一元二次方程的综合练习题

合集下载

一元二次方程综合练习题

一元二次方程综合练习题

一元二次方程综合练习题1、(2015•湖北滨州)用配方法解一元二次方程01062=--x x 时,以下变形准确的为A.1)32=+x ( B.1)32=-x ( C.19)32=+x ( D.19)32=-x ( 2、(山东菏泽)已知m 是方程01x x 2=--的一个根,求4)3m (m )1m (m 22++-+的值. 3、(呼和浩特)若实数a 、b 满足(4a +4b ) (4a +4b -2)-8=0,则a +b=__________.4、 (2015•山东青岛)关于x 的一元二次方程 0322=-+m x x 有两个不相等的实数根,求m 的取值范围5、 (2015•深圳) 解方程:423532=-+-x x x 。

6、 (2015•四川自贡)利用一面墙(墙的长度不限),另三边用58m 长的篱笆围成一个面积为2200m 的矩形场地.求矩形的长和宽.7、已知关于x 的一元二次方程x 2= 2(1-m )x -m 2 的两实数根为x 1,x 2.(1)求m 的取值范围;(2)设y = x 1 + x 2,当y 取得最小值时,求相对应m 的值,并求出最小值.8、(2008年湖北荆州市)关于的方程两实根之和为m ,且满足,关于y 的不等于组有实数解,则k 的取值范围是__________9. 三角形两边的长是3和4,第三边长是方程的根,则该三角形周长为( )A .14B .12C .12或14D .以上都不对10. 如图,在平行四边形ABCD 中,于且是一元二次方程的根,则平行四边形ABCD 的周长为( ) A .B .C .D .。

一元二次方程综合试题(复习)

一元二次方程综合试题(复习)

一元二次方程综合练习1.a 、b 、c 是△ ABC 的三边长,且关于x 的方程b(2x -1)-2a x +c(2x +1)=0有两个相等的实根,求证:这个三角形是直角三角形。

2.关于x 的代数式2x +mx +m +8是一个完全平方式,求m 的值。

3.已知三角形ABC 中,AB =AC =m ,BC =n ,求证:关于x 的方程42x -8mx +2n =0一定有两个不相等的实根。

4.已知a 、b 、c 、是三角形的三边,方程 ()032)(2222=++++++x c b a x c b a 有两个相等实根。

求证:三角形是正三角形。

5.已知,方程2x -2px +3=0的一根是2,求另一根及p 的值。

6.已知,关于x 的方程0)2()1(222=+---b x a x 有相等实根,求32003b a +的值。

7.已知a ≠b ,且满足2a -3a +1=0,2b -3b +1=0,求111122+++b a 的值。

8.已知关于x 的方程2x +3x ―m =0的两个实根的平方和是11,求证:关于x 的方程(k -3)2x +kmx -2m +6m ―4=0有实根。

10、已知关于x 的方程2x -2(m -2)x +2m =0,问:是否存在实数m 使方程的两根的平方和等于56,若存在,求出m ,若不存在,说明理由。

11、 已知一元二次方程(m +1)2x +2mx +m -3=0有两个不相等的实数根,且这两个根不互为相反数,①求m 的取值范围;②当m 在取值范围内取最小偶数时,方程的两根为1x 和2x ,求()221413x x -的值。

12、 已知.关于x 的方程m 2x ―(2m ―1)x +m -2=0(m>0),①求证:这个方程有两个不相等的实数根;②如果这个方程的两个实数根分别是1x 和2x ,且(1x ―3)(2x ―3)=5m ,求m 的值。

13、关于x 的一元二次方程2x ―(5k +1)x + 2k ―2=0,是否存在负数k ,使方程两实数根的倒数和等于4?如果存在,求出k ,如果不存在,说明理由。

九年级数学解一元二次方程专项练习题(带答案)【40道】

九年级数学解一元二次方程专项练习题(带答案)【40道】

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。

一元二次方程单元综合测试题(含答案)

一元二次方程单元综合测试题(含答案)

