形,∴AB=CD,∵BC2+CD2=AC2,∴BC2+AB2=AC2,∴∠ABC=90°,∴▱ABCD是矩形,故②正确;③∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵∠1=∠2,∴OA=OB,∴AC=BD,∴▱ABCD是矩形,故③正确;④∵四边形ABCD是平行四边形,AC⊥BD,∴▱ABCD是菱形,故④错误;能判定四边形ABCD是矩形的个数有3个,故选:C.6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD【解答】解:A.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴平行四边形ABCD是矩形,故选项B不符合题意;C.∵AD∥BC,∴∠A+∠B=∠C+∠D=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形,∴AB=CD,∴不能判定四边形ABCD为矩形,故选项C符合题意;D、∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故选项D不符合题意;故选:C.7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD【解答】解:A.∵四边形ABCD是平行四边形,又∵AC=BD,∴平行四边形ABCD是矩形,故本题选项不符合题意;B.∵AB⊥BC,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本选项不符合题意;C.∵AO=OB=OC=OD,∵AC=BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本题选项不符合题意;D.∵四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形,不是矩形,故本题选项符合题意;故选:D.8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD【解答】解:A、∵平行四边形ABCD中,AD=AB,∴平行四边形ABCD是菱形,故选项A不符合题意;B、∵AB⊥AD,∴∠BAD=90°,∴平行四边形ABCD是矩形,故选项B符合题意;C、平行四边形ABCD中,AB=AC,不能判定平行四边形ABCD是矩形,故选项C不符合题意;D、∵平行四边形ABCD中,CA⊥BD,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:B.9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°【解答】解:A、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AO=BO,∴AC=BD,∴平行四边形ABCD是矩形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∠BAD=90°,∴平行四边形ABCD是矩形,故选项C不符合题意;D、∵∠AOB=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:D.10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等【解答】解:A、对角线是否相互平分,能判定平行四边形,故选项A不符合题意;B、其中四边形中三个角都为直角,能判定矩形,故选项B符合题意;C、一组对角是否都为直角,不能判定形状,故选项C不符合题意;D、两组对边是否分别相等,能判定平行四边形,故选项D不符合题意;故选:B.二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:∠A=90°(答案不唯一),使四边形DF AE是矩形.【解答】解:添加条件:∠A=90°;理由如下:∵E、D、F分别是AB、BC、AC的中点,∴DE是△ABC的中位线,AE=AB,AF=AC,∴DE∥AC,DE=AC,∴DE=AF,∴四边形AEDF是平行四边形,∵∠A=90°,∴平行四边形AEDF是矩形,故答案为:∠A=90°(答案不唯一).12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是AC=BD或∠ABC=90°(写出一种情况即可).【解答】解:若使平行四边形ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形)∠ABC=90°.(有一个角是直角的平行四边形是矩形)故答案为:AC=BD或∠ABC=90°.13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=45°时,【解答】解:当∠B=45°时,四边形AEDF是矩形.∵DF∥AB,DE∥AC,∴四边形AEDF是平行四边形,∵AB=AC,∴∠B=∠C=45°,∴∠A=90°,∴四边形AEDF是矩形.故答案为45.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是有一个角是直角的平行四边形为矩形.【解答】解:∵E是AC的中点,∴AE=CE,∵ED=BE,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴平行四边形ABCD为矩形,故答案为:有一个角是直角的平行四边形为矩形.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD条件,才能保证【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.【解答】(1)证明:在梯形ABCD中,AB=DC,∠B=∠C,∵GF=GC,∴∠C=∠GFC,∠B=∠GFC,∴AB∥GF,即AE∥GF,∵AE=GF,∴四边形AEFG是平行四边形.(2)解:当∠FGC=2∠EFB时,四边形AEFG是矩形,理由:∵∠FGC+∠GFC+∠C=180o,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠EFB=180°,∴∠BFE+∠GFC=90°.∴∠EFG=90°.∵四边形AEFG是平行四边形,∴四边形AEFG是矩形.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.【解答】解:(1)证明:∵E为AD的中点,D为BC中点,∴AE=DE,BD=CD,∵AF∥CD,∴∠AFE=∠DCE,∠F AE=∠CDE,在△AFE和△DCE中,∠AFE=∠DCE,∠F AE=∠CDE,AE=DE∴△AFE≌△DCE(AAS),∴AF=CD,∴AF=BD,∵AF∥BD,∴四边形AFBD为平行四边形;(2)当△ABC满足条件AB=AC时,四边形AFBD是矩形,证明:∵AB=AC,D为BC中点,即AD为BC边上的中线,∴AD⊥BC,即∠ADB=90°,∵四边形AFBD为平行四边形,∴四边形AFBD为矩形.。

