胶水粘接机理.
胶粘剂粘接原理

粘接原理1、机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上吸附的空气,才能产生粘接作用。
在粘接如泡沫塑料的多孔被粘物时,机械嵌定是重要因素。
胶粘剂粘接经表面打磨的致密材料效果要比表面光滑的致密材料好,这是因为(1)机械镶嵌;(2)形成清洁表面;(3)生成反应性表面;(4)表面积增加。
由于打磨确使表面变得比较粗糙,可以认为表面层物理和化学性质发生了改变,从而提高了粘接强度。
2、吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。
粘接力的主要来源是分子间作用力包括氢键力和范德华力。
胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿(γSV=γSL+γLVcosθ。
γSV,γSL,γLV各代表了固气接触,固液接触和液气接触。
θ为0º表示完全浸润)。
如果胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了接头的粘接强度。
许多合成胶粘剂都容易润湿金属被粘物,而多数固体被粘物的表面张力都小于胶粘剂的表面张力。
实际上获得良好润湿的条件是胶粘剂比被粘物的表面张力低(即γ氟塑料很难粘接。
通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接。
在粘附力和内聚力中所包含的化学键有四种类型:1)离子键2)共价键3)金属键4)xx力3、扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的。
当胶粘剂和被粘物都是具有能够运动的长链大分子聚合物时,扩散理论基本是适用的。
热塑性塑料的溶剂粘接和热焊接可以认为是分子扩散的结果。
4、静电理论由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。
当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的证实。
5、弱边界层理论认为,当粘接破坏被认为是界面破坏时,实际上往往是内聚破坏或弱边界层破坏。
弱边界层来自胶粘剂、被粘物、环境,或三者之间任意组合。
常见的胶黏剂及其粘结机理

一、胶黏剂的定义:通过界面的黏附和内聚等作用,能使两种或两种以上的制件或材料连接在一起的天然的或合成的、有机的或无机的一类物质,统称为胶黏剂,又叫黏合剂,习惯上简称为胶。
简而言之,胶黏剂就是通过黏合作用,能使被黏物结合在一起的物质。
二、胶黏剂的分类:胶黏剂的分类方法很多,按应用方法可分为热固型、热熔型、室温固化型、压敏型等;按应用对象分为结构型、非构型或特种胶;按形态可分为水溶型、水乳型、溶剂型以及各种固态型等;从胶黏剂的应用领域来分,则胶黏剂主要分为土木建筑、纸张与植物、汽车、飞机和船舶、电子和电气以及医疗卫生用胶黏剂等种类。
所以用途不同的胶黏剂的作用机理也是大不一样的,下面就各种材料:木材、玻璃、金属、纸张和塑料的粘结机理做以简单的介绍。
三、六大胶粘理论聚合物之间,聚合物与非金属或金属之间,金属与金属和金属与非金属之间的胶接等都存在聚合物基料与不同材料之间界面胶接问题。
粘接是不同材料界面间接触后相互作用的结果。
因此,界面层的作用是胶粘科学中研究的基本问题。
诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。
胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。
1、吸附理论:人们把固体对胶黏剂的吸附看成是胶接主要原因的理论,称为胶接的吸附理论。
理论认为:粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。
胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。
