三水平三因素正交试验设计
正交实验的设计(四因素三水平)

表10-2 上一张 下一张 主 页 退 出
常用的正交表已由数学工作者制定出来,供进行 正交设计时选用。2水平正交表除L8(27)外,还有L4(23)、 L16(215) 等 ; 3 水 平 正 交 表 有 L9(34) 、 L27(213)…… 等 (详见附表14及有关参考书)。 1.3.2 正交表的基本性质 1.3.2.1 正交性 (1)任一列中,各水平都出现,且出现的次数相等
正交设计就是从选优区全面试验点(水平 组合)中挑选出有代表性的部分试验点(水平 组合)来进行试验。图10-1中标有试验号的九 个“(·)”,就是利用正交表L9(34)从27个试验点 中挑选出来的9个试验点。即:
(1)A1B1C1 (4)A1B2C2 (7)A1B3C3
(2)A2B1C2 (5)A2B2C3 (8)A2B3C1
上一张 下一张 主 页 退 出
1.3.2.2 代表性
一方面: (1)任一列的各水平都出现,使得部 分试验中包括了所有因素的所有水平;
(2)任两列的所有水平组合都出现, 使任意两因素间的试验组合为全面试验。
另一方面:由于正交表的正交性,正交试验的试 验点必然均衡地分布在全面试验点中,具有很强 的代表性。因此,部分试验寻找的最优条件与全 面试验所找的最优条件,应有一致的趋势。
上一张 下一张 主 页 退 出
1 正交试验设计的概念及原理
1.1 正交试验设计的基本概念
正交试验设计是利用正交表来安排与分
析多因素试验的一种设计方法。它是由试
验因素的全部水平组合中,挑选部分有代
表性的水平组合进行试验的,通过对这部
分试验结果的分析了解全面试验的情况,
找出最优的水平组合。
上一张 下一张 主 页 退 出
三水平三因素正交试验设计

LOGO
Three Applications
正交试验设计法探究银镜 反应的反应条件
常用的三个水平三个因素与三水平四因素的正交表一样 都是L9(34)正交表。
LOGO
正交表
简 正介交:表的正代交号表是,一n为整试套验规的则次的数设,计t表为格水,平L数n(,tcc)为用列L数为, 也 表就示是需可作能9次安实排验最,多最的多因可素观个察数4。个例因如素正,交每表个L因9(素34均),为它3 水平。一个正交表中也可以各列的水平数不相等,我们 称 列它为为4水混平合,型4正列交为表2水,平如。L8(4× 24),此表的5列中,有1
Bent-Ca-OH 脱水率X (%)
1
1
1(10.5)
1(10)
1(1.5)
5.872
5.232
10.90
2
1
2(14)
2(12)
2(2.0)
7.747
6.834
11.79
3
1
3(17.5)
3(14)
3(2.5)
7.861
7.022
10.67
4
2
1(10.5)
2(12)
3(2.5)
7.270
6.456
11.20
5
2
2(14)
3(14) 1(1.5)
7.880
7.011
11.03
6
2
3(17.5)
1(10)
常用三水平三因素正交试验设计

正交表
正交表是一整套规则的设计表格,Ln(tc)用 L为正 交表的代号,n为试验的次数,t为水平数,c为列数, 也就是可能安排最多的因素个数。
例如正交表L9(34),它表示需作9次实验,最多可 观察4个因素,每个因素均为3水平。一个正交表中 也可以各列的水平数不相等,我们称它为混合型正交 表,如L8(4×24),此表的5列中,有1列为4水平,4 列为2水平。
9
3 3(17.5) 2(12) 1(1.5) 6.668 5.909 11.38
脱水率X(%) 脱水率X(%)
12.5 12
11.5 11
10.5 10 9.5 9 8.5 8 1.5 2 2.5 3 3.5 4 4.5 5 水土比L/S(ml•g-1)
12.5
12
11.5
11
10.5
10 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 Cao用量(g)
正交试验设计 Orthogonal experimental design
例如作一个三因素三水平的实验,按全面实验要求,须 进行3 × 3 = 27种组合的实验,且尚未考虑每一组合的重 复数。若按L9(34)正交表安排实验,只需作9次,按L16(45) 正交表进行16次实验,显然大大减少了工作量。
水土比L/S对脱水材料脱水率影响
CaO与活性白土配比对脱水材料脱水率影响
正交表数据分析
K1 11.17 11.01 11.10
K2 11.15 11.46 11.57
K3 11.83 11.04 10.83
Rபைடு நூலகம்
0.68 0.45 0.74
三水平三因素正交试验设计

