11[1].1.1三角形的边同步练习题

合集下载

初中数学三角形的边同步练习题5套(含答案)

初中数学三角形的边同步练习题5套(含答案)

三角形的边同步练习题(5套)三角形的边练习题(一)1、填空题:(1)由____________三条线段______所组成的图形叫做三角形.组成三角形的线段叫做______;相邻两边的公共端点叫做______,相邻两边所组成的角叫做______,简称______.(2)如图所示,顶点是A、B、C的三角形,记作______,读作______.其中,顶点A所对的边______还可用______表示;顶点B所对的边______还可用______表示;顶点C所对的边______还可用______表示.(3)由“连接两点的线中,线段最短”这一性质可以得到三角形的三边有这样的性质______________________________.由它还可推出:三角形两边的差____________.(4)对于△ABC,若a≥b,则a+b______c同时a-b______c;又可写成______<c<______.(5)若一个三角形的两边长分别为4cm和5cm,则第三边x的长度的取值范围是____________,其中x 可以取的整数值为____________.2.已知:如图,试回答下列问题:(1)图中有______个三角形,它们分别是______________________________________.(2)以线段AD为公共边的三角形是_________________________________________.(3)线段CE所在的三角形是______,CE边所对的角是________________________.(4)△ABC、△ACD、△ADE这三个三角形的面积之比等于______∶______∶______.3.一位同学用三根木棒拼成的图形如下,则其中符合三角形定义的是()4.如图,在△ABF中,∠B的对边是()A.AD B.AE C.AF D.AC5.如图所示,图中三角形的个数是()A.6 B.8 C.10 D.12(一)参考答案1.(1)不在同一直线上的,首尾顺次相接,三角形的边,三角形的顶点,三角形的内角,三角形的角.(2)△ABC,三角形ABC,BC,a;AC,b;AB,c(3)三角形两边之和大于第三边,小于第三边.(4)>,<,a-b,a+b(5)1cm<x<9cm,2cm、3cm、4cm、5cm、6cm、7cm、8cm.2.(1)六,△ABC、△ABD、△ABE、△ACD、△ACE、△ADE.(2)△ABD、△ACD、△ADE.(3)△ACE,∠CAE.(4)BC:CD:DE.3.D 解析根据三角形定义即可判断D符合题意.4.C 解析在△ABF中,∠B的对边是AF;在△ABD中,∠B的对边是AD;在△ABE中,∠B的对边是AE;在△ABC中,∠B的对边是AC.5.B 解析图中的三角形有:△AOD,△ADC,△ABD,△AOB,△ABC,△BOC,△BCD,△DOC,共8个.三角形的边练习题(二)一、选择题1.如图,以BC为边的三角形有( )A.3个B.4个C.5个D.6个2.四条线段的长度分别为4,6,8,10,则可以组成三角形的个数为( )A.4B.3C.2D.13.已知等腰三角形的一边长为3 cm,且它的周长为12 cm,则它的底边长为( )A.3 cmB.6 cmC.9 cmD.3 cm或6 cm二、填空题4.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.5.如果三角形的三边长分别为3a,4a,14,则a的取值范围是.三、解答题6.已知△ABC的三边长分别为a,b,c.(1)若a,b,c满足(a-b)2+(b-c)2=0,试判断△ABC的形状;(2)若a=5,b=2,且c为整数,求△ABC的周长的最大值及最小值.7.小兵用长度为10 cm,45 cm和50 cm的三根木条钉一个三角形时,不小心将50 cm的一根折断了,之后就怎么也钉不成一个三角形木架.(1)最长的木条至少折断了多少厘米?(2)如果最长的木条折断了25 cm,你怎样通过截木条的方法钉成一个三角形木架?(二)参考答案1.答案 B 以BC为边的三角形有△BCN,△BCO,△BMC,△ABC,故选B.2.答案 B 选出三条线段的所有组合有4,6,8;4,6,10;4,8,10;6,8,10,只有4,6,10不能组成三角形.故选B.3.答案 A 当3 cm是等腰三角形的腰长时,底边长=12-3×2=6(cm),∵3+3=6,∴3 cm,3 cm,6 cm不能构成三角形,∴此种情况不存在;当3 cm是等腰三角形的底边长时,腰长==4.5(cm),此时能组成三角形.∴底边长为3 cm,故选A.4.答案10解析若三条线段的长分别为2,2,4,∵2+2=4,∴它们不能构成三角形,∴此种情况不存在;若三条线段的长分别为2,4,4,此时能构成三角形,且周长为10.综上所述,该等腰三角形的周长为10.5.答案2<a<14解析根据三角形的三边关系,得解得2<a<14.6.解析(1)∵(a-b)2+(b-c)2=0,∴a-b=0,b-c=0,∴a=b=c,∴△A BC是等边三角形.(2)∵a=5,b=2,∴5-2<c<5+2,即3<c<7,∵c为整数,∴c=4,5,6,∴当c=4时,△ABC的周长最小,最小值=5+2+4=11;当c=6时,△ABC的周长最大,最大值=5+2+6=13.7.解析(1)∵两根木条的长为10 cm,45 cm,∴若设第三根木条的长为x cm,则x应满足45-10<x<45+10, 即35<x<55,∵第三根木条长为50 cm,50-35=15(cm),∴最长的木条至少折断了15厘米.(2)如果最长的木条折断了25 cm,则还剩25 cm.要想钉成一个三角形木架,可以将45 cm长的木条折成大于15 cm且小于35 cm的木条.三角形的边练习题(三)1.一位同学用三根木棒两两相交拼成如下图形,其中符合三角形概念的是( )2.如图所示,∠BAC的对边是( )A.BD B.DC C.BC D.AD3.如图所示.(1)图中共有多少个三角形?(2)写出其中以EC为边的三角形;(3)若有一个公共角的两个三角形称为一对“共角三角形”,则以∠B为公共角的“共角三角形”有哪些?4.下列关于三角形按边分类的图示中,正确的是(D)5.下列说法正确的是( )A.所有的等腰三角形都是锐角三角形B.等边三角形属于等腰三角形C.不存在既是钝角三角形又是等腰三角形的三角形D.一个三角形里有两个锐角,则一定是锐角三角形6.如图,图中的三角形被木板遮住了一部分,这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能7.已知a,b,c是三角形的三边长,则下列不等式中不成立的是( )A.a+b>c B.a-b>c C.b-c<a D.b+c>a8.(岳阳中考)下列长度的三根小木棒能构成三角形的是( )A.2 cm,3 cm,5 cm B.7 cm,4 cm,2 cm C.3 cm,4 cm,8 cm D.3 cm,3 cm,4 cm 9.(崇左中考)如果一个三角形的两边长分别为2和5,那么第三边长可能是( )A.2 B.3 C.5 D.810.(怀化中考改编)等腰三角形的两边长分别为4 cm和8 cm,求它的周长.11.如图,图中三角形的个数是( )A.3 B.4 C.5 D.612.下列长度的三条线段能组成三角形的是( )A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)13.已知三角形的两边长为6和8,则第三边长x的取值范围是( )A.x>2 B.x<14 C.2<x<14 D.2≤x≤1414.有四条线段,长分别为3 cm、5 cm、7 cm、9 cm,如果用这些线段组成三角形,可以组成__个三角形.15.已知三角形的两边长分别为2 cm和7 cm,最大边的长为a cm,则a的取值范围是_________.16.(大庆中考)如图,①是一个三角形,分别连接这个三角形三边的中点得到图形②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为_______.17.(教材P3例题改编)用一条长为25 cm的绳子围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么三角形的各边长是多少?(2)能围成有一边的长是6 cm的等腰三角形吗?为什么?18.已知a,b,c是△ABC的三边长.(1)若a,b,c满足|a-b|+|b-c|=0,试判断△ABC的形状;(2)若a,b,c满足(a-b)(b-c)=0,试判断△ABC的形状;(3)化简:|a-b-c|+|b-c-a|+|c-a-b|.19.已知等腰三角形的周长为20 cm,设腰长为x cm.(1)用含x的代数式表示底边长;(2)腰长x能否为5 cm,为什么?(3)求x的范围.(三)参考答案1.D2. C3.解:(1)图中共有5个三角形.(2)△ACE,△DCE,△BCE.(3)△DBE与△CBE,△CBA与△CBE,△DBE与△CBA.4.B5.D6.D7. B8. D9. C10.解:若4 cm的边长为腰,8 cm的边长为底,4+4=8,由三角形的三边关系知,该等腰三角形不存在;若8 cm的边长为腰,4 cm的边长为底,则满足三角形的三边关系,且等腰三角形的周长为:8+8+4=20(cm).11. C12. A 13. C 14. 3 15. 7≤a<9 16. (4n-3)17. 解:(1)设底边长为x cm,则腰长为2x cm,根据题意,得2x+2x+x=25.