第11章 动量定理(田)

合集下载

理论力学11 动量定理

理论力学11 动量定理

mv
M
mv Mv
p M vC
C
(11-5)
质点系的动量等于系统的质量与质心速度的乘积。
例 图(a) ,长为l,质量为m 的均质细杆,在平面 内绕 O 轴转动,角速度为w。
细杆质心的速度为:
细杆的动量大小为:
1 vC lw 2
vC = 0 O
w
C vO C
w
C A (a) vC
11 动量定理
11.1 动量与冲量
11.1.1 动量 1.质点的动量
质点的质量与速度的乘积 mv 称为质点的动量。 是瞬时矢 量,方向与v 相同。单位是kgm/s。
动量是度量物体机械运动强弱程度的一个物理量。 例:枪弹:速度大,质量小; 船:速度小,质量大。
2.质点系的动量 质点系中所有各质点的动量的矢量和。
(e)
0, 则 p
(e)
x
0则 , px
mv 常矢量。 mv 常量。
x
只有外力才能改变质点系的动量,内力不能改变整个质 点系的动量,但可以引起系统内各质点动量的传递。
例11-2 在水平面上有物体 A 与 B,m A = 2 kg, m B = 1kg,今 A以某一速度运动而撞击原来静止的 B 块。 撞击后,A 与B 一起向前运动,历时2s 而停止。设A、 B 与平面的摩擦因数 f s= 0.25,求撞击前 A 的速度,以 及撞击时 A、B 相互作用的冲量。
11.2.2 质点系的动量定理
d e i ( m v ) F F 对质点系内任一质点 , dt 对整个质点系: d ( mv ) F e F i dt
⒈ 矢量形式
F
i
0
dp (e) F 质点系的动量定理 dt 质点系动量对时间的导数等于作用在质点系上所有外力 的矢量和。 ⑴ 微分形式

第11章动量定理

第11章动量定理


i =1
n
Fi ( e ) dt = ∑ dI i( e )
i =1
n
dp =

n
i =1
d I i( e )
质点系动量的增量等于作用于质点系的外力元冲量的矢量和
d (∑ mi vi ) = ∑ Fi ( e ) dt
i =1 i =1
n
n
质点系动量定理的微分形式
n d p = ∑ Fi ( e ) dt i =1
应用动量定理解题的步骤
1)取研究对象 2)分析质点系所受的全部外力,包括主动力和约束反力; 3)运动分析,表达动量; 4)应用质点或质点系动量定理的微分形式和积分形式列出 运动和力关系 5)求解未知力。
例 : 一个网球质量为 0.125 kg, 飞来的初始速度为 v0 =2.5j-2 k m/s, 球拍施加变力为F=5t i N,作用时 间为 0.5s后,网球飞回,求飞出时的速度。 解: 1) 取网球为研究对象 2)受力分析 外力有重力mg , F 3)运动分析 网球初始动量: p 0 = 网球末动量: 4) 质点动量定理
p x = m2 v2 + m3 v3 cosθ = 2.707m3 v
py = −m1v1 + m3v3 sinθ = −3.293m3v
px ( p, i ) = arccos = −50.58 p py ( p, j ) = arccos = −140.58 p
3、动量分析 、
dri d p = ∑ mi vi = ∑ mi = ∑ mi ri dt dt
n
n