人教版数学八年级下册18.2.1矩形的性质(教案)

人教版数学八年级下册18.2.1矩形的性质(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解矩形的基本概念。矩形是一种特殊的平行四边形,其对边平行且相等,对角相等,四个角都是直角。矩形在日常生活和建筑等领域具有广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析矩形的性质,解决实际问题,如计算矩形的面积和周长。
3.重点难点解析:在讲授过程中,我会特别强调矩形的判定方法和性质这两个重点。对于难点部分,如矩形性质的证明,我会通过举例和比较来帮助大家理解。
突破方法:通过对比矩形与一般平行四边形的性质,强调矩形的独特性质。
(2)矩形性质的证明:学生在证明矩形的性质时,可能不知道如何运用已知条件和几何定理。
突破方法:引导学生运用已学的几何知识和定理,如对边平行且相等、对角相等等,进行逐步证明。
(3)矩形面积和周长的计算:学生在计算矩形面积和周长时,可能会忘记公式或者计算错误。
1.掌握矩形的基本性质,提高空间想象能力和抽象思维能力;
2.学会运用矩形性质解决实际问题,增强数学应用意识;
3.通过探索矩形性质的过程,培养观察、分析、归纳和概括能力;
4.提升学生合作交流、动手实践的能力,激发创新精神;
5.培养学生严谨、细致的学习态度,形成良好的数学学习习惯。
三、教学难点与重点
1.教学重点
在实践活动环节,分组讨论和实验操作使学生们积极参与,但我发现部分小组在讨论时,仍存在对矩形性质理解不透彻的问题。这提示我在今后的教学中,应更加关注学生的讨论过程,及时发现问题并进行引导。
学生小组讨论环节,大家围绕矩形在实际生活中的应用展开了热烈的讨论,但有些学生在提出观点时,还是显得有些拘谨。我想在以后的课堂上,应该更多地鼓励学生发表自己的看法,培养他们的自信心和表达能力。

人教版八年级数学下册第十八章 18.2 18.2.1 第2课时 矩形的判定

人教版八年级数学下册第十八章 18.2 18.2.1 第2课时 矩形的判定

7. (2018· 上海)已知平行四边形 ABCD,下列条件中, 不能判定这个平行四边形为矩形的是( B ) A.∠A=∠B C.AC=BD B.∠A=∠C D.AB⊥BC
8. 如图,四边形 ABCD 为平行四边形,延长 AD 到点 E,使 DE=AD,连接 EB,EC,DB,添加一个条件,不 能使四边形 DBCE 成为矩形的是( B )
2 48 cm ______________.
12. 如图,已知 MN∥PQ,EF 与 MN,PQ 分别交于 A,C 两点,过 A,C 两点作两组内错角的平分线交于点 B,
矩形 . D,则四边形 ABCD 的形状是______
13. 如图,E 为▱ABCD 外一点,AE⊥EC,BE⊥ED, 对角线 AC,BD 交于点 O,试说明▱A:如图,平行四边形 ABCD,对角 线 AC 与 BD 相交于点 E,点 G 为 AD 的中点,连接 CG, CG 的延长线交 BA 的延长线于点 F,连接 FD. (1)求证:AB=AF; (2)若 AG=AB,∠BCD=120° , 判断四边形 ACDF 的形状,并证明你的结论.
知识点
有一个角是直角的平行四边形是矩形
1. 下列说法正确的是( D ) A.一个角是直角且两条对角线相等的四边形是矩形 B.一组对边平行且有一个角是直角的四边形是矩形 C.有三个角都相等的四边形是矩形 D.一个角是直角且对角线互相平分的四边形是矩形
2. 如图,四边形 ABCD 中,AB∥DC,∠B=90° ,F 为 DC 上一点,且 AB=FC,E 为 AD 上一点,EC 交 AF 于点 G,EA=EG.
解:(1)∵E 是 AC 中点, 1 ∴EC= AC. 2 1 ∵DB= AC, 2 ∴DB=EC. 又∵DB∥EC,∴四边形 DBCE 是平行四边形. ∴BC=DE.