胶黏剂分子与被粘物表面分子的作用过程有两个过程:第一阶段是液体胶黏剂分子借助于布朗运动向被粘物表面扩散,使两界面的极性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶黏剂粘度等都有利于布朗运动的加强。
第二阶段是吸附力的产生。
当胶黏剂与被粘物分子间的距离达到10-5Å时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于最大稳定状态。
胶水的原理和应用说明

胶水的原理和应用说明胶水的原理胶水是一种粘接剂,主要由单体、交联剂、助剂和溶剂组成。
胶水的原理是通过物理或化学反应将两个或多个物体粘接在一起。
下面是胶水的原理解释:1.物理作用原理:胶水中的溶剂会挥发,使胶水粘稠,这种粘稠的性质可以使物体粘在一起。
胶水粘合的物体表面会因为溶剂的蒸发而产生物理变化,形成一种类似于粘合体的效果。
2.化学作用原理:胶水中的单体和交联剂会发生化学反应,形成强大而持久的化学键。
这种化学反应可以使胶水和被粘合的物体结合得更紧密,从而增加粘合强度和耐久性。
胶水的应用胶水广泛应用于各个领域,包括工业、建筑、家庭和手工艺等。
以下是胶水的一些常见应用:1.木材粘接:胶水在木材加工领域有着广泛的应用。
木工胶水可以将两个木材块粘合在一起,形成结实的木制品。
这种胶水具有极高的粘接强度和耐水性,适用于室内和室外使用。
2.纸张和纤维粘接:胶水在印刷和包装领域有着重要的作用。
纸张胶水可以将纸张和纤维资料粘接在一起,用于书籍装订、纸盒制造等。
纸张胶水具有快速干燥、透明度高和耐磨损的特点。
3.金属粘接:胶水在金属加工和修复领域也常被使用。
金属胶水可以将金属材料粘接在一起,形成结实的连接。
这种胶水具有抗温度变化、抗冲击和防腐蚀的特性,适用于汽车维修、船舶制造等行业。
4.陶瓷和玻璃粘接:胶水可以粘接陶瓷和玻璃材料,用于制作陶瓷器皿、玻璃器具等。
这种胶水具有高温耐性、透明度高和抗化学性的特点。
5.塑料粘接:胶水在塑料加工领域有着重要的作用。
塑料胶水可以将各种类型的塑料粘接在一起,用于塑料制品的修复和加固。
这种胶水具有高粘接强度、耐腐蚀和柔韧性。
胶水的注意事项在使用胶水时,需要注意以下事项:1.使用时应戴上手套,以防止胶水直接接触皮肤。
2.胶水应远离火源,因为胶水中的溶剂易燃。
3.使用前应先清洁待粘接的物体表面,确保胶水能够有效地与物体结合。
4.需要根据具体应用场景选择适合的类型和品牌的胶水,以确保粘接效果和耐久度。
胶水粘合的原理

胶水粘合的原理胶水是一种常见的粘合剂,广泛应用于日常生活和工业生产中。
胶水的粘合原理是基于分子间的相互作用力,通过相互吸附和扩散来实现物体的粘合。
具体来说,胶水的粘合原理主要包括以下几个方面。
首先是吸附作用。
胶水中的活性基团可以与物体表面的各种功能基团发生吸附作用,形成化学键或物理键,从而增加粘合的强度。
吸附作用有两种形式,一种是化学吸附,即活性基团与物体表面的功能基团发生化学反应,形成化学键;另一种是物理吸附,即活性基团与物体表面的功能基团之间通过范德华力、静电力等相互作用力相互吸引,形成物理键。
其次是扩散作用。
胶水在涂布在物体表面后,会通过扩散作用向物体内部渗透。
扩散作用是由于胶水中的溶剂和物体表面的溶剂之间的浓度差异,使得溶剂分子在浓度梯度的驱动下,从高浓度区向低浓度区扩散。
胶水中的溶剂通过扩散作用,可以将活性基团带入物体表面的细微孔隙中,增加粘合的面积和接触点,从而提高粘合强度。
胶水的粘合原理还与物体表面的特性有关。
物体表面的粗糙度、化学成分、表面能等因素都会影响胶水的粘合效果。
一般来说,物体表面越光滑,胶水的粘合效果会越好;物体表面越干净,没有灰尘、油脂等污染物,胶水的粘合效果也会越好。
此外,物体表面的表面能越大,胶水与物体表面之间的相互作用力也越强,粘合效果会更好。
总结起来,胶水的粘合原理是通过吸附作用和扩散作用实现的。
通过吸附作用,胶水中的活性基团与物体表面的功能基团发生相互作用,形成化学键或物理键,增加粘合的强度。