i =1
n
d (mi vi ) = ∑ Fi dt + ∑ Fi(i) dt

第11章 1 动量 动量定理

第11章 1 动量 动量定理
第十一章动量 近代物理
第 1 课时 动量 动量定理
读 基础知识
基础回顾: 一、动量 1.定义:物体的质量与速度的乘积. 2.表达式:p=mv,单位:kg·m/s. 3.动量的性质 (1)矢量性:方向与瞬时速度方向相同. (2)瞬时性:动量是描述物体运动状态的物理量,是针对某一时刻而言的. (3)相对性:大小与参考系的选取有关,通常情况是指相对地面的动量. 4.动量与动能、动量的变化量的关系 (1)动量的变化量:Δp=p′-p. (2)动能和动量的关系:Ek=2pm2 . 二、冲量和动量定理 1.冲量 (1)定义:力与力的作用时间的乘积叫做力的冲量. (2)公式:I=Ft. (3)单位:N·s. (4)方向:冲量是矢量,其方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程始末的动量变化量等于它在这个过程中所受力的冲量. (2)公式:mv′-mv=F(t′-t)或 p′-p=I. 3.动量定理的理解 (1)动量定理反映了力的冲量与动量变化量之间的因果关系,即外力的冲量是原因,物体的动量变化量是结 果. (2)动量定理中的冲量是合力的冲量,而不是某一个力的冲量,它可以是合力的冲量,可以是各力冲量的 矢 量和,也可以是外力在不同阶段冲量的矢量和. (3)动量定理表达式是矢量式,等号包含了大小相等、方向相同两方面的含义. 自查自纠: (1)一个物体的运动状态变化,它的动量一定改 变。( ) (2)动量越大的物体,其速度越大。( ) (3)两物体的动量相 等,动能也一定相等。( ) (4)物体的动量变化量等于某个力的冲量。( ) (5)物体沿水平面运动,重力不做功,重力的冲量也等于零。( ) (6)系统的动量守恒时,机械能也一定守恒。( ) (7)若在光滑水平面上的两球相向运动,碰后均变为静止,则两球碰前的动量大小一定相同。( ) 答案 (1)√ (2)× (3)× (4)× (5)× (6)× (7)√

11动量定理

11动量定理

理论力学电子教程
第十一章 动量定理
例11-2 在静止的小船中间站着两个人,其中m1=50kg, 面向船首方向走动1.5m。另一个人m2=60kg,面向船尾方 向走动0.5m 。若船重 M =150kg ,求船的位移。水的阻力 y 不计。 甲 乙 尾 首 【解】 x 因无水平力 水平方向质心守恒, 又初始静止
(6)
(7)
又 t 0, 0,x A 0 ,代入(7)式得 C 0, 由此存在
ml ml xA sin sin( 0 sin t ) mM mM
理论力学电子教程
第十一章 动量定理
例11-4 如图所示系统中,均质杆OA、AB与均质轮的质量 均为 m,OA杆的长度为 l1,AB杆的长度为 l 2 ,轮的半径为 R,轮沿水平面作纯滚动。在图示瞬时,OA的角速度为 ,则整个系统的动量为多少?
式中 mv——质点动量;矢量,其大小等于质点的 质量m与它在某瞬时速度v的乘积,其单位 kg m / s
或N s 。
写成微分形式
d (mv) Fdt
(11-2)
这是微分形式的质点动量定理
Fdt 称之为冲量。
⒉ 质点动量定理的积分形式
在t1与t2时刻, m v2 m v 1

t2
t1
理论力学电子教程
第十一章 动量定理
mv2 z mv z Fz dt S z 1
t1
t2
mv2 y mv y Fy dt S y 1
t1
t2
(11-5)
mv2 x mv x Fx dt S x 1
t1
t2
⒊ 质点动量守恒
若 作 用 于 质 点 上 的 力 为 零 ,F 0 , 则 有 m v2 m v 0 ,则质点动量保持不变。 1 若 Fx 0,则有 mv2 x mv x 0 。 1

理论力学第十一章 质点系动量定理讲解

理论力学第十一章 质点系动量定理讲解

结论与讨论
牛顿第二定律与 动量守恒
牛顿第二定律 动量定理 动量守恒定理
工程力学中的动量定理和动量守恒定理比 物理学中的相应的定理更加具有一般性,应 用的领域更加广泛,主要研究以地球为惯性 参考系的宏观动力学问题,特别是非自由质 点系的动力学问题。这些问题的一般运动中 的动量往往是不守恒的。
结论与讨论

O
第一种方法:先计算各个质点 的动量,再求其矢量和。
第二种方法:先确定系统 的质心,以及质心的速度, B 然后计算系统的动量。
质点系动量定理应用于简单的刚体系统
例题1
y vA
A

O
解: 第一种方法:先计算各个质点 的动量,再求其矢量和。
p mA v A mB vB
建立Oxy坐标系。在角度为任 意值的情形下
p mi vi
i
§11-1 质点系动量定理
动量系的矢量和,称为质点系的动量,又称 为动量系的主矢量,简称为动量主矢。
p mi vi
i
根据质点系质心的位矢公式
mi ri
rC
i
m
mi vi
vC i m
p mvC
§11-1 质点系动量定理
质点系动量定理
对于质点
d pi dt
质点系动量定理应用
动量定理的
于开放质点系-定常质量流 定常流形式
考察1-2小段质量流,其 受力:
F1、F2-入口和出口 处横截面所受相邻质量流 的压力;
W-质量流的重力; FN-管壁约束力合力。
考察1-2小段质量流, v1、v2-入口和出口处质量流的速度; 1-2 :t 瞬时质量流所在位置; 1´-2´ :t + t 瞬时质量流所在位置;

