胶粘剂粘接机理及粘接技术

合集下载

3m胶粘接要求

3m胶粘接要求

3m胶粘接要求3M胶粘接是指使用3M公司生产的胶粘剂进行粘接的一种技术。

胶粘接是一种常见的连接和修复材料的方法,适用于多种材料和应用场景。

3M胶粘剂具有优异的粘接性能和耐久性,能够提供稳定、可靠的连接。

下面是与3M胶粘接相关的参考内容:1. 胶粘原理:3M胶粘剂的粘接原理是通过分子间相互作用力实现的。

在粘接过程中,胶粘剂中的分子与被粘接材料表面的分子发生相互作用,形成牢固的连接。

常见的相互作用力包括分子之间的静电力、范德华力、亲和力等。

2. 选择合适的3M胶粘剂:在进行3M胶粘接时,选择合适的胶粘剂非常重要。

不同的胶粘剂适用于不同的材料和应用场景。

一般来说,需要考虑的因素包括粘接材料的种类、表面性质、温度和湿度条件等。

对于特殊的材料,如金属、塑料、橡胶等,还需要考虑其表面处理的方式。

3. 表面处理:在进行3M胶粘接之前,通常需要对粘接材料的表面进行处理,以提高胶粘接的效果。

常见的表面处理方法包括去油、去污、打磨、酸洗等。

通过表面处理,可以去除材料表面的污垢和氧化层,增加胶粘剂与材料之间的接触面积,提高粘接强度。

4. 温度和湿度控制:温度和湿度对3M胶粘接的效果有重要影响。

一般来说,胶粘剂的粘接性能会随着温度的升高而增强,而湿度过高则可能导致胶粘剂失去粘接能力。

所以,在进行3M胶粘接时,需要在适宜的温度和湿度条件下进行,以确保粘接效果。

5. 加压时间和压力:在进行3M胶粘接时,需要施加适当的压力,并保持一定时间,以达到最佳的粘接效果。

压力有助于胶粘剂与被粘接材料之间的紧密接触,提高粘接强度。

加压时间一般根据胶粘剂的要求和具体应用而定。

6. 质量控制:3M胶粘接完成后,需要进行质量控制。

常见的质量控制方法包括检查粘接剂的外观、粘接强度测试、耐热性和耐候性测试等。

通过质量控制,可以确保胶粘接的质量和可靠性。

7. 应用领域:3M胶粘接广泛应用于汽车制造、电子设备、建筑材料、航空航天和医疗器械等领域。

胶粘接技术在这些领域中起到了重要的连接和修复作用,能够提高产品的性能和可靠性。

粘接机理

粘接机理

粘接方案粘接是一项比较复杂的技术,需要深入的学习。

首先对粘接的机理进行说明。

粘接就是指同质或异质物体表面用胶粘剂连接在一起的技术。

粘接力的产生包括胶粘剂与被粘物之间的物理作用、化学作用和机械作用。

物理作用指分子间力即范德华力、氢键力,它们广泛存在于粘接中。

化学作用指胶粘剂与被粘物之间的形成牢固的化学键结合,即离子键力、共价键力、金属键力、配位键力。

机械作用指由于被粘物表面存在大量细小的孔隙,胶粘剂分子由于扩散、渗透作用而进入被粘物内部,形成了机械的“钩键”、“锚键”,即所谓机械力。

粘合技术现在的理论主要有:机械理论、吸附理论、扩散理论、静电理论、弱边界理论、化学键理论等,每种理论都只能解释一部分,各个理论的定义为:1、机械理论:胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上吸附的空气,才能产生粘接作用。

胶粘剂粘接表面打磨的骨架效果要比表面光滑骨架好,这是因为(1)机械镶嵌、(2)形成清洁表面、(3)生成反应性表面、(4)表面积增加。

常用的金属表面处理法有:物理机械法、化学处理法。

物理机械方法有①车削加工②喷砂③超声波处理④机械打磨;化学处理方法有①酸洗②碱洗③氧化还原④磷化处理。

2、吸附理论:粘接是由两材料间分子接触和界面力产生所引起的。

粘接力的主要来源是分子间作用力包括氢键力和范德华力。

胶粘剂与被粘物连续接触的过程叫润湿,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶粘剂浸入固体表面的凹陷与空隙就形成良好润湿。