人教版八年级数学下册18.2.1矩形的判定(教案)

人教版八年级数学下册18.2.1矩形的判定(教案)
此外,我在课堂上也注意到了一些学生的创新思维。他们在小组讨论中提出了不同的解题方法,这让我感到非常欣慰。但同时,我也意识到,对于这些创新思维,我们需要给予更多的鼓励和肯定,让每个学生都能在课堂上敢于表达自己的观点。
在实践活动中,我发现学生们对于矩形判定的应用还是有些生疏。这说明我们在今后的教学中,需要加大实际例子的讲解,让学生更好地将理论知识运用到实际问题中。同时,我也注意到,部分学生在操作过程中对矩形的性质掌握不够牢固,这也是我需要在课后辅导中重点关注的地方。
b.有三个角是直角的四边形是矩形;
c.对角线相等的平行四边形是矩形。
4.实际应用:利用矩形的性质和判定方法解决相关问题。
二、核心素养目标
1.培养学生的逻辑推理能力,通过探究矩形的定义和性质,使学生能够理解和运用矩形判定方法,解决实际问题。
2.培养学生的空间想象力和直观感知能力,通过观察、分析矩形图形,让学生把握图形的性质和特征。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解矩形的基本概念。矩形是一个角是直角的平行四边形,它在我们的生活中无处不在。矩形的特点使其在建筑、设计等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析这个案例,了解矩形判定在实际中的应用,以及它如何帮助我们解决问题。
人教版八年级数学下册18.2.1矩形的判定(教案)
一、教学内容
人教版八年级数学下册18.2.1矩形的判定:
1.矩形的定义:一个角是直角的平行四边形是矩形。
2.矩形的性质:
a.矩形的四个角都是直角;
b.矩形的对边相等且平行;
c.矩形的对角线相等。
3.矩形的判定方法:
a.有一组邻边垂直的平行四边形是矩形;

人教初中数学八年级下册18-2-1矩形(2)教案

人教初中数学八年级下册18-2-1矩形(2)教案

人教初中数学八年级下册18-2-1矩形(2)教案一. 教材分析人教初中数学八年级下册18-2-1矩形是学生在学习了平行四边形的性质和矩形的性质后,进一步研究矩形的特征和应用。

本节课的主要内容是让学生掌握矩形的性质,包括矩形的四条边相等,对角线互相平分且相等,以及矩形在实际生活中的应用。

通过本节课的学习,学生能够进一步理解矩形的特点,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了平行四边形的性质,对矩形的性质有一定的了解。

但学生在应用矩形的性质解决实际问题时,还存在着一定的困难。

因此,在教学过程中,教师需要引导学生通过观察、操作、思考、交流等途径,进一步理解和掌握矩形的性质,提高解决问题的能力。

三. 教学目标1.知识与技能:让学生掌握矩形的性质,能够运用矩形的性质解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等途径,培养学生的观察能力、动手能力、思考能力和交流能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自信心和克服困难的勇气。