解得x=5.∴三角形的三边长分别为:10 cm,10 cm,5 cm.(2)若长为6 cm的边是腰,则底边长为:25-6×2=13 cm.∵6+6<13,∴不能围成三角形,即长为6 cm的边不能为腰长;若长为6 cm的边是底边,则腰长为:(25-6)÷2=9.5,满足三角形的三边关系.综上所述,能围成底边长是6 cm的等腰三角形,且三角形的三边长分别为9.5 cm,9.5 cm,6 cm.18.解:(1)∵|a-b|+|b-c|=0,∴a-b=0且b-c=0.∴a=b=c.∴△ABC为等边三角形.(2)∵(a-b)(b-c)=0,∴a-b=0或b-c=0.∴a=b或b=c.∴△ABC为等腰三角形.(3)∵a,b,c是△ABC的三边长,∴a-b-c<0,b-c-a<0,c-a-b<0.∴原式=-a+b+c-b+c+a-c+a+b=a +b +c.19. 解:(1)底边长为(20-2x) cm .(2)若腰长为5 cm ,则底边长为20-2×5=10(cm ). ∵5+5=10,不满足三角形的三边关系, ∴腰长不能为5 cm .(3)根据题意,得⎩⎪⎨⎪⎧x>0,20-2x>0.解得0<x<10.由三角形的三边关系,得x +x>20-2x.解得x>5. 综上所述,x 的范围是5<x<10.三角形的边练习题(四)一、选择题:1.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )A.1个B.2个C.3个 C.4个2.如果三角形的两边长分别为3和5,则周长L 的取值范围是( ) A.6<L<15 B.6<L<16 C.11<L<13 D.10<L<163.现有两根木棒,它们的长度分别为20cm 和30cm,若不改变木棒的长度, 要钉成一个三角形木架,应在下列四根木棒中选取 ( )A.10cm 的木棒B.20cm 的木棒;C.50cm 的木棒D.60cm 的木棒 4.已知等腰三角形的两边长分别为3和6,则它的周长为( ) A.9 B.12 C.15 D.12或155.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( ) A.2cm B.3cm C.4cm D.5cm6.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( ) A.2个 B.3个 C.4个 D.5个 二、填空题:1.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.2.若等腰三角形的两边长分别为3和7,则它的周长为_______; 若等腰三角形的两边长分别是3和4,则它的周长为_____.3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.4.若五条线段的长分别是1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成______个三角形.5.已知等腰三角形ABC中,AB=AC=10cm,D为AC边上一点,且BD=AD,△BCD的周长为15cm,则底边BC的长为__________.6.已知等腰三角形的两边长分别为4cm和7cm,且它的周长大于16cm,则第三边长为_____.三、解答题已知等腰三角形的两边长分别为4,9,求它的周长.(四)参考答案:一、1.B 2.D 3.B 4.C 5.B 6.B二、1.5<c<9 6或8 6 2.17 10或11 3.0<a<12 b>2 4.3 5.5cm 6.7cm 三、22三角形的边练习题(五)一、选择题1.三角形是()A.连接任意三角形组成的图形B.由不在同一条直线上的三条线段首尾顺次相接所组成的的图形C.由三条线段组成的图形D.以上说法均不对2.若△ABC三条边的长度分别为m,n,p,且()02=-+-pnnm,则这个三角形为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形3.试用学过的知识判断,下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个等腰三角形一定不是等腰三角形D.一个等腰三角形一定不是钝角三角形4.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.3,4,5 D.3,4,85.(2012·海南)一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是()A.3cm B.4cm C. 7 cm D.11cm6.(2012·义乌)一个三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是()A.2 B.3 C.4 D.87.(2013•河北)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远8.(2012•台湾)如图1为图2中三角柱ABCEFG的展开图,其中AE、BF、CG、DH是三角柱的边.若图1中,AD=10,CD=2,则下列何者可为AB长度?()A.2 B.3 C.4 D.5二、填空题9.(2006•绍兴)若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有________对10.(2009•呼和浩特)已知△ABC的一个外角为50°,则△ABC一定是________三角形11.若等腰三角形两边长分别为3和5,则它的周长是_______________.12.如图,C在三角形中所对的边是________________.13.用7根火柴首尾顺次相接摆成一个三角形,能摆成_______个不同的三角形.14.如图,在图1中互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个……则在第n个图形中,互不重叠的三角形共有__________个(用含n的代数式表示).15.用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余,重叠和折断,则能摆出不同的三角形的个数有__________ .16.如图,图1中共有3个三角形,图2中共有6个三角形,图3中共有10个三角形,…,以此类推,则图6中共有__________ 个三角形.17.如图,直角ABC的周长为2008,在其内部有五个小直角三角形,则这五个小直角三角形的周长为__________.(第7题)(第8题)(第9题)18.平面上有5个点,其中任意三点都不在同一条直线上,则这些点共可组成__________个不同的三角形.三、解答题19.(2006•贵阳)两条平行直线上各有n个点,用这n对点按如下的规则连接线段;①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;②符合①要求的线段必须全部画出;图1展示了当n=1时的情况,此时图中三角形的个数为0;图2展示了当n=2时的一种情况,此时图中三角形的个数为2;(1)当n=3时,请在图3中画出使三角形个数最少的图形,此时图中三角形的个数为__________个;(2)试猜想当n对点时,按上述规则画出的图形中,最少有多少个三角形?(3)当n=2006时,按上述规则画出的图形中,最少有多少个三角形?20.过A、B、C、D、E五个点中任意三点画三角形;(1)其中以AB为一边可以画出__________个三角形;(2)其中以C为顶点可以画出__________个三角形.21.(2003•泸州)如图,△ABC是某村一遍若干亩土地的示意图,在党的“十六大”精神的指导下,为进一步加大农村经济结构调整的力度,某村决定把这块土地平均分给四位“花农”种植,请你帮他们分一分,提供两种分法.要求:画出图形,并简要说明分法.1122.如图,△ABC 中,A1,A2,A3,…,An 为AC 边上不同的n 个点,首先连接BA1,图中出现了3个不同的三角形,再连接BA2,图中便有6个不同的三角形…(1)完成下表:若出现了45个三角形,则共连接了多少个点?若一直连接到An,则图中共有__________个三角形.23.一个三角形三边长之比为2:3:4,周长为36cm ,求此三角形的三边长.(五)参考答案 一、选择题1.B2.B3.D4.C5.C6.C7.C8.C 二、填空题9.3 10.钝角 11.11或13 12.AE,BD,AB 13.2 14.(3n+1) 15.3 16.28 17.2008 18.10 三、解答题 19.解:(1)4个;(2)当有n 对点时,最少可以画2(n-1)个三角形;(3)2×(2006-1)=4010个.答:当n=2006时,最少可以画4010个三角形. 20.解:(1)如图,以AB 为一边的三角形有△ABC 、△ABD 、△ABE 共3个;(2)如图,以点C 为顶点的三角形有△ABC 、△BEC 、△BCD 、△ACE 、△ACD 、△CDE 共6个. 故答案为:(1)3,(2)6.1221.解:第一种是取各边的中点,分别取,AB .BC ,AC 的中点D ,E ,Y ,连接DE ,EY 和AE ,所形成的四个三角形面积相等(如下图).第二种,在BC 边上取四等分点D ,E ,F ,分别连接AD ,AE ,AF ,所形成的四个三角形面积相等(如下图).22.解:(2)8个点;(3)1+2+3+…+(n+1)= )2)(1(21++n n 23.解:设三边长分别为2x ,3x ,4x , 由题意得,2x+3x+4x=36, 解得:x=4.故三边长为:8cm ,12cm ,16cm .。