如果胶粘剂在表面的凹处被架空,便减少了胶粘剂与被粘物的实际接触面积,从而降低了接头的粘接强度。

通过润湿使胶粘剂与被粘物紧密接触,主要是靠分子间作用力产生永久的粘接。

在粘附力和内聚力中所包含的化学键有四种类型:离子键、共价键、金属键、范德华力。

3、扩散理论:粘接是通过胶粘剂与被粘物界面上分子扩散产生的。

当胶粘剂和被粘物都是具有能够运动的长链大分子聚合物时,扩散理论基本是适用的。

粘合剂的原理

粘合剂的原理

粘合剂的原理
粘合剂的原理是通过建立与粘附表面的物理或化学连接,使两个或多个物体粘合在一起。

这种连接可以通过以下几种机制实现:
1. 物理吸附:粘合剂的分子通过凹凸等微观结构与粘附表面的分子相互作用,形成物理上的吸附力。

这种吸附力可以通过增加接触面积或提高接触力来增强。

2. 化学反应:粘合剂中的化学成分与粘附表面上的分子发生化学反应,形成共价键或离子键等强化学键。

这种化学反应可以包括酸碱中和、氧化还原、酯化、聚合等。

3. 拉力传递:粘合剂可以填充物体表面的微观凹凸,从而增加粘附表面的接触面积,并通过填充与物体表面产生的微小空隙来传递应力。

这种力学锁定机制可以增强粘合强度。

常见的粘合剂包括胶水、胶带、胶粘剂等。

不同的应用场景和物体特性需要选择不同的粘合剂。

在选择和使用粘合剂时,需要考虑物体的材料特性、粘合剂的粘附性能、环境使用条件等因素。

同时,要遵循正确的使用方法和操作规程,以确保粘合效果和安全性。

胶粘剂基础知识及产品详解

胶粘剂基础知识及产品详解

耐油耐溶剂性 差
不易燃,燃烧 几乎无有害物
放出
耐强酸碱性差 高透水气性
有机硅固化机理
加成反应 Additional Cure 有机硅聚合物 + 固化剂 = 固化后硅胶
A +B= C
特点:固化时不需要水气、不产生副产物,可在密闭环境下固 化,可能产生固化抑制,或固化中毒 。
缩合反应 Condensation Cure 有机硅聚合物+固化剂=固化后硅胶+副产物(气体 )
• 扩散理论 扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子 扩散产生的。(热塑性塑料的溶剂粘接和热焊接可以认为 是分子扩散的结果。)
胶粘剂一般术语
• 润湿 胶粘剂和被粘物直接接触的过程。
润湿效果不好 润湿效果好
• 挤出率 表征粘度的单位,在一定压力下一定直径的管中单位时间
内挤出的胶粘剂的克数。 在90psi气压下1/8inch的管口每分钟挤出胶水的克数,单位g/min
胶粘剂一般术语
• 介电强度 是一种材料作为绝缘体时的电强度的量度。它 定义为试样被击穿时,单位厚度承受的最大电压,表示为 伏特每单位厚度。
测定方法:通常采用短时间法, 加在两电极间的电压从零开始以相同的 速率上升,直至介质被击穿。 单位:kV/mm、V/mil
1kV/mm=25.374V/mil
• 体积电阻率 指某材料单位厚度上的直流压降与单位面积 上通过的电流之比。
在一起的粘接现象。
粘接
非结构性粘接:主要指表面粘涂、密封和功能型粘接等。
涂敷
灌封
密封
粘接理论
• 机械理论:粘接主要是通过胶粘剂在两 粘接面间形成机械互锁结构。
胶粘剂粘接经表面打磨的致密材料效果 要比表面光滑的致密材料好。(如金属表面处理前的喷沙) 吸附理论