四. 教学重难点1.教学重点:矩形的性质及其应用。

2.教学难点:矩形的性质在实际问题中的灵活运用。

五. 教学方法1.情境教学法:通过创设情境,激发学生的学习兴趣,引导学生主动参与学习。

2.小组合作学习:通过小组讨论、交流,培养学生的合作意识和团队精神。

3.实践操作法:通过动手操作,让学生在实践中感受和理解矩形的性质。

4.问题驱动法:通过提出问题,引导学生思考,培养学生的问题解决能力。

六. 教学准备1.教具准备:矩形模型、直尺、剪刀等。

2.学具准备:学生每人准备一个矩形模型。

七. 教学过程1. 导入(5分钟)教师通过提问方式引导学生回顾平行四边形的性质,为新课的学习做好铺垫。

然后,教师展示一个矩形模型,引导学生观察矩形的特征,引发学生对矩形性质的思考。

2. 呈现(10分钟)教师通过多媒体展示矩形的性质,包括矩形的四条边相等,对角线互相平分且相等。

[精品]最新八年级下册特殊的平行四边形18.2.1矩形第2课时矩形的判定教案新人教版

[精品]最新八年级下册特殊的平行四边形18.2.1矩形第2课时矩形的判定教案新人教版

第2课时矩形的判定1.掌握矩形的判定方法;(重点) 2.能够运用矩形的性质和判定解决实际问题.(难点)一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形.这是矩形的定义,我们可以依此判定一个四边形是矩形.除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线相等且互相平分; 2.四个内角都是直角.这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究探究点一:有一个角是直角的平行四边形是矩形如图,在△ABC 中,AB =AC ,AD是BC 边上的高,AE 是△BAC 的外角平分线,DE ∥AB 交AE 于点E .求证:四边形ADCE是矩形.解析:首先利用外角性质得出∠B =∠ACB =∠FAE =∠EAC ,进而得到AE ∥BC ,即可得出四边形AEDB 是平行四边形,再利用平行四边形的性质得出四边形ADCE 是平行四边形,再根据AD 是高即可得出四边形ADCE 是矩形.证明:∵AB =AC ,∴∠B =∠ACB .∵AE 是△BAC 的外角平分线,∴∠FAE =∠EAC .∵∠B +∠ACB =∠FAE +∠EAC ,∴∠B =∠ACB =∠FAE =∠EAC ,∴AE ∥BC .又∵DE ∥AB ,∴四边形AEDB 是平行四边形,∴AE 平行且等于BD .又∵AB =AC ,AD ⊥BC ,∴BD =DC ,∴AE 平行且等于DC ,故四边形ADCE 是平行四边形.又∵∠ADC =90°,∴平行四边形ADCE 是矩形.方法总结:平行四边形的判定与性质以及矩形的判定常综合运用,解题时利用平行四边形的判定得出四边形是平行四边形再证明其中一角为直角即可.探究点二:对角线相等的平行四边形是矩形如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,延长OA 到N ,ON =OB ,再延长OC 至M ,使CM =AN .求证:四边形NDMB 为矩形.解析:首先由平行四边形ABCD 可得OA =OC ,OB =OD .若ON =OB ,那么ON =OD .而CM =AN ,即ON =OM .由此可证得四边形NDMB 的对角线相等且互相平分,即可得证.证明:∵四边形ABCD 为平行四边形,∴AO =OC ,OD =OB .∵AN =CM ,ON =OB ,∴ON =OM =OD =OB ,∴MN =BD ,∴四边形NDMB 为矩形.方法总结:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.探究点三:有三个角是直角的四边形是矩形如图,▱ABCD 各内角的平分线分别相交于点E ,F ,G ,H .求证:四边形EFGH 是矩形.解析:利用“有三个内角是直角的四边形是矩形”证明四边形EFGH 是矩形.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAB +∠ABC =180°.∵AH ,BH 分别平分∠DAB 与∠ABC ,∴∠HAB=12∠DAB ,∠HBA =12∠ABC ,∴∠HAB +∠HBA =12(∠DAB +∠ABC )=12×180°=90°,∴∠H =90°.同理∠HEF =∠F =90°,∴四边形EFGH 是矩形.方法总结:题设中隐含多个直角或垂直时,常采用“三个角是直角的四边形是矩形”来判定矩形.探究点四:矩形的性质和判定的综合运用【类型一】 矩形的性质和判定的运用如图,O 是矩形ABCD 的对角线的交点,E 、F 、G 、H 分别是OA 、OB 、OC 、OD 上的点,且AE =BF =CG =DH .(1)求证:四边形EFGH 是矩形; (2)若E 、F 、G 、H 分别是OA 、OB 、OC 、OD 的中点,且DG ⊥AC ,OF =2cm ,求矩形ABCD 的面积.解析:(1)证明四边形EFGH 对角线相等且互相平分;(2)根据题设求出矩形的边长CD 和BC ,然后根据矩形面积公式求得.(1)证明:∵四边形ABCD 是矩形,∴OA =OB =OC =OD .∵AE =BF =CG =DH ,∴AO -AE =OB -BF =CO -CG =DO -DH ,即OE =OF =OG =OH ,∴四边形EFGH 是矩形;(2)解:∵G 是OC 的中点,∴GO =GC .∵DG ⊥AC ,∴∠DGO =∠DGC =90°.又∵DG =DG ,∴△DGC ≌△DGO ,∴CD =OD .∵F 是BO 中点,OF =2cm ,∴BO =4cm.∵四边形ABCD 是矩形,∴DO =BO =4cm ,∴DC =4cm ,DB =8cm ,∴CB =DB 2-DC 2=43cm ,∴S 矩形ABCD =4×43=163(cm 2).方法总结:若题设条件与这个四边形的对角线有关,要证明一个四边形是矩形,通常证这个四边形的对角线相等且互相平分.【类型二】 矩形的性质和判定与动点问题如图所示,在梯形ABCD 中,AD∥BC ,∠B =90°,AD =24cm ,BC =26cm ,动点P 从点A 出发沿AD 方向向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿着CB 方向向点B 以3cm/s 的速度运动.点P 、Q 分别从点A 和点C 同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD 是平行四边形?(2)经过多长时间,四边形PQBA 是矩形?解析:(1)设经过t s 时,四边形PQCD 是平行四边形,根据DP =CQ ,代入后求出即可;(2)设经过t ′s 时,四边形PQBA 是矩形,根据AP =BQ ,代入后求出即可.解:(1)设经过t s ,四边形PQCD 为平行四边形,即PD =CQ ,所以24-t =3t ,解得t =6;(2)设经过t ′s ,四边形PQBA 为矩形,即AP =BQ ,所以t ′=26-3t ′,解得t ′=132.方法总结:①证明一个四边形是平行四边形,若题设条件与这个四边形的边有关,通常证这个四边形的一组对边平行且相等;②题设中出现一个直角时,常采用“有一角是直角的平行四边形是矩形”来判定矩形.三、板书设计 1.矩形的判定有一角是直角的平行四边形是矩形; 对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形. 2.矩形的性质和判定的综合运用在本节课的教学中,不仅要让学生掌握矩形判定的几种方法,更要注重学生在学习的过程中是否真正掌握了探究问题的基本思路和方法.教师在例题练习的教学中,若能适当地引导学生多做一些变式练习,类比、迁移地思考、做题,就能进一步拓展学生的思维,提高课堂教学的效率.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明猜想
猜想1 对角线相等的平行四边形是矩形.