八年级上册《数学》三角形专项练习题(含答案)

八年级上册《数学》三角形专项练习题(含答案)

八年级上册《数学》三角形专项练习题11.1.1三角形的边一、能力提升1.如图,在图形中,三角形有()A.4个B.5个C.6个D.7个2.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.133.若一个三角形的两条边长分别为3和8,而第三条边长为奇数,则第三条边长为()A.5或7B.7C.9D.7或94.在△ABC中,若三条边长均为整数,周长为11,且有一条边长为4,则这个三角形最长边可能取值的最大值是()A.7B.6C.5D.45.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有对.6.若等腰三角形的腰长为6,则它的底边长a的取值范围是.7.用7根相同的火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.8.已知等腰三角形的两边长分别为3cm和7cm,求这个三角形的周长.9.已知等腰三角形的周长是16cm.(1)若其中一边的长为4cm,求另外两边的长;(2)若其中一边的长为6cm,求另外两边的长.10.若a,b,c是△ABC的三边长,请化简|a-b-c|+|b-c-a|+|c-a-b|.11.已知等腰三角形的周长为20cm,设腰长为xcm.(1)用含x的式子表示底边长.(2)腰长x能否为5cm,为什么?(3)求x的取值范围.二、创新应用12.在平面内,分别用3根、5根、6根、…小棒首尾依次相接,能搭成什么形状的三角形?通过尝试,形状如表所示.小棒数目3 5 6 ……示意图……形状等边三角形等腰三角形等边三角形……(1)4根小棒能搭成三角形吗?(2)8根、12根小棒能搭成几种不同形状的三角形?并画出它们的示意图.答案一、能力提升1.B2.B;由题意知2+x>13,且x<13+2,解得11<x<15,因为x为正整数,所以x 可以是12,13,14.故选B.3.D;由题意知第三条边长大于5小于11.因为第三条边长为奇数,所以它的大小为7或9.4.C由题意知三角形的三条边长分别为2,4,5或3,4,4,所以最长边可能取值的最大值为5.5.3;△BDC与△BEC,△BDC与△BAC,△BEC与△BAC,共3对.6.0<a<12.7.2.8.解:若腰长为3cm,则三边长分别为3cm,3cm,7cm,而3+3<7,此时不能构成三角形;若腰长为7cm,则三边长分别为3cm,7cm,7cm.此时能构成三角形,其周长为3+7+7=17(cm).故这个三角形的周长为17cm. 9.解:(1)若腰长为4cm,则底边长为16-4-4=8(cm).三边长分别为4cm,4cm,8cm,不符合三角形的三边关系,所以应该是底边长为4cm.所以腰长为(16-4)÷2=6(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长都为6cm.(2)若腰长为6cm,则底边长为16-6-6=4(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长分别为6cm 和4cm.若底边长为6cm,则腰长为(16-6)÷2=5(cm).三边长分别为6cm,5cm,5cm,符合三角形的三边关系.所以另外两边的长都为5cm.10.解:因为a,b,c是△ABC的三边长,所以a<b+c,b<c+a,c<a+b,即a-b-c<0,b-c-a<0,c-a-b<0.所以|a-b-c|+|b-c-a|+|c-a-b|=-(a-b-c)-(b-c-a)-(c-a-b)=a+b+c.11.解:(1)底边长为(20-2x)cm.(2)不能.理由如下:若腰长为5cm,则底边长为20-2×5=10(cm).因为5+5=10,不满足三角形的三边关系.所以腰长不能为5cm.(3)根据题意,得解得0<x<10.由三角形的三边关系,得x+x>20-2x,解得x>5.综上所述,x的取值范围是5<x<10.二、创新应用12.解:(1)4根小棒不能搭成三角形.(2)8根小棒能搭成一种三角形,示意图如图甲;12根小棒能搭成三种不同形状的三角形,示意图如图乙.11.1.2三角形的高、中线与角平分线一、能力提升1.若一个三角形中仅有一条高在三角形的内部,则该三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.直角三角形或钝角三角形2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D.在△ABC中,边AC上的高是线段()A.AEB.CDC.BFD.AF3.如图,线段AE是△ABC的中线,已知EC=6,DE=2,则线段BD的长为()A.2B.3C.4D.64.如图,在△ABC中,∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.线段BC是△ABE的高B.线段BE是△ABD的中线C.线段BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC5.如图,在△ABC中,E,F分别是AB,AC的中点,△CEF的面积为2.5,则△ABC的面积为()A.6B.7C.8D.106.如图,BD和CE是△ABC的两条角平分线,且∠DBC=∠ECB=31°,则∠ABC=度,∠ACB=度.7.如图,线段AD,CE分别是△ABC中边BC,AB上的高.若AD=10,CE=9,AB=12,则BC的长是.8.如图,在△ABC中,AB=AC,线段AD是△ABC的中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.9.已知在等腰三角形ABC中,AB=AC,若腰AC上的中线BD将等腰三角形ABC的周长分成15和6两部分,求三角形ABC的腰长及底边长.10.如图,AD是△CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.二、创新应用11.有一块三角形优良品种试验基地,如图,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择.(画图即可)答案一、能力提升1.D;直角三角形和钝角三角形都只有一条高在三角形的内部.2.C3.C4.D5.D;∵F为AC的中点,∴线段EF为△AEC的中线,∴S△AEC=2S△CEF=5.∵E为AB的中点,∴线段CE为△ABC的中线,∴S△ABC=2S△AEC=10.6.62;62.7.10.8;S△ABC=BC·AD=AB·CE,则BC===10.8.8.解:∵线段AD是△ABC的中线,∴BC=2BD.∵AB=AC,△ABC的周长为34cm,∴2AB+2BD=34cm,即AB+BD=17cm.又△ABD的周长为30cm,即AB+BD+AD=30cm,∴AD=13cm.9.解:设AB=AC=2x,则AD=CD=x.当AB+AD=15,BC+CD=6时,有2x+x=15,所以x=5,AB=AC=2x=10,BC=6-5=1.当BC+CD=15,AB+AD=6时,有2x+x=6,所以x=2,AB=AC=2x=4,BC=13.因为4+4<13,所以不能组成三角形.故三角形ABC的腰长为10,底边长为1.10.解:DO是△EDF的角平分线.证明如下:∵AD是△CAB的角平分线,∴∠EAD=∠FAD.∵DE∥AB,DF∥AC,∴∠EDA=∠FAD,∠FDA=∠EAD.∴∠EDA=∠FDA,即DO是△EDF的角平分线.二、创新应用11.解:如图(答案不唯一).11.1.3三角形的稳定性一、能力提升1.如图,桥梁的斜拉钢索是三角形的结构,主要是为了()A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮2.下列不是利用三角形稳定性的是()A.伸缩晾衣架B.三角形房架C.自行车的三角形车架D.矩形门框的斜拉条3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短4.王师傅用四根木条钉成一个四边形木架.如图,要使这个木架不变形,他至少还要再钉上()根木条.A.0B.1C.2D.35.如图,要使四边形木条框架ABCD变“活”(具有不稳定性),应将木条拆除.6.伸缩铁门能自由伸缩,主要是应用了四边形的.7.我们所用的课桌和所坐的凳子,时间长了总是摇摇晃晃的,这是什么原因?要使自己用的桌凳不晃动应该怎么办?如图,如果有六边形木框,要使它不变形,应该怎么办?二、创新应用8.如图,我们知道要使四边形木架不变形,至少要钉一根木条.那么要使五边形木架不变形,至少要钉几根木条?要使七边形木架不变形,至少要钉几根木条?要使n边形木架不变形,又至少要钉多少根木条呢?答案一、能力提升1.C.2.A.3.A;打开的那一扇窗户下边的一部分OB、窗户框下边的一部分OA 及AB组成一个三角形,根据三角形的稳定性,知可用AB固定窗户.4.B.5.AC.6.不稳定性.7.解:这是因为课桌和凳子的四个侧面都是四边形木架,当交接处松动后就具有不稳定性.解决这类问题的方法是在每个侧面加上一根木条(或木板),使之成为三角形.要使六边形木框不变形,至少应加3根木条使其划分为三角形.二、创新应用8.解:要使五边形木架不变形,至少要钉2根木条;要使七边形木架不变形,至少要钉4根木条;要使n边形木架不变形,至少要钉(n-3)根木条.11.2.1三角形的内角一、能力提升1.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为()A.50°B.75°C.100°D.125°2.如图,CD∥AB,∠1=120°,∠2=80°,则∠E等于()A.40°B.60°C.80°D.120°3.(2020·辽宁锦州中考)如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°4.在△ABC中,若∠A=∠B+∠C,则∠A的度数是.5.如图,点B,C,D在同一条直线上,CE∥AB,∠ACB=90°.如果∠ECD=36°,那么∠A的度数是.6.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2的度数是.7.在△ABC中,若最大角∠A等于最小角∠C的两倍,最大角又比另一个角大20°,则△ABC的三个角的度数分别是多少?8.如图,E是△ABC中边AC上的一点,过点E作ED⊥AB,垂足为D.若∠1=∠2,则△ABC是直角三角形吗?为什么?9.如图,在△ABC中,D是BC上一点,F是BA延长线上一点,连接DF交AC于点E,且∠B=42°,∠C=59°,∠DEC=47°,求∠F的度数.二、创新应用10.如图,在△ABC中,∠ABC,∠ACB的平分线相交于点D.(1)若∠ABC+∠ACB=110°,则∠BDC=;(2)若∠A=100°,则∠BDC=;(3)若∠A=n°,求∠BDC的度数.答案一、能力提升1.B;设∠C的度数为x°,则∠B的度数为x°+25°,则55°+x°+x°+25°=180°,解得x=50,则∠B=75°.2.A;∵CD∥AB,∠1=120°,∴∠CDB=∠1=120°,∴∠EDC=60°.