通过扩散作用,胶水中的溶剂通过浓度梯度驱动,向物体内部渗透,增加粘合的面积和接触点,提高粘合强度。
物体表面的特性也会影响胶水的粘合效果,表面越光滑、越干净,粘合效果越好。
胶水的粘合原理使得它成为一种重要的粘合材料,在各个领域都有广泛的应用。
无论是在家庭使用还是在工业生产中,胶水都发挥着重要的作用,为我们的生活和工作带来了便利。
胶粘剂粘接机理及粘接技术

这就要求要选择能起良好润湿效果的胶黏剂。同时,也 要求被粘物表面事先要进行必要的清洁和表面处理,达到最 宜润湿与粘接的表面状态。要尽量避免润湿不良的情况。
如果被粘物表面出现润湿不良的界面缺陷,则在缺陷的周 围就会发生应力集中的局部受力状态;此外,表面未润湿的 微细孔穴,粘接时未排尽或胶黏剂带入的空气泡,以及材料 局部的不均匀性,都可能引起润湿不良的界面缺陷,这些都 应尽量排除。
无法解释由两种以上互溶高聚物构成 的胶接体系的胶接现象
不能解释温度、湿度及其它因素对剥 离实验结果的影响
☆当胶接接头以极慢的速度剥离时, 电荷可以从极板部分逸出, 降低了电荷间的引力, 减少了剥离时消耗的功 ☆当快速剥离时, 电荷没有足够的逸出, 粘附功偏高
解释了粘附功与剥离速度有关 克服了吸附理论的不足
了解粘接理论,可以从理上指导胶黏剂选择,粘接 接头的设计,制定最佳的粘接工艺,控制影响粘接强度的 各种因素,达到形成强力粘接接头的目的。
机械互锁理论 扩散理论 吸附理论 电子理论
1 机械互锁理论
在不平的被粘物表面形成机械互锁力(胶钉)产生胶接力;胶钉越 多,胶粘剂渗透得越深,孔隙填充得越满,胶接强度就越高。
钛酸钡(碱性)+酸性聚合物 钛酸钡(碱性)+聚碳酸酯(碱性)
胶接好 胶接差 性能好
性能差
Fowkes
酸碱作用理论
★被胶接材料与胶粘剂按其电子转移方向划分为酸 性或碱性物质; ★电子给体或质子受体为碱性物质,反之则为酸性 物质; ★胶接体系界面的电子转移时,形成了酸碱配位作 用而产生胶接力。
3 扩散理论
结 论
扩散:液体胶粘剂分子,借助于布朗运动向被胶接材料表面扩散, 使二者所有的极性基团或链节相互靠近。加强布朗运动的措施有: 升温、加压、降低粘度等。
胶水固化原理

胶水固化原理胶水固化原理是指在粘合剂与被粘材料接触后,通过化学或物理作用使粘合剂形成坚固稳定的结合状态的过程。
一般来说,粘合剂的固化形式可以分为化学固化和物理固化两种。
1. 化学固化化学固化主要是指通过粘合剂与被粘材料的化学反应,产生新的化学键,使粘合剂与被粘材料固定在一起的过程。
常见的化学固化粘合剂有环氧树脂、聚氨酯、酚醛等。
(1)环氧树脂固化原理环氧树脂是一种常用的化学固化粘合剂,它由环氧树脂和固化剂两部分组成。
固化剂包括聚胺、酸酐、酰胺等,与环氧树脂中的环氧基固化反应,生成环氧基填充后的网状结构,从而使粘接处达到坚固的状态。
(2)聚氨酯固化原理聚氨酯是另一种常用的化学固化粘合剂,其固化原理是通过聚异氰酸酯和多元醇等反应,产生尿素键和酯键,形成交联结构,从而固化粘合剂与被粘材料。
化学固化粘合剂有较高的强度和耐热性,但需要在一定条件下进行反应,如温度、压力、时间等,因此生产过程较为复杂。
2. 物理固化热固性胶水主要是树脂与硬化剂混合后,在一定温度下发生交联反应,使粘合剂从液态变为固态的过程。
常见的热固性胶水有酚醛树脂、尿素甲醛树脂等。
(2)紫外线固化胶水固化原理紫外线固化胶水是指在紫外线照射下,通过引发剂的作用促使粘合剂中的聚合物发生交联反应,使其从液态变为固态的过程。
紫外线固化胶水固化速度快,不需要加热,并且对被粘材料的热敏性较小。
胶水的固化原理是通过化学或物理反应将粘合剂与被粘材料紧密结合,从而形成坚固稳定的结合状态,具有很重要的应用价值。
在现代社会,粘合技术已经成为了一个重要的行业,应用范围也非常广泛。
例如在汽车制造、家电制造、房屋建筑等领域中,都需要使用各种各样的胶水来粘合材料,以达到安全和耐久的要求。
随着科技的不断发展,新型的胶水材料也不断涌现。
近年来,新型环保型胶水的应用逐渐普及,这类胶水使用生物基原材料而非化学合成原材料,具有环保、健康的特点。