一元二次方程单元综合测试题(含答案)精心整理,用心做精品2第二章 一元二次方程单元综合测试题 一、填空题(每题2分,共20分)1.方程12x (x -3)=5(x -3)的根是_______.2.下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x -2x=1;(4)ax 2+bx+c=0;(5)12x 2=0.3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________.4.如果21x -2x -8=0,则1x 的值是________.5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________.6.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m•的取值范围是定______________.7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x2,则原方程变形_________ 原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).10.代数式12x2+8x+5的最小值是_________.二、选择题(每题3分,共18分)11.若方程(a-b)x2+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有().A.a=b=c B.一根为1 C.一根为-1 D.以上都不对12.若分式22632x xx x---+的值为0,则x的值为().A.3或-2 B.3 C.-2 D.-3或213.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为().A.-5或1 B.1 C.5 D.5或-114.已知方程x2+px+q=0的两个根分别是2和-3,则x2-px+q可分解为().A.(x+2)(x+3) B.(x-2)(x-3)C.(x-2)(x+3) D.(x+2)(x-3)15已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为().A.1 B.2 C.3 D.416.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,•则这个三角形的周长是().精心整理,用心做精品3A.8 B.8或10 C.10 D.8和10三、用适当的方法解方程(每小题4分,共16分)17.(1)2(x+2)2-8=0;(2)x(x-3)=x;(3)2=6x(4)(x+3)2+3(x+3)-4=0.四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)18.如果x2-10x+y2-16y+89=0,求xy的值.19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.精心整理,用心做精品4当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,•体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.填写统计表:2000~2003年丽水市全社会用电量统计表:(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).精心整理,用心做精品5精心整理,用心做精品621.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元? (2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a ,b ,c 是△ABC 的三条边,关于x 的方程12x 2b x+c -12a=0有两个相等的实数根,•方程3cx+2b=2a 的根为x=0. (1)试判断△ABC 的形状.(2)若a ,b 为方程x 2+mx -3m=0的两个根,求m 的值.精心整理,用心做精品723.已知关于x 的方程a2x2+(2a -1)x+1=0有两个不相等的实数根x1,x2.(1)求a 的取值范围;(2)是否存在实数a ,使方程的两个实数根互为相反数?如果存在,求出a 的值;如果不存在,说明理由.解:(1)根据题意,得△=(2a -1)2-4a2>0,解得a<14.∴当a<0时,方程有两个不相等的实数根.(2)存在,如果方程的两个实数根x1,x2互为相反数,则x1+x2=-21a a =0 ①,解得a=12,经检验,a=12是方程①的根.∴当a=12时,方程的两个实数根x1与x2互为相反数.上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?QPBDAC精心整理,用心做精品825、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,并且分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时出发,运动时间为t 秒,(1)试判断四边形BPDQ 是什么特殊的四边形?如果P 点的速度是以1cm/s ,则四边形BPDQ 还会是梯形吗?那又是什么特殊的四边形呢?(2)求t 为何值时,四边形BPDQ 的面积最大,最大面积是多少?1、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点的时间为t 秒,(1)当t 为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为524个平方单位?CA BP QD←↑精心整理,用心做精品92、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时间t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时间t ;3、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D ,(1)动什么位置时,△OCP 为等腰三角形,求这时点P 么位置时,使得∠CPD=∠OAB ,且58BD BA ,求这时点P 的坐标;C BQ RADlP答案:1.x1=3,x2=102.(5)点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3.6x2-2=04.4 -2 点拨:把看做一个整体.5.m≠±16.m>-112点拨:理解定义是关键.7.0 点拨:绝对值方程的解法要掌握分类讨论的思想.8.y2-x2=,x4=9.x2-x=0(答案不唯一)10.-2711.D 点拨:满足一元二次方程的条件是二次项系数不为0.12.A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13.B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.精心整理,用心做精品1015.D 点拨:本题的关键是整体思想的运用.16.C 点拨:•本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.17.(1)整理得(x+2)2=4,即(x+2)=±2,∴x1=0,x2=-4(2)x(x-3)-x=0,x(x-3-1)=0,x(x-4)=0,∴x1=0,x2=4.(36x=0,x2-,由求根公式得,.(4)设x+3=y,原式可变为y2+3y-4=0,解得y1=-4,y2=1,即x+3=-4,x=-7.由x+3=1,得x=-2.∴原方程的解为x1=-7,x2=-2.18.由已知x2-10x+y2-16y+89=0,得(x-5)2+(y-8)2=0,∴x=5,y=8,∴xy=58.19.(1)换元降次(2)设x2+x=y,原方程可化为y2-4y-12=0,解得y1=6,y2=-2.由x2+x=6,得x1=-3,x2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,此时方程无解.所以原方程的解为x1=-3,x2=2.20.(1)(2)设2001年至2003年平均每年增长率为x,则2001年用电量为14.73亿kW·h,2002年为14.73(1+x)亿kW·h,2003年为14.73(1+x)2亿kW·h.则可列方程:14.73(1+x)2=21.92,1+x=±1.22,∴x1=0.22=22%,x2=-2.22(舍去).则2001~2003年年平均增长率的百分率为22%.21.(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,解得x1=0,x2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.(2)设商场每天盈利为W元.W=(40-x)(30+2x)=-2x2+50x+1200=-2(x2-25x)+1200=-2(x-12.5)2+1512.5当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22.∵12x+c-12a=0有两个相等的实数根,∴判别式=)2-4×12(c-12a)=0,整理得a+b-2c=0 ①,又∵3cx+2b=2a的根为x=0,∴a=b ②.把②代入①得a=c,∴a=b=c,∴△ABC为等边三角形.(2)a,b是方程x2+mx-3m=0的两个根,所以m2-4×(-3m)=0,即m2+12m=0,∴m1=0,m2=-12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=12.23.上述解答有错误.(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程,∴a2≠0且满足(2a-1)2-4a2>0,∴a<14且a≠0.(2)a不可能等于1 2.∵(1)中求得方程有两个不相等实数根,同时a的取值范围是a<14且a≠0,而a=12>14(不符合题意)所以不存在这样的a值,使方程的两个实数根互为相反数.。