∵∠2=80°,∴∠E=180°-80°-60°=40°.3.C∵∠A=30°,∠B=50°,∴∠ACB=180°-∠A-∠B=100°.又CD平分∠ACB,∴∠ACD=∠ACB=50°.∴∠ADC=180°-∠A-∠ACD=100°.4.90°.5.54°.6.270°.由三角形三内角之间的关系,得∠3+∠4=90°,所以∠1+∠2=(180°-∠3)+(180°-∠4)=2×180°-(∠3+∠4)=360°-90°=270°.7.解:设∠C=x°,则∠A=2x°,∠B=2x°-20°,根据三角形的内角和定理,有2x+(2x-20)+x=180,解得x=40,即∠C=40°.所以2x=80,∠A=80°,2x-20=60,∠B=60°.故△ABC的三个角的度数分别为∠A=80°,∠B=60°,∠C=40°.8.解:△ABC是直角三角形.理由如下:∵ED⊥AB,∴∠ADE=90°,∴∠1+∠A=90°.又∠1=∠2,∴∠2+∠A=90°.∴△ABC是直角三角形.9.解:在△EDC中,∠EDC=180°-(∠C+∠DEC)=180°-(59°+47°)=74°.∴∠FDB=180°-∠EDC=180°-74°=106°.在△BDF中,∠F=180°-(∠B+∠FDB)=180°-(42°+106°)=32°.二、创新应用10.解:(1)125°.(2)140°.(3)∵∠A=n°,∴∠ABC+∠ACB=180°-n°.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=∠ABC+∠ACB=(∠ABC+∠ACB)=×(180°-n°)=90°-.∴∠BDC=180°-(∠DBC+∠DCB)=180°-=90°+.11.2.2三角形的外角一、能力提升1.一副三角尺有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°2.如图,在△ABC中,AD为边BC上的中线,在△ABD中,AE为边BD上的中线,在△ACD中,AF为边DC上的中线,则下列结论错误的是()A.∠1>∠2>∠3>∠CB.BE=ED=DF=FCC.∠1>∠4>∠5>∠CD.∠1=∠3+∠4+∠53.如图,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°4.(2020·湖北中考)将一副三角尺按如图摆放,点E在AC上,点D在BC 的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.如图,∠ABC的平分线与∠ACD的平分线相交于点P.若∠A=60°,则∠P等于()A.30°B.40°C.50°D.60°6.(2020·湖北黄冈中考)如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=.7.如图,已知在△ABC中,D是AB上一点,E是AC上一点,BE与CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°,则∠BDC=,∠BFC=.8.如图,D,E,F分别是△ABC三边延长线上的点,求∠D+∠E+∠F+∠1+∠2+∠3的度数.9.如图,在△ABC中,E是AC延长线上的一点,D是BC上的一点.求证:(1)∠BDE=∠E+∠A+∠B.(2)∠BDE>∠A.10.如图,在△ABC中,D是边BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.二、创新应用11.如图①,有一个五角形图案ABCDE,你能说明∠A+∠DBE+∠C+∠D+∠E=180°吗?如果点B向下移动到AC上(如图②)或AC的另一侧(如图③),上述结论是否依然成立?请说明理由.答案一、能力提升1.A如图,∵∠2=90°-45°=45°,∴∠1=∠2-30°=15°.∴∠α=180°-∠1=165°.2.C由三角形的一个外角大于与它不相邻的内角,知∠1>∠2>∠3>∠C,故选项A正确;根据三角形中线的定义,知BE=ED=DF=FC,故选项B正确;∠4与∠5的大小不能判定,故选项C错误;根据三角形的一个外角等于与它不相邻两个内角的和,知∠1=∠2+∠4,∠2=∠3+∠5,所以∠1=∠3+∠4+∠5,故选项D正确.3.B4.A5.A利用三角形的外角性质,得∠P=∠PCD-∠PBD=(∠ACD-∠ABC)=∠A=30°.6.30°.7.97°;117°.8.解:∵∠D+∠3=∠CAB,∠E+∠1=∠ABC,∠F+∠2=∠ACB,∴∠D+∠E+∠F+∠1+∠2+∠3=∠CAB+∠ABC+∠ACB=180°.9.证明:(1)∵∠BDE,∠DCE分别是△CDE,△ABC的一个外角,∴∠BDE=∠E+∠DCE,∠DCE=∠A+∠B,∴∠BDE=∠E+∠A+∠B.(2)由(1)得∠BDE=∠E+∠A+∠B,∴∠BDE>∠A.10.解:∵∠3是△ABD的外角,∴∠3=∠1+∠2.∵∠1=∠2,∠3=∠4,∴∠4=2∠2.在△ABC中,∵∠2+∠4=180°-∠BAC=180°-63°=117°,∴∠1=∠2=117°÷(1+2)=39°.∴∠DAC=∠BAC-∠1=63°-39°=24°.二、创新应用11.解:在题图①中,∠A+∠C=∠DNM, ①∠DBE+∠E=∠DMN, ②①+②,得∠A+∠DBE+∠C+∠E=∠DNM+∠DMN.∵∠D+∠DNM+∠DMN=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°.在题图②、题图③中,上述结论仍然成立,理由与题图①完全相同.11.3.1多边形一、能力提升1.在下列关于正多边形的特征说法中,错误的是()A.每一条边都相等B.每一个内角都相等C.每一个外角都相等D.所有对角线都相等2.过多边形的一个顶点可以引2017条对角线,则这个多边形的边数是()A.2017B.2018C.2019D.20203.如果过多边形的一个顶点的对角线把多边形分成8个三角形,那么这个多边形的边数为()A.8B.9C.10D.114.将一个四边形截去一个角后,它不可能是()A.三角形B.四边形C.五边形D.六边形5.在n边形的一边上任取一点(不包含顶点)与各顶点相连,可得三角形的个数是()A.nB.n-2C.n-1D.n+16.过m边形的一个顶点有7条对角线,n边形没有对角线,则m n=.7.已知一个多边形的边数恰好是从这个多边形的一个顶点出发所作的对角线的条数的2倍,求此多边形的边数.二、创新应用8.观察下面图形,解答下列问题:(1)在上面第四个图中画出六边形的所有对角线;(2)观察规律,把下表填写完整.边数 3 4 5 6 7 …n对角线条0 2 5 …数答案一、能力提升1.D2.D3.C4.D一个多边形截去一个角后,可能出现三种情况:少一个角、角的个数不变或多一个角.5.C6.1000;从m边形的一个顶点出发有(m-3)条对角线,由m-3=7,得m=10. n边形没有对角线,所以n=3.所以m n=103=1000.7.解:设这个多边形的边数为n,则从多边形的一个顶点出发所作的对角线的条数为n-3.依题意,得n=2(n-3),解得n=6.二、创新应用8.解:(1)(2)边数 3 4 5 6 7 …n对角线条数0 2 5 9 14 …n(n-3)11.3.2多边形的内角和一、能力提升1.如果一个正多边形的每一个外角都是锐角,那么这个正多边形的边数一定不小于()A.3B.4C.5D.62.(2020·山东济宁中考)一个多边形的内角和是1080°,则这个多边形的边数是()A.9B.8C.7D.63.若一个多边形的边数由5增加到11,则内角和增加的度数是()A.1080°B.720°C.540°D.360°4.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110°B.108°C.105°D.100°5.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形6.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是.7.如图,在四边形ABCD中,∠A+∠B=210°,且∠ADC的平分线与∠DCB的平分线相交于点O,则∠COD的度数是.8.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.9.如图,求∠A+∠B+∠OCD+∠ODC+∠E+∠F的度数.二、创新应用10.在一个多边形中,一个内角相邻的外角与其他各内角的和为600°.(1)如果这个多边形是五边形,请求出这个外角的度数;(2)是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明理由.答案一、能力提升1.C每个外角都是锐角,即小于90°,设边数为n,则这些锐角的和一定小于n×90°.而外角和为360°,所以360°<n×90°,n>4,即n不小于5.2.B设这个多边形的边数是n,则(n-2)×180°=1080°,解得n=8.3.A因为每增加一条边,内角和增加180°,所以增加6条边,内角和增加180°×6=1080°.4.D由题意知∠AED的补角为80°,则∠AED=100°.5.D多边形的外角和是360°,内角和等于外角和的一半,则内角和是180°,可知此多边形为三角形.6.6因为凸n边形的内角和为1260°,所以(n-2)×180°=1260°,得n=9.故从一个顶点出发引的对角线的条数为9-3=6.7.105°∵四边形的内角和为360°,∠A+∠B=210°,∴∠ADC+∠BCD=360°-210°=150°.∵DO,CO分别为∠ADC与∠BCD的平分线,∴∠ODC=∠ADC,∠OCD=∠BCD.∴∠ODC+∠OCD=(∠ADC+∠BCD)=×150°=75°.∴∠COD=180°-75°=105°.8.解:由题意知这个多边形的内角和为3×360°-180°=900°.设这个多边形的边数为n,根据题意,得(n-2)×180°=900°,解得n=7.故这个多边形的边数为7.9.解:如图,连接BE,则在△COD与△BOE中,∠ODC+∠OCD+∠COD=180°,∠OBE+∠OEB+∠BOE=180°.∵∠COD与∠BOE是对顶角,∴∠COD=∠BOE.∵∠ODC+∠OCD=180°-∠COD,∠OBE+∠OEB=180°-∠BOE,∴∠ODC+∠OCD=∠OBE+∠OEB.∴题图中的∠A+∠B+∠OCD+∠ODC+∠E+∠F等于上图中的∠A+∠F+∠ABC+∠DEF+∠OBE+∠OEB=∠A+∠F+∠ABE+∠BEF=360°,即所求六个角的和为360°.二、创新应用10.解:(1)设这个外角的度数是x°,则(5-2)×180-(180-x)+x=600,解得x=120.故这个外角的度数是120°.(2)存在.设边数为n,这个外角的度数是x°,则(n-2)×180-(180-x)+x=600,整理得x=570-90n.因为0<x<180,即0<570-90n<180,并且n为正整数,所以n=5或n=6.故这个多边形的边数是6,这个外角的度数为30°.。