粘接与胶粘剂技术导论

粘接与胶粘剂技术导论

粘接与胶粘剂技术导论在我们生活的每个角落,粘接与胶粘剂都扮演着不可或缺的角色,真的是无处不在。

想想看,你家里那些破旧的家具、玩具,甚至是你每天用的水杯,都是因为某种粘接方式让它们能继续陪伴你。

说到这里,大家是不是觉得这小小的胶水其实大有文章呢?可不是嘛,胶粘剂可不是随便哪个小东西,它们背后有着不少的科学道理和历史故事呢。

胶水的种类真是五花八门,像是百花齐放的春天。

有些是水溶性的,有些则是超级强力的,简直让人眼花缭乱。

要是你问我哪个最好用,我还真不知道怎么回答。

不同的场景用不同的胶水,就像你在吃火锅的时候,麻辣锅和清汤锅绝对不能混。

想象一下,拿着一瓶强力胶去粘你那本心爱的书,结果一不小心,书页都粘在一起了,那可就麻烦了。

所以,选择适合的胶水才是王道。

再说说粘接的过程,嘿嘿,这可是个技术活。

就像在做菜,先得准备好所有的材料,然后一步一步来。

表面要清洁,这点可不能马虎,脏东西、油脂这些都是小小的“捣蛋鬼”,它们会让胶水失去效果。

然后,就是涂胶水,这时候你得小心翼翼,别涂得太厚,太薄也不行,太厚的话,干得慢,太薄的话,粘不牢。

真是让人头疼,但一想到能把东西粘起来,心里又乐开了花。

有趣的是,胶水的原理就像是谈恋爱一样,得让两者之间有好的接触面。

就像你跟朋友搭话,必须得聊得投机才能建立友谊。

胶水里的分子在表面接触后,它们就像是热恋中的情侣,开始交织在一起。

时间一长,胶水就会变得坚固,俨然一对恩爱的小夫妻。

你说神奇不神奇?粘接的技术不光是简单的涂胶,科学家们在这方面可是费了不少心思。

早些年,人们在粘接方面可是摸索了很久,有些甚至是通过试错来找到最好的方法。

有了这些经验,现代的粘接技术才变得越来越成熟,应用范围也是越来越广。

你看,现在的飞机、汽车,甚至是宇宙飞船,都是靠着粘接技术来提高强度和降低重量的。

要是没有这些胶水,估计我们的生活得简化不少,想想都觉得可怕。

还有一点不得不提,环保。

随着人们对环境的关注越来越高,胶水行业也在努力向绿色化发展。

胶粘剂粘接机理及粘接技术

胶粘剂粘接机理及粘接技术

这就要求要选择能起良好润湿效果的胶黏剂。同时,也 要求被粘物表面事先要进行必要的清洁和表面处理,达到最 宜润湿与粘接的表面状态。要尽量避免润湿不良的情况。
如果被粘物表面出现润湿不良的界面缺陷,则在缺陷的周 围就会发生应力集中的局部受力状态;此外,表面未润湿的 微细孔穴,粘接时未排尽或胶黏剂带入的空气泡,以及材料 局部的不均匀性,都可能引起润湿不良的界面缺陷,这些都 应尽量排除。
无法解释由两种以上互溶高聚物构成 的胶接体系的胶接现象
不能解释温度、湿度及其它因素对剥 离实验结果的影响
☆当胶接接头以极慢的速度剥离时, 电荷可以从极板部分逸出, 降低了电荷间的引力, 减少了剥离时消耗的功 ☆当快速剥离时, 电荷没有足够的逸出, 粘附功偏高
解释了粘附功与剥离速度有关 克服了吸附理论的不足
了解粘接理论,可以从理上指导胶黏剂选择,粘接 接头的设计,制定最佳的粘接工艺,控制影响粘接强度的 各种因素,达到形成强力粘接接头的目的。
机械互锁理论 扩散理论 吸附理论 电子理论
1 机械互锁理论
在不平的被粘物表面形成机械互锁力(胶钉)产生胶接力;胶钉越 多,胶粘剂渗透得越深,孔隙填充得越满,胶接强度就越高。
钛酸钡(碱性)+酸性聚合物 钛酸钡(碱性)+聚碳酸酯(碱性)
胶接好 胶接差 性能好
性能差
Fowkes
酸碱作用理论
★被胶接材料与胶粘剂按其电子转移方向划分为酸 性或碱性物质; ★电子给体或质子受体为碱性物质,反之则为酸性 物质; ★胶接体系界面的电子转移时,形成了酸碱配位作 用而产生胶接力。
3 扩散理论
结 论
扩散:液体胶粘剂分子,借助于布朗运动向被胶接材料表面扩散, 使二者所有的极性基团或链节相互靠近。加强布朗运动的措施有: 升温、加压、降低粘度等。