ABCD中,AC=BD.求证:四边形ABCD是矩形.
A D
B
C
证明猜想
猜想2 有三个角是直角的四边形是矩形.
在四边形ABCD中,∠A=∠B=∠C=90°. 求证:四边形ABCD是矩形. A D
B
C
理一理
你能归纳矩形的判定方法吗?
方法1:有一个角是直角的平行四边形叫做矩形; 方法2:对角线相等的平行四边形是矩形; 方法3:有三个角是直角的四边形是矩形.
用一用
例 如图,在 ABCD中,对角线AC,BD相交于点 O,且OA=OD,∠OAD=50°.求∠OAB的度数. D
C
O
A
B
理一理
练习2 在“?”号处填上恰当的条件:
四边形

平行四边形

矩形

理一理一种学习方法 Fra bibliotek个猜想证明 三种判定方法
辩一辩
练习1 现在你能帮小明解决问题了吗?小明判定 相框为矩形的下列方法中哪些正确?为什么? (1)有一个角是直角的四边形是矩形;( × ) (2)四个角都相等的四边形是矩形;( √ ) (3)对角线相等的四边形是矩形;( × ) (4)对角线互相平分且相等的四边形是矩形;( √ ) (5)两组对边分别平行,且对角线相等的四边形是矩 形.( √ )
生活剪影
情境
小明利用周末的时间,为自己做了一个相框.
问题1 请你利用直尺和三角 板帮他检验一下,相框是矩形吗? 除了矩形的定义外,有没有 其他判定矩形的方法呢?
温故知新
问题2 你还记得学习平行四边形的判定时,我们 是如何猜想并进行证明的吗?
逆命题 性质 (修正)
猜想
证明
判定定理
探究猜想
同样,我们能否通过研究矩形性质的逆命题,得到 判定矩形的方法呢? 猜想1 猜想2 问题3 对角线相等的平行四边形是矩形. 三个角是直角的四边形是矩形. 如何证明这两个猜想?
八年级
下册
18.2.1 矩形(2)
课件说明
• 本课是在学习了矩形的概念和性质的基础上,通过 研究性质定理的逆命题探索判定的条件,并从定义 出发证明结论,得到矩形的判定定理.
课件说明
• 学习目标: 1.掌握矩形的两个判定定理,能根据不同条件,选 取适当的定理进行推理计算; 2.经历矩形判定定理的猜想与证明过程,渗透类比 思想,体会类比学习和图形判定探究的一般思路. • 学习重点: 矩形判定的探索、证明和应用.
相关文档
最新文档