11-1-1三角形的边-三角形三边关系 练习题 人教版数学八年级上册

11-1-1三角形的边-三角形三边关系 练习题  人教版数学八年级上册

第11章三角形--三角形三边关系精选题一.选择题(共13小题)1.用10根等长的火柴棍首尾连接拼成一个三角形(火柴棍不允许剩余、重叠和折断),这个三角形一定是()A.等边三角形B.等腰三角形C.直角三角形D.不等边三角形2.已知三角形的三边长分别为3、x、14,若x为正整数,则这样的三角形共有()个.A.2个B.3个C.5个D.7个3.下列长度的线段能组成三角形的是()A.4,7,11B.a+2,a+3,a+5(a>0)C.6,6,12D.三条线段长度的比为1:2:44.以下列各组线段为边,可组成三角形的是()A.15厘米,30厘米,45厘B.30厘米,30厘米,45厘米米C.30厘米,45厘米,75厘米D.30厘米,45厘米,90厘米5.一个三角形的三边长分别为11,13,x,那么x的取值范围是()A.2<x<13 B.11<x<13 C.11<x<24 D.2<x<246.下列各组中的三条线段不能组成三角形的是()A.a=b=n,c=2n(n>0)B.a=6,b=3,c=8C.a:b:c=2:3:4D.a=m+1,b=m+2,c=m+3(m>0)7.一个三角形的三边长分别为a,b,c,则a,b,c的值不可能是()A.3,4,5 B.5,7,7 C.10,6,4.5 D.4,5,98.已知三角形两边为3cm和5cm,则使三角形周长为偶数的第三边长可能为()A.2cm B.3cm C.4cm D.5cm9.已知四组线段的长分别如下,以各组线段为边,能组成三角形的是()A.1,2,3 B.2,5,8 C.3,4,5 D.4,5,1010.若三角形两边长分别是6、5,则第三条边c的范围是()A.2<c<9 B.3<c<10 C.10<c<18 D.1<c<1111.已知三角形的两边长分别是3和8,则此三角形的第三边长可能是()A.9 B.4 C.5 D.1312.已知一个三角形三边长为a、b、c,则|a-b-c|-|a+b-c|=()A.-2a+2c B.-2b+2c C.2a D.-2c13.以下各组长度的线段为边,能构成三角形的是()A.8cm、5cm、3cm B.6cm、8cm、15cmC.8cm、4cm、3cm D.4cm、6cm、5cm 二.填空题(共18小题)14.已知△ABC的三边长分别为a、b、c,那么|b-a-c|+|a+b-c|+|b-a+c|=________.15.一个三角形有两条边相等,已知其中一边是3cm,另一边是9cm,则这个三角形的周长是________.16.△ABC中,AB=10,BC=2,周长是偶数,则AC=________.17.设△ABC的三边长分别为a,b,c,其中a,b满足|a+b-4|+(a-b+2)2=0,则第三边的长c的取值范围是________.18.如果一个三角形的两边长分别2、8,它的第三边长为偶数,那么这个三角形的周长等于________.19.已知三角形的三边长为连续整数,且周长为18cm,则它的最短边的为________.20.已知△ABC三边长是a、b、c,化简代数式:|a+b-c|-|c-a+b|-|b-c-a|+|b-a-c|=________连接BD,AD=BD=CD=4,∠BDC=120°,E为AB的中点,则线段CE的最大值为________.22.一个三角形的两边长分别是3和7,最长边a 为偶数,则这个三角形的周长为________.23.等腰三角形一腰上的中线把它的周长分为12:9两部分,等腰三角形的周长为21,则它的腰为________.24.三角形的三边长分别是2,5,m,则|m-3|+|m-7|等于________.25.如果△ABC中,两边a=7cm,b=3cm,则第三边为奇数的所有可能值是________cm.26.若三角形的三边长分别为3,x,5,请写出x可能的整数值________.(只要写一个)27.已知a,b,c是三角形的三条边,则化简|a+b-c|-|c-a-b|=________.AB=4,∠ACB=∠ADC=90°,AD=DC.(1)若∠DAB=75°,则四边形ABCD的面积是________;(2)四边形ABCD对角线BD的最大值是________.29.设三角形的三边为a,b,c化简|a-b-c|+|b+c-a|+|c-a-b|=________.30.一个三角形的两边长为3cm和2cm,第三边长为奇数,则第三边的长为________cm.31.三角形的两条边长分别是4和9,且第三边长是奇数,则第三边长为________.三.解答题(共8小题)32.如图,已知△ABC.(1)若AB=3,AC=4,求BC的取值范围;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=60°,∠ACD=125°,求∠B的度数.33.已知a、b、c是△ABC的三边,化简:|a+b-c|+|b-a-c|-|c+b-a|=________.34.已知△ABC的三边长分别为3、5、a,化简|a+1|-|a-8|-2|a-2|.35.在△ABC中,AC=12cm,AB=8cm,那么BC的最大长度应小于多少?最小长度应满足什么条件呢?36.已知:a,b,c分别为△ABC的三条边的长度,请用所学知识说明:b2+c2-a2-2bc是正数、负数或零.37.两根木棒分别长5cm、7cm,第三根木棒与这两根木棒首尾依次相接构成三角形,如果第三根木棒的长为偶数(单位:cm),那么一共可以构成多少个不同的三角形?这些三角形的周长分别是多少?38.一个四边形的周长为48cm,已知第一条边长acm,第二条边比第一条边的2倍长3cm,第三条边等于第一,第二两条边的和.(1)求出表示第四条边长的式子;(2)当a=3cm时,还能得到四边形吗?请简要说明理由.39.a、b、c分别为△ABC的三边,且满足a+b-4c+24=0,a-b-2c+10=0.(1)求c的取值范围;(2)若△ABC的周长为21,求a、b、c的值.。