机械工程中的材料胶结与粘接分析

机械工程中的材料胶结与粘接分析

机械工程中的材料胶结与粘接分析机械工程是一个复杂而多样化的领域,材料胶结与粘接作为其中的一个重要方面,对于机械结构的稳固性和性能发挥起着关键作用。

本文将从材料胶结与粘接的基本原理、常见应用以及发展趋势等方面进行分析。

一、基本原理材料胶结与粘接是指通过各种胶粘剂将两个或多个材料连接在一起的工艺过程。

它的基本原理是利用胶粘剂的物理和化学特性,将两个物体粘在一起并形成牢固的结合。

常见的胶粘剂有有机胶、无机胶和高分子胶等。

有机胶主要是通过溶剂挥发或化学反应固化,形成胶层将两个物体粘接在一起。

无机胶则通过物理吸附和化学键等结合形式粘合材料。

而高分子胶则依靠分子间的交联和聚合使两个材料结合成整体。

二、常见应用材料胶结与粘接在机械工程中有广泛的应用。

最常见的就是在各种结构连接中的使用,如焊接、螺栓固定等。

与传统连接方式相比,胶粘剂能够在连接表面形成均匀的粘结层,提供更大的连接面积,从而实现更牢固的连接效果。

此外,在制造工艺中,材料胶结与粘接也被广泛应用。

例如,利用胶粘剂将轴承固定在零件上,可以大大提高零件的加工精度和使用寿命。

在汽车制造中,黏合剂的应用可以简化制造流程,提高产品性能。

在航空航天领域,胶粘剂的使用可以减轻设备重量,提高整体结构的强度和刚度。

三、发展趋势材料胶结与粘接技术在机械工程中的应用已经取得了显著的进展,但仍存在一些挑战和改进空间。

首先,胶粘剂的性能需要进一步提高。

材料胶结与粘接的强度、耐热性、耐腐蚀性等性能对于不同的应用有不同的要求。

因此,需要开发更多具有特殊性能的胶粘剂,以满足不同行业和领域的需求。

其次,胶粘剂的环保性也是一个关注的问题。

传统的胶粘剂中常含有有机溶剂和重金属等有害物质,对环境和人体健康造成潜在的危害。

因此,需要研发更环保的胶粘剂,减少对环境的污染。

此外,随着机械工程领域的不断发展和创新,材料胶结与粘接技术也将面临新的挑战和机遇。

例如,随着电子元器件的不断微型化,需要研发能够粘接纳米级元器件的粘合剂;随着新材料的涌现,胶粘剂也需要能够实现与新材料的高效粘接。

表面粘接技术

表面粘接技术

3.粘接的影响因素与破坏机理
化学因素 物理因素 1.极性 1.表面粗糙度 2.分子量 2.表面处理 3.侧链 3.渗透 4.pH值 4.迁移 5.交联 5.压力 6.溶剂和增塑剂 6.胶层厚度 7.填料 7.负荷应力 8.结晶性 8.内应力 9.分解 :水解、热解 9.环境:热、水、光、氧气等
胶接头的力学行为-内力
(1)剪切 外力平行于粘接面。这种受力形式的接头最常用, 因为它不但粘接效果好而且简单易行,易于推广应用。
(2)均匀扯离 有时也称为拉伸。作用力垂直作用在粘接平 面,应力均匀分配。高强度结构胶拉伸强度可达到58.8MPa。 (3)不均匀扯离 均匀扯离在实际使用中是很难碰到的, 一旦外力方向偏斜,就产生严重的应力集中,主要集中在边 缘的区域内,接头容易破坏。这种类型的接头,其承载能力 很低,一般只有理想的均匀扯离强度的1/10左右。
③粘接车刀、钻头等受力大的部件,采用简单的平面对接, 即使是高强度结构胶粘剂,剪切强度达49MPa,仍然要失败。 如改变接头形式,采用套接、嵌接等使应力的很大部分 由金属被粘物本身去承担,就可能成功。如图。
接头设计的基本原则 (1)