第11章 动量定理

第11章  动量定理

2
3 0.3464 m/s 2
一、质点的动量定理
d mv F
dt
t
mv mv0 Fdt I
0
二、质点系的动量定理
d mi vi
n
§11—2 动量定理Fe iF
i
i
n e
d mi vi F i dt F i dt
i 1
i 1
一、动量
第十一章 动量定理
质点的质量与速度的乘积。
§11—1 动量与冲量
单位:kg·m/s 质点系内各质点动量的矢量和称为质点系的动量。
n
p mi vi i 1
p
mi vi
p d
dt
质点系的动量等于质心速度与其全部质量的乘积。
如图 1 所示,几种几何形状规则的均质刚体和刚体系动量。
解:建立如图所示的坐标系,质点系质心的坐标为
(1)


x c


yc

2m1l
2m1l
cosω t
sinω t
m1
l 2
cosω t
2m1 m1 2m2
m1
l 2
sinω t
2m1 m1 2m2
式(1)为质点系质心的运动方程,上式消去时间 t ,得



p mv
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试中、件资且卷包管中料拒试含路调试绝验线敷试卷动方槽设技作案、技术,以管术来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

第11章 动量矩定理

第11章 动量矩定理

M z Q(v1r1 cos1 v2r2 cos2 )
例 3 (书上例 11-7,动量矩守恒。)
质量为 m1 = 5kg,半径 r = 30cm 的均质圆盘,可绕铅直轴 z 转
动,在圆盘中心用铰链 D 连接一质量 m2 = 4kg 的均质细杆
AB,AB = 2r,可绕 D 转动。当 AB 杆在铅直位置时,圆盘的
三、 刚体 1. 平动刚体
11-1
LO r MvC
2. 转动刚体(对定轴或平面上定点)
Lz I z
LO IO
3. 平面运动刚体
对质心 C: LC IC
对定点 O: LO mO (MvC ) IC
对瞬心 C': LC IC
11.2 动量矩定理
一、 质点动量矩定理
由牛顿第二定律: ma F
l 3g
而 aC
2
4

W 3g W
NA W g
4
4
IV. 绳子剪断前后 A 反力的变化:
WW W ΔN A N A N A0
42 4
例 2 例 11-5 (较典型题目)
作业:11-18
11.4 质点系相对动点的动量矩定理(*)
此部分较难,特别是公式推导不易理解。主要掌握两种:①对质心的动量矩定理;②平
m2 g
转速为 n = 90rpm。试求杆转到水平位置,碰到销钉 C 而相对
静止时,圆盘的转速。
解:系统对 z 轴动量矩守恒。
初时系统动量矩: Lz I z盘 1 m1r 2 4
末时系统动量矩: Lz Iz盘 Iz杆 1 m1r2 1 m2 (2r)2
4
12
Lz Lz
11-4
1 4
m1r 2

理论力学第11章动量定理

理论力学第11章动量定理
动量定理关注物体的运动状态,而能量守恒定律关注物体的能量转化与守恒。在一些特定情况下,两个 定律是相关的。
总结和应用
动量定理是解释和分析物体运动的重要工具,可以应用于各个领域,帮助我们理解世界的运动规律。
理论力学第11章动量定理
动量定理是研究物体运动的基本定律之一。它包括动量的基本概念、动量守 恒定律、数学表达式、弹性碰撞和非弹性碰撞的动量定理、应用举例、与能 量守恒定律的关系等内容。
动量的概念
动量是描述物体运动状态的物理量,是质量和速度的乘积。它能够帮助我们理解物体如何受力而改变运 动状态。
动量守恒定律
动量定理的应用举例
1
汽车碰撞
动量定理可以帮助我们分析汽车碰撞的力学过程,对交通事故进行研究和安全设计提 供指导。
2
火箭发射
火箭发射过程中动量定理的运用可以帮助我们计算火箭的推力和速度变化,实现太空 探索。
3
球类运动
动量定理可以解释为什么球在击打或投掷时会有反冲,以及如何提高球的射击速度和 力量。
动量定理与能量守恒定律的关系
动量守恒定律指出,在一个封闭体系内,当没有外力作用时,系统的总动量保持不变。这个定律在研究 碰撞和爆炸等过程中非常重要。
动量定理的数学表达式
动量定理的数学表达式为力的作用时间等ቤተ መጻሕፍቲ ባይዱ物体动量变化的量。它可以帮助 我们计算力对物体的作用效果以及物体的运动状态。
弹性碰撞和非弹性碰撞的动量定理
弹性碰撞中,动量守恒定律成立,而非弹性碰撞中,动量守恒定律不完全成立。这两种碰撞过程中动量 定理的应用有所不同。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章动量定理
11-1如图所示,质点的质量为m,以匀速率v沿圆周逆钟向运动。