人教版八年级数学上册《第十一章 11.1.1 三角形的边》课后练习题

人教版八年级数学上册《第十一章 11.1.1 三角形的边》课后练习题

人教版八年级数学上册《第十一章11.1.1三角形的边》课后练习一、单选题1.下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,11a的三条线段能组成一个三角形,则a的值可以是()2.若长度分别为,3,5A.1 B.2 C.3 D.83.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.104.已知n正整数,若一个三角形的三边长分别是n+2、n+8、3n,则满足条件的n的值有( ) A.4个B.5个C.6个D.7个5.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.186.若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.8二、填空题7.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__ cm.8.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.9.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.10.若a、b、c为三角形的三边,且a、b满足,则第三边c的取值范围是.11.各边长度都是整数、最大边长为8的三角形共有____个.12.我们规定:满足(1)各边互不相等且均为整数;(2)最短边上的高与最长边上的高的比值为整数k,这样的三角形称为“比高三角形”,其中k叫做“比高系数”.那么周长为13的三角形的“比高系数”k=____.13.△ABC的三边长分别为a,b,c,化简|a+b﹣c|﹣|b﹣a﹣c|+|a﹣b﹣c|=_____.三、解答题14.已知在△ABC中,AB=5,BC=2,AC的长为奇数.(1)求△ABC的周长;(2)判定△ABC的形状,并说明理由.15.若一个三角形的三边长分别是a,b,c,其中a和b满足方程421804380a bb a+-=⎧⎨-+=⎩,若这个三角形的周长为整数,求这个三角形的周长.16.已知长度分别为1,2,3,4,5,6的线段各一条.若从中选出n条线段组成线段组,由这一组线段可以拼接成三角形,则称这样的线段组为“三角形线段组”.回答下列问题:(1)n的最小值为 .(2)当n取最小值时,“三角形线段组”共有组.(3)若选出的m条线段组成的线段组恰好可以拼接成一个等边三角形,则称这样的线段组为“等边三角形线段组”,比如“等边三角形线段组”{1,2,4,5,6}可以拼接成一个边长为6的等边三角形.请写出另外两组不同的“等边三角答案:1.B 2.C 3.C 4.D 5.B 6.A7.22 8.7 9.5 10.1<c<5.11.10 12.2或3 13.3b﹣a﹣c14.(1)12;(2)△ABC是等腰三角形.理由见解析。

与三角形有关的线段练习题(含答案)

与三角形有关的线段练习题(含答案)

与三角形有关的线段练习题11.1.1 三角形的边1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2.以下列各组线段的长为边长,能组成三角形的是()A.2,3,5 B.3,4,5C.3,5,10 D.4,4,83.下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC中,AD是________的对边.5.若a,b,c为△ABC的三边长,且a,b满足|a-3|+(b-2)2=0.(1)求c的取值范围;(2)若第三边长c是整数,求c的值.11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性1.桥梁拉杆、电视塔底座都是三角形结构,这是利用三角形的________性.2.如图,在△ABC中,AB边上的高是________,BC边上的高是________;在△BCF中,CF边上的高是________.第2题图第3题图3.如图,在△ABC中,BD是∠ABC的平分线.已知∠ABC=80°,则∠DBC=________°. 4.若AE是△ABC的中线,且BE=4cm,则BC=________cm.5.如图,BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长差是________.第5题图第6题图6.如图,在△ABC中,D是BC的中点,S△ABC=4cm2,则S△ABD=________cm2.7.如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求△ABC的面积;(2)求BC的长.11.2 与三角形有关的角11.2.1 三角形的内角第1课时三角形的内角和1.在△ABC中,∠A=20°,∠B=60°,则∠C的度数为()A.80° B.90° C.20° D.100°2.如图所示是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板的另一个角的度数是()A.30° B.40° C.50° D.60°第2题图第3题图3.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠DBC的度数是________.4.根据下图填空.(1)n=________;(2)x=________;(3)y=________.5.如图,在△ABC中,点D在BA的延长线上,DE∥BC,∠BAC=65°,∠C=30°,求∠BDE 的度数.第2课时直角三角形的两锐角互余1.在Rt△ABC中,∠C=90°,∠A=61°,则∠B的度数为()A.61° B.39° C.29° D.19°2.在△ABC中,∠A=60°,∠C=30°,则△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形3.直角三角形的一个锐角是另一个锐角的2倍,则较小锐角的度数是() A.60° B.36° C.54° D.30°4.如图,∠ACB=90°,CD⊥AB,垂足为D,则与∠A互余的角的个数是() A.1个B.2个C.3个D.4个第4题图第5题图5.如图,在△ABC中,∠A=25°,∠ACB=105°,则∠D的度数为________.6.如图,在△ABC中,CE,BF是两条高.若∠A=70°,∠BCE=30°,求∠EBF和∠FBC 的度数.7.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.11.2.2三角形的外角1.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为________.2.如图,∠2________∠1(填“>”“<”或“=”).3.如图,在△ABC中,CD是∠ACB的平分线,∠A=70°,∠ACB=60°,则∠BDC的度数为()A.80° B.90° C.100° D.110°4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E的度数为()A.30° B.40° C.60° D.70°5.如图,在△ABC中,延长CB到D,延长BC到E,∠A=80°,∠ACE=140°,求∠1的度数.11.3多边形及其内角和11.3.1多边形1.下列图形中,凸多边形有()A.1个B.2个C.3个D.4个2.下列关于正六边形的说法错误的是()A.边都相等B.对角线长都相等C.内角都相等D.外角都相等3.四边形一共有________条对角线()A.1 B.2 C.3 D.44.已知从一个多边形的一个顶点最多可以引出3条对角线,则它是() A.五边形B.六边形C.七边形D.八边形5.若一个六边形的各条边都相等,当边长为3cm时,它的周长为________cm.6.从七边形的一个顶点出发,最多可以引________条对角线,这些对角线可以将这个多边形分成________个三角形.7.如图,请回答问题:(1)该多边形如何表示?指出它的内角;(2)作出这个多边形所有过顶点A的对角线;(3)在这个多边形的一个顶点处作出它的一个外角.11.3.2多边形的内角和1.五边形的内角和是()A.180° B.360° C.540° D.720°2.已知一个多边形的内角和为900°,则这个多边形为()A.七边形B.八边形C.九边形D.十边形3.若一个多边形的每一个外角都等于45°,则这个多边形的边数为() A.3 B.4 C.5 D.84.若正多边形的一个内角是120°,则该正多边形的边数是()A.12 B.6 C.16 D.85.如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C的度数为________.第5题图第6题图6.图中x的值为________.7.若一个多边形的内角和是外角和的3倍,则它是几边形?8.如果四边形ABCD的四个外角的度数之比为3∶4∶5∶6,那么这个四边形各内角的度数分别是多少?1.1与三角形有关的线段11.1.1三角形的边1.C 2.B 3.C 4.6∠B AE∠AED∠C5.解:(1)∵|a-3|+(b-2)2=0,∴a-3=0,b-2=0,∴a=3,b=2.由三角形三边关系得3-2<c<3+2,即1<c<5.(2)∵c为整数,1<c<5,∴c=2或3或4.11.1.2三角形的高、中线与角平分线11.1.3三角形的稳定性1.稳定 2.CE AD BC 3.40 4.8 5.2 6.27.解:(1)S△ABC=12AB·CE=12×6×4.5=13.5.(2)∵S△ABC=12BC·AD,∴BC=2S△ABCAD=2×13.55=5.4.11.2与三角形有关的角11.2.1三角形的内角第1课时三角形的内角和1.D 2.B 3.30° 4.(1)27(2)29(3)595.解:∵∠BAC=65°,∠C=30°,∴∠B=85°.∵DE∥BC,∴∠BDE=180°-∠B=180°-85°=95°.第2课时直角三角形的两锐角互余1.C 2.A 3.D 4.B 5.40°6.解:∵∠A=70°,CE,BF是△ABC的两条高,∴∠EBF=20°,∠ECA=20°.又∵∠BCE =30°,∴∠ACB=50°,∴在Rt△BCF中,∠FBC=40°.7.证明:∵∠ACB=90°,∴∠A+∠B=90°.∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC =90°,∴CD⊥AB.11.2.2三角形的外角1.70° 2.> 3.C 4.A5.解:∵∠ACE=140°,∴∠ACB=40°.∵∠A=80°,∴∠1=40°+80°=120°.11.3多边形及其内角和11.3.1多边形1.A 2.B 3.B 4.B 5.18 6.457.解:(1)六边形ABCDEF,它的内角是∠A,∠B,∠C,∠D,∠E,∠F.(2)如图所示.(3)如图,∠DCG即为点C处的一个外角(答案不唯一).11.3.2多边形的内角和1.C 2.A 3.D 4.B 5.230° 6.1307.解:设该多边形是n边形.由题意可得(n-2)·180°=3×360°,解得n=8.故该多边形为八边形.8.解:根据题意,设四边形ABCD的四个外角的度数分别为3x,4x,5x,6x,则3x+4x+5x+6x=360°,解得x=20°.∴这四个外角的度数分别为60°,80°,100°,120°,则这个四边形各内角的度数分别为120°,100°,80°和60°.。