①胶粘剂的拉伸剪切强度较高,设计接头尽量承受拉伸和剪 切负载。板材搭接接头承受剪切负载的是比较理想的。 ②保证粘接面上应力分布均匀,尽量避免剥离和劈裂负载。 剥离和劈裂破坏通常是从胶层边缘开始,在边缘处采取局部 加强或改变胶缝位置的设计都是切实可行的。最理想的办法 是各种局部的加强。如平面粘接的防剥措施如图2.4所示。
几种接头相对强度比较
常用的几种接头形式 (2) 角接和T型接头形式
常用的几种接头形式 (3) 管材、棒材接头形式
常用的几种接头形式 (4) 复合连接形式
①胶铆和胶螺
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LV 液滴
SV
SL
图1—1 液体在固体表精面选上课的件 浸润状态
11
可从接触角(润湿角)判断润湿:
习惯上将液体在固体表面的接触角θ= 90º时定为润湿 与否的分界点。
θ>90º 为不润湿,θ<90º为润湿,接触角θ越小, 润湿性能越好。
精选课件
12
2、 表面及界面自由能
Zisman将固体表面分为高能表面和低能表面。凡表面能 >200mN/m为高能表面,金属、金属氧化物和无机化合 物的表面,都是高能表面,表面能<100mN/m为低能表 面,有机化合物、聚合物和水都属低能表面。高能表面的 临界表面张力γc >胶黏剂的γLV ,容易铺展润湿;低能表面 的γc < 一般胶黏剂的γLV ,所以不易铺展润湿。
• 注意:对于塑料基材,进行合适的清洁非常重要!
4
1、 浸润平衡
为形成良好的粘接,首先要求胶粘剂分子和被粘接材 分子充分接触。为此,一般要将被粘接体表面的空气、 或者水蒸气等气体排除,使胶粘剂液体和被粘接材接 触。即将气—固界面转换成液—固界面,这种现象叫做 润湿,其润湿能力叫做润湿性。
精选课件
5
胶黏剂在涂胶阶段应当具有较好的流动性,而且其表面 张力应小于被粘物的表面张力。这意味着,胶黏剂应当在 被粘物表面产生润湿,能自动铺展到被粘物表面上。 当被粘物表面存在凹凸不平和峰谷的粗糙表面形貌时, 能因胶黏剂的润湿和铺展,起填平峰谷的作用,使两个被 粘物表面通过胶黏剂而大面积接触,并达到产生分子作用 力的0.5 nm以下的近程距离。
15
A、表面清理 除杂、除污、脱漆等。
B、脱除油脂 1、溶剂除油:
常用溶剂: 丙酮、甲乙酮、汽油、无水乙醇; 四氯化碳、三氯乙烯、过氯乙烯等
2、碱液除油: 特点:主要用于动植物油的去除,但
除矿物油效果差,常需配制碱液清洗剂。
精选课件
16
碱液除油清洗剂配方:
配方
钢铁 铜及其合金 铝及其合金
精选课件
3
对高分子被粘物而言,这种扩散是相互进行的;金 属或无机物由于受结晶结构的约束,分子较难运动,但 胶黏剂在硬化前,分子可以扩散到表面氧化层的微孔中 去,达到分子的紧密接触,最后仍能形成以次价力为主 的或化学键的粘接键。这就是粘接的基本过程。全过程 的关键作用是润湿、扩散和形成粘接键。
精选课件
PTFE: 配方:
金属钠 (23g) + 精萘 (128g) + 四氢呋喃(1000ml) 处理条件:室温 ,1-5min。
精选课件
19
表面清洁
针对不同的表面污染采用不同的清洁剂:
污染类型 指纹 水汽 油、脂 重度油污 脱模剂
清洁剂 异丙醇(IPA) 异丙醇(IPA) 庚烷(Heptane) 丁酮(MEK) 向制造商咨询
精选课件
13