一元二次方程的解法综合练习题及答案

一元二次方程的解法综合练习题及答案

一元二次方程之概念一、选择题1.在下列方程中,一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个B.2个C.3个D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则().A.p=1 B.p>0 C.p≠0 D.p为任意实数二、填空题1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.2.一元二次方程的一般形式是__________.3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.三、综合提高题1.a满足什么条件时,关于x的方程a(x2+x)x-(x+1)是一元二次方程?2.关于x的方程(2m2+m)x m+1+3x=6可能是一元二次方程吗?为什么?一元二次方程之根一、选择题1.方程x(x-1)=2的两根为().A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=22.方程ax(x-b)+(b-x)=0的根是().A.x1=b,x2=a B.x1=b,x2=1aC.x1=a,x2=1aD.x1=a2,x2=b23.已知x=-1是方程ax2+bx+c=0的根(b≠0)().A.1 B.-1 C.0 D.2二、填空题1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.3.方程(x+1)2x(x+1)=0,那么方程的根x1=______;x2=________.三、综合提高题1.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.2.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.一元二次方程之根的判别一、选择题1.一元二次方程x2-ax+1=0的两实数根相等,则a的值为().A.a=0 B.a=2或a=-2C.a=2 D.a=2或a=02.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是().A.k≠2 B.k>2 C.k<2且k≠1 D.k为一切实数二、填空题1.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.2.不解方程,判定2x2-3=4x的根的情况是______(•填“二个不等实根”或“二个相等实根或没有实根”).3.已知b≠0,不解方程,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)•=0的根的情况是________.三、综合提高题1.不解方程,试判定下列方程根的情况.(1)2+5x=3x2(2)x2-(+4=02.当c<0时,判别方程x2+bx+c=0的根的情况.3.不解方程,判别关于x的方程x2-2kx+(2k-1)=0的根的情况.4.某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团2000年投入新产品开发研究资金为4000万元,2002年销售总额为7.2亿元,求该集团2000年到2002年的年销售总额的平均增长率.一元二次方程解法1、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2-23x+3=0 ()()0165852=+---x x2、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x3、利用配方法解下列方程25220x x -+= 012632=--x x7x=4x 2+2 01072=+-x x4、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=039922=--x x课后练习1、方程2x2-3x+1=0化为(x+a)2=b的形式,正确的是 ( )A、23162x⎛⎫-=⎪⎝⎭B、2312416x⎛⎫-=⎪⎝⎭C、231416x⎛⎫-=⎪⎝⎭D、以上都不对2、用__________________法解方程(x-2)2=4比较简便。