初二数学上册(人教版)第十一章三角形11.1知识点总结含同步练习及答案

初二数学上册(人教版)第十一章三角形11.1知识点总结含同步练习及答案

描述:例题:初二数学上册(人教版)知识点总结含同步练习题及答案第十一章 三角形 11.1 与三角形有关的线段一、学习任务1. 理解三角形及其有关的概念.2. 掌握三角形三边关系,并能够熟练运用这个三角形的三边关系判定已知的三条线段能否构成三角形.3. 知道三角形具有稳定性,并且能够运用到实际问题中去.二、知识清单三角形的相关概念 三角形的三边关系 三角形的稳定性三、知识讲解1.三角形的相关概念三角形由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形(triangle ).按照三个内角的大小,可以将三角形分为锐角三角形、直角三角形和钝角三角形.三角形的高从三角形的一个顶点向它的对边画垂线,顶点和垂足之间的线段叫做三角形的高(altitude ).三角形的中线连接三角形的一个顶点和它对边中点的线段叫做三角形的中线(median ).三角形的角平分线三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线(angular bisector ).三角形的重心三角形三条中线的交点叫做三角形重心.三角形的内心三角形三条内角平分线的交点叫做三角形内心.三角形的垂心三角形三边上的三条高所在直线交于一点叫做三角形垂心.三角形的外心三角形三边的垂直平分线的交点叫做三角形外心.三角形的旁心三角形的一条内角平分线与其他两个角的外角平分线交于一点叫做三角形的旁心.一个三角形的三个内角的度数之比为 ,这个三角形是( )2:3:7中阴影部分的面积是_______.1∠DAE线,则 的度数为______.描述:例题:3.三角形的稳定性三角形具有稳定性,有着稳固、坚定、耐压的特点.四、课后作业 (查看更多本章节同步练习题,请到快乐学)(1) ,,;(2) ,,;(3) ,,();(4) ,,().解:(1) 不能;(2) 不能;(3) 能;(4) 不能.(1) 与 的和小于 ,所以不能组成三角形;(2) 与 的和等于 ,所以不能组成三角形;(3) , 均小于 ,而 ,因为 ,所以 ,所以 ,它们可以组成三角形;(4) 最大,而 ,因此不能组成三角形.3610358+3a 2+4a 2+7a 2a ≠03a 5a 8a a >03610358+3a 2+4a 2+7a 2(+3)+(+4)=2+7=(+7)+a 2a 2a 2a 2a 2a ≠0>0a 2(+3)+(+4)>+7a 2a 2a 28a 3a +5a =8a 一个不等边三角形的边长都是整数,且周长是 ,这样的三角形共有多少?分析:已知中的数较少,只知道周长为 ,应该抓住不等边三角形的边长都是整数这一个条件,依据三角形三边关系先确定出最大边的取值范围,则问题迎刃而解.解:设 ,则 ,即 ,所以 .因为 ,, 都是正整数,所以若 ,则其他两边必然为 ,.由于 ,即 ,故线段 ,, 不能组成三角形.当然 更不可能是 或 ,因而有 .当 时,,,不符合条件;当 时,,,符合条件.所以符合条件的三角形只有 个.1212a <b <c a +b +c >2c 2c <12c <6a b c c =3a =1b =21+2=3a +b =c a b c c 124⩽c <6c =4a =2b =3c =5a =3b =41下列图形中具有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形解:C.答案: 1. 如图,在 中, 的对边是A .B .C .D .C △ABF ∠B ()ADAE AF AC2. 如果一个三角形的两边长分别为 和 ,则第三边长可能是 A .B .C .D .24()2468高考不提分,赔付1万元,关注快乐学了解详情。