智能胶水的研发也让胶水技术达到了新的高度。
粘接的原理

粘接的原理
粘接是一种通过在物体表面应用特定的粘合剂,以便将它们牢固地粘合在一起的技术。
粘接的原理基于粘合剂的特性和物体表面的特征。
粘合剂通常由高分子聚合物构成,如丙烯酸酯、环氧树脂、聚氨酯等。
这些聚合物通常具有低粘度,在施加力量或温度作用下可变得更流动。
粘合剂仅在物体表面接触区域附近形成化学或物理结合,形成了一层坚固的连接。
在粘合过程中,首先要确保物体表面清洁干燥,以便粘合剂能够充分接触到表面并提供最佳的附着力。
然后,在物体表面均匀涂覆一层粘合剂。
粘合剂可以在涂覆后通过蒸发溶剂或固化剂来达到特定的粘合效果。
当涂覆完粘合剂后,将需要粘接的物体放在一起,并施加适当的压力。
压力可以帮助粘合剂完全接触到物体表面,并去除可能存在的空气或液体。
某些情况下,还可以通过低温加热或使用嵌入物(如铆钉、螺栓等)来增强粘接强度。
在粘接过程中,粘合剂通过与物体表面的分子相互作用,形成了一种牢固的连接。
这些相互作用包括化学键、静电作用、分子间力等。
最终形成的粘接是具有良好强度和耐久性的。
总的来说,粘接的原理是通过使用特定的粘合剂,在物体表面形成一层坚固的连接,使物体具有牢固的结合。
这种连接方式广泛应用于各种领域,包括建筑、汽车、电子等。
胶水粘接的原理

胶水粘接的原理原理:分子间作用力、固化反应和机械咬合。
分子间作用力分子间作用力是指不同分子之间存在的相互吸引或排斥力,它包括范德华力、氢键、离子键等。
分子间作用力是最基本也最普遍的一种粘合原理,几乎所有类型的胶水都涉及到这种原理。
当两个物体表面非常平滑时,它们之间会产生很强的分子间作用力,使得它们紧密地结合在一起。
这就是为什么两块超平玻璃板会自动粘在一起的原因。
但是我们肉眼看到的平滑,在微观条件下仍然是凹凸不平的,所以实际两个物体接触时的接触面积很小,分子间作用力也就很弱。
这时候,如果在两个物体之间涂上一层胶水,就可以增加接触面积和分子间作力,使得胶水和物体之间形成很多微小的桥梁,从而增强了粘合效果。
分子间作用力的大小取决于胶水和物体的分子结构、极性、电荷分布等因素。
一般来说,分子间作用力越强,粘合效果越好。
固化反应固化反应是指需要固化的胶水在涂抹后,经过某种方式(如加热、光照、加入催化剂等)触发一种化学反应,使得胶水分子之间形成新的化学键,从而变成固态的过程。
固化反应的类型有很多,例如加成反应、缩合反应、聚合反应等。
固化反应的优点是可以使胶水具有很高的强度和稳定性,而且不受环境因素(如温度、湿度、压力等)的影响。
固化反应的缺点是需要一定的条件和时间才能完成,而且一旦固化后就很难重新溶解或分离。
固化反应的例子有很多,例如热熔胶是通过加热使胶水分子之间形成共价键;502胶是通过加入催化剂使胶水分子之间发生环氧树脂的固化反应;环氧树脂是通过加入固化剂(如多元胺、酸酐、咪唑等)使胶水分子之间发生加成聚合反应。
机械咬合机械咬合是指不需要固化的胶水在涂抹后,利用胶水本身的粘性和弹性,填充物体表面的微小凹陷或凸起,从而形成机械上的锁定或钩住效果。
机械咬合的大小取决于胶水和物体表面的粗糙程度、形状、压力等因素。
一般来说,表面越粗糙,机械咬合越强。
机械咬合的优点是可以快速地实现粘合效果,而且不需要特殊的条件或设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各类鞋用胶黏剂
氯丁橡胶胶粘剂: 氯丁橡胶是由2-氯丁二烯-1,3乳液聚合而成,有顺式反式之分, 因而有不同的结晶速率,其分子链中含有氯原子,因而具有极性其物 理机械性能同天然橡胶相似,具有很高的的抗张强度和伸长率,它的 耐老化,耐热,耐油及耐化学腐蚀性较好. 影响氯丁橡胶胶粘剂性能的主要因素: 1.溶剂的影响 2.炼胶工艺的影响 3.操作技术与方法的影响 4.改性技术
粘接机理三;扩散理论
扩散理论认为,粘接是通过胶黏剂与被粘物界面上分子相互扩 散产生的,当胶黏剂和被粘物都具有能够运动的长链大分子时,扩散 理论是适用的,热塑性塑料的溶剂粘接和热焊接即为分子扩散的结 果.