经过一定的时间后,质点由点A运动到B点,则作用在该质点上的力在此时间内的冲量大小为多少?(答:S x= -m v;S y= -m v)
11-2如图所示匀质圆盘质量为m,半径为R,可绕轮缘上垂直于盘面的轴转动,转动角速度为ω。

试计算圆盘在图示瞬间的动量,并标出其方向。

(答:mRω竖直向上)
11-3如图所示机构中,曲柄O1A,O2B和连杆AB皆可视为质量为m、长为2r的匀质细杆,图示瞬时,连杆AB水平,曲柄O1A,O2B铅直。

曲柄O1A角速度为ω,试计算系统的动量,并标出其方向。

(答:4mωv)
11-4物体A和B各重GA和GB,GA>GB;滑轮重G,并可看作半径为r的匀质圆盘。

不计绳索的质量,试求物体A的速度是v时整个系统的动量。

(答:K x=0;K y= -(G A-G B)v/g)
11-5正方形框架ABCD的质量是m1,边长为l,以角速度ω1绕定轴转动;而匀质圆盘的质量是m2,半径是r,以角速度ω2绕重合于框架的对角线BD的中心轴转动。

试求这物体系的动量。

(答:K=(m1+m2)lω/2,方向为垂直框架平面,顺着ω前进方向。


11-6跳伞者质量为60kg,自停留在高空中的直升飞机中跳出,落下100m后,将降落伞打开。

设开伞前的空气阻力略去不计,伞重不计,开伞后所受的阻力不变,经5s后跳伞者的速度减为4.3m/s。

求阻力的大小。

(答:1068N)
11-7水流以速度V0=2m/s流入固定水遭,速度方向与水平面900角。

如图所示;水流进口截面积为0.02m 2,出口速度V
0角.求水作用在水道壁上的水平和铅垂的附加压力。

1=4m/s。

它与水平面成30
(答:F x=-138.6N,F y=0)
11-8 物体A和B的质量分别是m1和m2,借一绕过滑轮C的不可伸长的绳索相连,这两个物体可沿直角三棱柱的光滑斜面滑动,而三棱柱的底面DE则放在光滑水平面上。

试求当物体A落下高度h = 10cm时,三棱柱沿水平面的位移。

设三棱柱的质量m = 4m1 =16m2,绳索和滑轮的质量都不计。

初瞬时系统处于静止。

(答:(
)()cm m m m
m m s 77.3321
2
1=+++=

11-9 匀质圆盘质量是m,半径是r,可绕通过边缘O点且垂直于盘面的水平轴转动。

设圆盘从最高位置无初速地开始绕轴O转动,试求当圆盘中心C和轴O的连线经过水平位置的瞬时,轴承O的总反力的大小。

(答:317mg )
11-10匀质曲柄OA重G1,长r,受力偶作用以角速度ω转动,并带动总重G2的滑槽、连杆和活塞B作水平往复运动。

已知机构在铅直面内,在活塞上作用着水平常力F。

试求作用在曲柄轴O上的最大水平分力。

滑块质量和摩擦都不计。

(答:F+rω2(G1+G2)/2g
11-11、匀质杆OA长2l,重P,绕通过O端的水平轴在竖直水平面内转动。

设杆OA转动到与水平成φ角时,其角速度与角加速度分别为ω及ε,试求该瞬时杆O端的反力。

答:F ox=-P l(ω2cosφ+εsinφ)/g,F oy=P+P l(ω2sinφ-εcosφ)/g。

相关文档
最新文档