人教版八年级数学上11.1.1三角形的边同步练习题带答案

人教版八年级数学上11.1.1三角形的边同步练习题带答案

人教版八年级数学上11.1.1三角形的边同步练习题带答案11.1 与三角形有关的线段11.1.1 三角形的边同步练习题测试时间:30分钟一、选择题1.如图,以BC为边的三角形有( )A.3个B.4个C.5个D.6个答案 B 以BC为边的三角形有△BCN,△BCO,△BMC,△ABC,故选B.2.四条线段的长度分别为4,6,8,10,则可以组成三角形的个数为( )A.4B.3C.2D.1答案 B 选出三条线段的所有组合有4,6,8;4,6,10;4,8,10;6,8,10,只有4,6,10不能组成三角形.故选B.3.已知等腰三角形的一边长为3 cm,且它的周长为12 cm,则它的底边长为( )A.3 cmB.6 cmC.9 cmD.3 cm或6 cm 答案 A 当3 cm是等腰三角形的腰长时,底边长=12-3×2=6(cm),∵3+3=6,∴3 cm,3 cm,6 cm不能构成三角形,∴此种情况不存在;当3 cm是等腰三角形的底边长时,腰长=(12"-" 3)/2=4.5(cm),此时能组成三角形.∴底边长为3 cm,故选A.二、填空题4.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.答案10解析若三条线段的长分别为2,2,4,∵2+2=4,∴它们不能构成三角形,∴此种情况不存在;若三条线段的长分别为2,4,4,此时能构成三角形,且周长为10.综上所述,该等腰三角形的周长为10.5.如果三角形的三边长分别为3a,4a,14,则a的取值范围是.答案2<a<14解析根据三角形的三边关系,得{■(3a+4a>14"," @4a"-" 3a<14"," )┤解得2<a<14.三、解答题6.已知△ABC的三边长分别为a,b,c.(1)若a,b,c满足(a-b)2+(b-c)2=0,试判断△ABC的形状;(2)若a=5,b=2,且c为整数,求△ABC的周长的最大值及最小值.解析(1)∵(a-b)2+(b-c)2=0,∴a-b=0,b-c=0,∴a=b=c,∴△ABC是等边三角形.(2)∵a=5,b=2,∴5-2<c<5+2,即3<c<7,∵c为整数,∴c=4,5,6,∴当c=4时,△ABC的周长最小,最小值=5+2+4=11;当c=6时,△ABC的周长最大,最大值=5+2+6=13.7.小兵用长度为10 cm,45 cm和50 cm的三根木条钉一个三角形时,不小心将50 cm的一根折断了,之后就怎么也钉不成一个三角形木架.(1)最长的木条至少折断了多少厘米?(2)如果最长的木条折断了25 cm,你怎样通过截木条的方法钉成一个三角形木架?解析(1)∵两根木条的长为10 cm,45 cm,∴若设第三根木条的长为x cm,则x应满足45-10<x<45+10,即35<x<55,∵第三根木条长为50 cm,50-35=15(cm),∴最长的木条至少折断了15厘米.(2)如果最长的木条折断了25 cm,则还剩25 cm.要想钉成一个三角形木架,可以将45 cm长的木条折成大于15 cm且小于35 cm的木条。

人教版八年级数学上册 11.1.1 三角形的边 同步练习题(含答案,教师版)

人教版八年级数学上册 11.1.1 三角形的边 同步练习题(含答案,教师版)

人教版八年级数学上册第十一章三角形11.1.1 三角形的边同步练习题1.下列4个图形都是由三条线段组成的图形,其中是三角形的是(C)2.三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示(D)A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形3.有下列说法:①三角形按边分类可分为三边都不相等的三角形、等腰三角形和等边三角形;②等边三角形一定是等腰三角形;③有两边相等的三角形一定是等腰三角形.其中说法正确的有(B)A.1个B.2个C.3个D.0个4.在下列长度的三条线段中,不能组成三角形的是(C)A.2 cm,3 cm,4 cmB.3 cm,6 cm,6 cmC.2 cm,2 cm,6 cmD.5 cm,6 cm,7 cm5.如图,为估计池塘岸边A,B两点的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,则A,B间的距离不可能是(A)A.5米B.10米C.15米D.20米6.已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为(C)A.7B.8C.9D.107.图中三角形的个数是(C)A.4个B.6个C.8个D.10个8.已知n是正整数,若一个三角形的三边长分别是n+2,n+8,3n,则满足条件的n的值有(D)A.4个B.5个C.6个D.7个9.如图所示,以AB为边的三角形有△ABO,△ABC,△ABD;含∠ACB的三角形有△BOC,△ABC;在△BOC中,OC的对角是∠OBC,∠OCB的对边是OB.10.如图,过A,B,C,D,E五个点中的任意三个点画三角形.(1)其中以AB为一边可以画出3个三角形;(2)其中以C为顶点可以画出6个三角形.11.如图,已知AB=AC,AD=BD=DE=CE=AE,则图中共有4个等腰三角形,有1个等边三角形.12.已知等腰三角形的一边长为4,另一边长为8,则该等腰三角形的周长为20.13.在长度为2,5,6,8的四条线段中,任取三条线段,可构成2个不同的三角形.14.已知三角形的两边长分别为2 cm和7 cm,最大边的长为a cm,则a的取值范围是7≤a <9.15.图中共有12个三角形.16.已知△ABC的三边长均为整数,△ABC的周长为奇数.(1)若AC=8,BC=2,求AB的长;(2)若AC-BC=5,求AB的最小值.解:(1)∵由三角形的三边关系知,6<AB<10,又∵△ABC的周长为奇数,而AC,BC为偶数,∴AB为奇数,故AB=7或9.(2)∵AC-BC=5,∴AC,BC中一个奇数、一个偶数.又∵△ABC的周长为奇数,故AB为偶数,∴AB>AC-BC=5,得AB的最小值为6.17.已知a,b,c是△ABC的三边长.(1)若a,b,c满足|a-b|+|b-c|=0,试判断△ABC的形状;(2)化简:|a-b-c|+|b-c-a|+|c-a-b|.解:(1)∵|a-b|+|b-c|=0,∴a-b=0,b-c=0.∴a=b=c.∴△ABC为等边三角形.(2)∵a,b,c是△ABC的三边长,∴a-b-c<0,b-c-a<0,c-a-b<0.∴原式=-a+b+c-b+c+a-c+a+b=a+b+c.18.【探究题】如图,点P是△ABC内部的一点.(1)度量线段AB,AC,PB,PC的长度,根据度量结果比较AB+AC与PB+PC的大小;(2)改变点P的位置,上述结论还成立吗?(3)你能说明上述结论为什么成立吗?解:(1)AB+AC>PB+PC.(2)改变点P的位置,上述结论还成立.(3)连接AP,延长BP交AC于点E,在△ABE中有,AB+AE>BE=BP+PE.①在△CEP中有,PE+CE>PC.②①+②,得AB+AE+PE+CE>BP+PE+PC,即AB+AC+PE>BP+PE+PC,∴AB+AC>BP+PC.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《11.1.1三角形的边》练习题
一、基础练习:
1.下列说法:其中正确的有()
A.1个 B.2个 C.3个 D.4个
(1)等边三角形是等腰三角形;
(2)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;
(3)三角形的两边之差大于第三边;
(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.
2.现有两根木棒,它们的长分别为40cm和50cm,若要钉成一个三角形木架(•不计接头),则在下列四根木棒中应选取()
A.10cm长的木棒 B.40cm长的木棒 C.90cm长的木棒 D.100cm长的木棒3.下列长度的各组线段中,能组成三角形的是()
A.3cm,12cm,8cm B.6cm,8cm,15cm
C.2.5cm,3cm,5cm D.6.3cm,6.3cm,12.6cm
4.已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围是____.•若x 是奇数,则x的值是______;这样的三角形有______个;•若x•是偶数,•则x•的值是______;这样的三角形又有________个.
5.已知等腰三角形的两边长分别是3和6,则它的周长等于()
A.12 B.12或15 C.15 D.15或18
6.已知三角形三边的长均为整数,其中某两条边长之差为5,•若此三角形周长为奇数,则第三边长的最小值为多少?
二、选择题:(每小题3分,共18分)
1.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )
个个个个
2.如果三角形的两边长分别为3和5,则周长L的取值范围是( )
<L<15 <L<16 <L<13 <L<16
3.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度, 要钉成一个三角
形木架,应在下列四根木棒中选取 ( )
A.10cm的木棒
B.20cm的木棒;
C.50cm的木棒
D.60cm的木棒
4.已知等腰三角形的两边长分别为3和6,则它的周长为( )
或15
5.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( )
A.2cm
B.3cm
C.4cm
D.5cm
6.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )
个个个个
二、填空题:(每小题3分,共18分)
1.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.
2.若等腰三角形的两边长分别为3和7,则它的周长为_______; 若等腰三角形的两边长分别是3和4,则它的周长为_____.
3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.
4.若五条线段的长分别是1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成______个三角形.
5.已知等腰三角形ABC中,AB=AC=10cm,D为AC边上一点,且BD=AD,△BCD的周长为15cm,则底边BC的长为__________.
三,解答题:
1.已知等腰三角形的两边长分别为4cm和7cm,且它的周长大于16cm,则第三边长为?
2.已知等腰三角形的两边长分别为4,9,求它的周长.。

相关文档
最新文档