粘接机理四;静电理论
静电理论认为,在胶黏剂与被粘物界面上形成双电层,产生了 静电引力,有较强的粘合作用,当胶黏剂从被粘物上剥离时明显有电 荷存在,这就是对该理论有力的证据.确凿
粘接机理二;吸附理论
吸附理论认为,粘接是由两材料界面间分子接触和界面力产生 的,粘接力的主要来源是分子间作用力,包括氢键力和范德华力,要 使胶黏剂润湿固体表面,胶黏剂的表面张力应小于固体的临界表面张 力. 大多数有机胶黏剂都容易湿润金属被粘物,获得良好湿润的条件 是胶黏剂的表面张力比被粘物的表面张里低,但实际上许多固体被粘 物的表面张力都小于胶黏剂的表面张力,这就是为什么环氧树脂胶黏 剂对金属粘接性能优良,而对于未经处理的聚合物很难粘接的原因. 湿润使胶黏剂与被粘物紧密接触,靠分子间作用力产生永久的粘 接,在粘附力和内聚力中所包含的化学键有四种类型,离子键 共价 键 金属键 范德华力.
胶粘剂粘接机理同各类鞋用胶黏剂
合成组 2008-3-31
粘接机理一;机械理论
机械理论认为,胶粘剂必须滲入被粘物表面空隙内,并排除其 界面上吸附的空气,才能产生粘接作用,在粘接泡沫塑料等多孔性被 粘物时,机械嵌定是重要因素,胶黏剂粘接经表面打磨的材料效果要 比表面光滑的材料好,这是因为机械镶嵌,形成清洁表面,生成反应 表面,表面积增加,由于打磨使表面变得比较粗糙,表面层物理和化 学性质发生了改变,因此粘接强度提高.
Thank
You
聚氨酯胶粘剂: 定义:凡主链含有许多重复的氨基甲酸酯基团的高分子化合物通 称聚氨基甲酸酯(简称聚氨酯) RNCO+R’OH→RNHCOOR’(氨基甲酸酯) 影响聚氨酯胶粘剂制备的因素: 1.溶剂品种 2.反应温度 影响聚氨酯结构与性能的主要因素: 1.软硬段结构 2.异氰酸酯结构 3.聚氨酯分子量同胶联度
粘接机理五;弱边界层理论
弱边界层理论认为,当粘接在界面发生破坏时,实际上是内聚 破坏或弱边界破坏,弱边界层来自胶黏剂,被粘物,环境或三者的任 意结合.如果杂质集中在粘接界面附近,并与被粘物结合不牢,在胶 黏剂与被粘物中都可能出现弱边界层,当发生破坏时,看起来是在胶 黏剂和被粘物界面,但实际上是弱边界层破坏.
ቤተ መጻሕፍቲ ባይዱ
SBS胶粘剂 SBS是苯乙烯-丁二烯-苯乙烯三嵌段热塑性弹性体的简称. 按合成方法分: 线型和星型:含双键,易氧化,不耐紫外线和臭氧,星型分子量 高,内聚强度大,物理交联点多,弹性和耐热优于线型. 饱和型:即氢化SBS,耐老化性好,但溶解性变差. 影响其性能的因素: 苯乙烯同丁二烯的相对含量 SBS胶粘剂的改性