求解含有绝对值的一元二次方程综合练习题

求解含有绝对值的一元二次方程综合练习题

求解含有绝对值的一元二次方程综合练习题一、综合练习题1. 解方程 |x - 3| - 2 = 5。

解答:我们可以将绝对值转化为两个方程,分别求解。

当 x - 3 ≥ 0 时,即x ≥ 3 时,方程简化为 x - 3 - 2 = 5,解得 x = 10。

当 x - 3 < 0 时,即 x < 3 时,方程简化为 -(x - 3) - 2 = 5,解得 x = -4。

综上所述,方程 |x - 3| - 2 = 5 的解为 x = -4 和 x = 10。

2. 解方程 |2x + 1| = 7。

解答:同样地,我们将绝对值转化为两个方程,分别求解。

当2x + 1 ≥ 0 时,即2x + 1 ≥ 0 时,方程简化为 2x + 1 = 7,解得 x = 3。

当 2x + 1 < 0 时,即 2x + 1 < 0 时,方程简化为 -(2x + 1) = 7,解得x = -4。

综上所述,方程 |2x + 1| = 7 的解为 x = -4 和 x = 3。

3. 解方程 |3x - 4| + 5 = 13。

解答:同样地,我们将绝对值转化为两个方程,分别求解。

当 3x - 4 ≥ 0 时,即 3x - 4 ≥ 0 时,方程简化为 3x - 4 + 5 = 13,解得x = 4。

当 3x - 4 < 0 时,即 3x - 4 < 0 时,方程简化为 -(3x - 4) + 5 = 13,解得 x = 6。

综上所述,方程 |3x - 4| + 5 = 13 的解为 x = 4 和 x = 6。

4. 解方程 |5 - 2x| = 2。

解答:同样地,我们将绝对值转化为两个方程,分别求解。

当 5 - 2x ≥ 0 时,即 5 - 2x ≥ 0 时,方程简化为 5 - 2x = 2,解得 x = 1.5。

当 5 - 2x < 0 时,即 5 - 2x < 0 时,方程简化为 -(5 - 2x) = 2,解得 x = 3.5。

一元二次方程的练习题

一元二次方程的练习题

一、选择题1. 已知一元二次方程ax^2 + bx + c = 0(a≠0),若b^24ac > 0,则该方程的根的情况是()A. 两个实数根B. 两个虚数根C. 一个实数根D. 无实数根2. 下列哪个方程是一元二次方程?()A. x^2 + 3x + 1 = 0B. 2x^2 4x + 3 = 2C. x^3 2x^2 + x = 0D. 3x 5 = 03. 解一元二次方程x^2 5x + 6 = 0,下列哪个选项是正确的?()A. x1 = 2,x2 = 3B. x1 = 3,x2 = 2C. x1 = 2,x2 = 3D. x1 = 3,x2 = 2二、填空题1. 已知一元二次方程x^2 4x + 3 = 0,则方程的解为x1 =______,x2 = ______。

2. 一元二次方程x^2 (2a+1)x + a^2 = 0的解为x1 = ______,x2 = ______。

3. 若一元二次方程ax^2 + bx + c = 0(a≠0)的两根之差为6,则b^2 4ac = ______。

三、解答题1. 解一元二次方程2x^2 5x 3 = 0。

2. 已知一元二次方程x^2 (2a+3)x + 3a = 0,求a的取值范围,使得方程有实数根。

3. 设一元二次方程x^2 (a+2)x + a + 1 = 0的两根分别为x1和x2,求x1^2 + x2^2的值。

4. 已知一元二次方程x^2 4x + m = 0的两根之积为6,求m的值。

5. 解一元二次方程组:\[\begin{cases}x^2 + 3x 4 = 0 \\2x^2 5x + 3 = 0\end{cases}\]6. 已知一元二次方程x^2 (a+2)x + a^2 3a + 2 = 0的两根分别为x1和x2,求x1 + x2和x1 x2的值。