临界表面张力γc较大的被粘物,选择比被粘物γc小的胶 黏剂比较容易,有较多的胶黏剂品种可供选择。但γc 越小, 则越不容易选择能有效润湿的胶黏剂。例如,聚四氟乙烯 (PTFE)的γc只有19mN/m,很不容易找到表面张力比这还 小的胶黏剂,所以PTFE具有难粘的特性,利用这一特性,将 PTFE热喷涂于锅面,就可以制成不粘锅。
要想粘接PTFE,只有利用钠-萘溶液进行化学处理或利用低 温等离子体进行处理使表面改性,才能进行粘接。
精选课件
14
通常金属、玻璃、陶瓷、(木材)等无机 物表面张力很大,容易被胶粘剂湿润,粘接容 易。但当其表面被油污染后,表面张力变小, 湿润变差,常使粘接失败,这就是涂胶前进行 脱脂处理的原因。
精选课件
• 养护时间
• 施工压力
• 施工环境
粗 糙 的 表 面 Textured Surface
精选课件
• 温度
10
判断润湿性可用接触角来衡量,可用Young方程来表示:
SV = LV cos + SL
式中,θ为接触角,也称为润湿角;γSV为固气界面张力;γLV 为液气界面张力;γSL为固液界面张力。
此式应处于热力学平衡状态才有意义。
精选课件
9
粘接失败的原因?
压敏胶与底材不匹配
Water Drop
Substrate on clean metal surface
Water Drop
• 表面污染
• 脱模剂
• 尘埃 • 增塑剂迁移
• 软质聚氯乙烯 • 橡胶
Substrate surface
on polyethylene
表面平整度
第7章 粘接机理及粘接技术
精选课件
1
7.1 粘接机理
7.1.1 界面接触与粘接
理想的粘接强度,必需条件:紧密接触
液体的接触角为0或接近0; 黏度低,即不得大于几毫帕秒; 能驱除被粘物接头间所夹空气。
精选课件
2
使用胶黏剂,在粘接过程中,由于胶黏剂的流动性和 较小的表面张力,对被粘物表面产生润湿作用,使界面分 子紧密接触,胶黏剂分子通过自身的运动,建立起最合适 的构型,达到吸附平衡。 随后,胶黏剂分子对被粘物表 面进行跨越界面的扩散作用,形成扩散界面区。
17
3、超声波除油 适合结构复杂的构件。
C、除锈
1、机械法:
2、化学法: 硫酸+缓蚀剂(硫脲、联苯胺、食盐等) 盐酸+缓蚀剂(六次甲基次胺、甲醛等)
精选课件
18
D、表面化学处理
1、金属的表面活化或钝化 2、难粘材料的表面活化
PE/PP: 配方:重铬酸钾(5份)+ 浓硫酸(60份)+水(3份) 处理条件:60-70℃/10-20min
氢氧化钠:50-60g/L


碳酸钠: 50-60g/L
10-20g/L
பைடு நூலகம்

磷酸钠: 86-100g/L
10-20g/L 10-30g/L
硅酸钠: 10-15 g/L
25g/L
3-5g/L
OP乳化剂: —
2-3g/L
2-3g/L
处理条件:80℃/30min 70℃/30min 50℃/10min
精选课件
精选课件
6
精选课件
7
精选课件
8
这就要求要选择能起良好润湿效果的胶黏剂。同时,也 要求被粘物表面事先要进行必要的清洁和表面处理,达到最 宜润湿与粘接的表面状态。要尽量避免润湿不良的情况。
如果被粘物表面出现润湿不良的界面缺陷,则在缺陷的周 围就会发生应力集中的局部受力状态;此外,表面未润湿的 微细孔穴,粘接时未排尽或胶黏剂带入的空气泡,以及材料 局部的不均匀性,都可能引起润湿不良的界面缺陷,这些都 应尽量排除。
相关文档
最新文档