四、应用题1. 一个矩形的长比宽多2米,且矩形的面积为24平方米,求矩形的长度和宽度。

一元二次方程整章练习题

一元二次方程整章练习题

一元二次方程1、一元二次方程(1-3x)(x+3)=2x2+1的一般形式是它的二次项系数是;一次项系数是;常数项是。

2、已知方程2(m+1)x2+4mx+3m-2=0是关于x的一元二次方程,那么m的取值范围是。

3、已知关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,则m= 。

4、已知关于x的一元二次方程(k-1)x2+2x-k2-2k+3=0的一个根为零,则k= 。

5、已知关于x的方程(m+3)x2-mx+1=0,当m 时,原方程为一元二次方程,若原方程是一元一次方程,则m的取值范围是。

6、已知关于x的方程(m2-1)x2+(m+1)x+m-2=0是一元二次方程,则m的取值范围是;当m= 时,方程是一元二次方程。

7、把方程a(x2+x)+b(x2-x)=1-c写成关于x的一元二次方程的一般形式,再写出它的二次项系数、一次项系数和常数项,并求出是一元二次方程的条件。

8、关于x的方程(m+3)x2-mx+1=0是几元几次方程?9、0.01 y412=10、53x0.22=-11、(x+3)(x-3)=912、(3x+1)2-2=013、(x+2)2=(1+2)214、0.04x2+0.4x+1=015、(2x-2)2=616、(x-5)(x+3)+(x-2)(x+4)=4917、一元二次方程(1-3x)(x+3)=2x2+1的一般形式是它的二次项系数是;一次项系数是;常数项是。

18、已知方程:①2x 2-3=0;②1112=-x;③131212=+-yy;④ay2+2y+c=0;⑤(x+1)(x-3)=x2+5;⑥x-x2=0 。

其中,是整式方程的有,是一元二次方程的有。

(只需填写序号)19、填表:20、分别根据下列条件,写出一元二次方程ax2+bx+c=0(a ≠0)的一般形式:(1)a=2,b=3,c=1;(2)52,43,21==-=c b a ; (3)二次项系数为5,一次项系数为-3,常数项为-1;(4)二次项系数为mn ,一次项系数为3m-,常数项为-n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的解法综合练习题
1、若一元二次方程0)1()1(2=++++c x b x a 化为一般形式后为01232=-+x x ,试求222c b a -+的算术平方根。

2、a 为方程100)17(2=-x 的一个根,b 为方程17)4(2=-y 的一个根,且a 、b 都是正数,求22b a -的值。

3、已知方程0552=+-x x 有一个非零的根m ,求m
m 5+
的值。

4、若正数a 为052=+-m x x 的一个根,且-a 为052=-+m x x 的一个根,求a 的值。

5、已知52
1332412---=----+c c b a b a ,求a+c+b 的值。

6、解方程:2015)2015(2016
1...)3(41)2(31)1(21=++++++++y y y y
7、若21x x 、是方程1))((=--b x a x 的两根(a <b ),能否得到1x <a <b <2x ?
8、已知a 、b 是方程012=--x x 的两个实数根,不解方程,求b a 34+的值。

9、若方程012=++px x 的两根之差为1,则p 的值为多少?
10、的值为多少?,则代数式,且,设2222113131b
a b a b b a a +≠=+=+
11、已知q p 、满足01,0122=--=--q q p p ,且1≠-q p ,求q
pq 1+的值。

12、若方程011471242=-+x x 的两根为a 、b ,且a >b ,求3a +b 的值。

13、若方程0)34)(2(2=---x x x 的三根分别为321x x x 、、,则313221x x x x x x ++的
值为多少?
14、已知βα、是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实数
根.问:βα、能否同号?若能同号,
求出相应的m 的取值范围;若不能同号, 说明理由。

15、已知关于x 的方程0)2(222=+--m x m x ,此方程是否存在实数m ,使方程
的两个实数根的平方和等于36?
16、08)4)(3)(2)(1(=-++++x x x x 解方程:。

17、五个连续整数,前三个数的平方和等于后两个数的平方和,求这五个数。

18、已知关于x 的方程01)12(2=-+--m x m x 的两个根都是正整数,求m 的值。

★的最大值。

,求,满足、、已知实数z xz yz xy z y x z y x 35=++=++ ★设关于x 的一元二次方程0)2()2()1(222=+++--a a x a x a 及
0)2()2()1(2
22=+++--b b x b x b (其中a 、b 为正整数且a ≠b ),求a
b a
b b a b a --++的值。

【a 、b 的值为2或4】原方程可因式分解为0]2)1)[((=++-+a x a a x
★若整数m 使方程x 2-mx+m +2006=0的根为非零整数,则这样的整数m 的个数为多少?。

相关文档
最新文档