5.872 7.747 7.861 7.270 7.880 6.662 8.053 6.405 6.668
5.232 6.834 7.022 6.456 7.011 5.896 7.134 5.725 5.909
10.90 11.79 10.67 11.20 11.03 11.50 11.41 10.62 11.38 LOGO
K2
11.15
11.46
11.57
K3
11.83
11.04
10.83
R
0.68
0.45
0.74
LOGO
LOGO
Example2正交试验设计优化碱性钙基膨润土
的改性条件
设置三水平三因素正交试验
因素 水平 1 2 3
A水土比 ( ml· g-1) 1.5:1 2:1 2.5:1
B 反应时 间(h) 10 12 14
C CaO/活性白土质量比 (g· g-1) 0.3:1 0.4:1 0.5:1
LOGO
LOGO
kI,k2,k3为其平均值, R为极差
LOGO
结果分析: 直接比较表2可知在这9个实验结果中,以实验5产生的银镜效果最好, 其水平组合为A2,B2,C3,分别是各因素中影响最大的水平。 由图可以看出本实验各因素组合中的最优组合为A2,B2,C3, 而通过R值的大小可以看出本实验因素存在显著性顺序,其主 次关系为C>A>B. 即影响银镜反应的因素最主要的是乙醛的浓度, 其次是温度、硝酸银的浓度。 结果与讨论 通过利用正交试验法得出的用乙醛作为还原剂做银镜反应时, 对实验影响最大的因素是乙醛的浓度。实验的最佳条件是 用水浴加热到80℃ ,2%的硝酸银溶液,使用40%的乙醛溶液。
三因素三水平正交表L9

三因素三水平正交表L9
正交表L9,是一种经常被科学家用于对某种复制影响的研究方法。
它有三个因素和三个
水平,可以被用来研究包括环境因素,生物因素甚至化学因素在内的各种因素之间的影响。
正交表L9应用于实验学中的可靠性,把实验设计分解为不同的可能的操作,以清楚地表
示一个因果关系。
该表由九个单元格组成,每个单元格代表一个操作组合。
它的一个特点是,不同的操作有着相同的数量的样本,并且把可能的影响效应减少到最低。
实验室研究已经表明,正交表L9能够实现精确和可靠的结果。
由于它确定了所有因素在
实验中影响结果的范围,它是实验设计方面的一种重要工具。
它可以精确地控制因素对结果的影响,也可以有效地减少或排除无关信息,以提高实验结果的准确性。
因此,正交表L9在实验设计中起着至关重要的作用,它能够解决各种复制影响的问题,
并且它的精确性和可靠性也为科学家研究复杂实验问题提供了很多帮助。
三因子三水平正交设计

三因子三水平正交设计
三因子三水平正交设计是一种实验设计方法,用于研究三个因素对实验结果的
影响。
该设计方法可以有效地减少试验次数,同时保证各个因素之间的相互独立性。
在三因子三水平正交设计中,首先确定三个因素,每个因素有三个水平。
然后,根据正交表的原理,设计出一组实验方案,确保每个水平的因素在各个试验中均匀分布,并且每个因素的水平组合都出现了一次。
这样可以减小因素之间的交叉影响,使得分析结果更加可信。
正交设计的一个重要特点是可以通过较少的实验次数得到充分的信息。
因为正
交设计利用了正交表的性质,可以同时估计各个主效应、交互效应和误差的效应。
而且由于正交设计保证了因素间的独立性,可以更准确地估计因素的主效应和交互效应,从而更好地理解各个因素对实验结果的影响。
在实际应用中,三因子三水平正交设计可以用于各种科学研究和工程领域。
例如,在药物研发中,可以使用该设计方法来确定不同因素对药效的影响;在工业生产中,可以利用该设计方法优化生产过程,提高产品质量和产量。
总之,三因子三水平正交设计是一种实验设计方法,通过合理选取因素和水平,并利用正交表的原理,可以减少实验次数,降低误差,从而更准确地了解各个因素对实验结果的影响。
这种设计方法在科学研究和工程实践中具有广泛的应用前景。
三因素三水平正交表例题

三因素三水平正交表例题例题1:某产品的质量受A、B、C三个因素影响,每个因素有三个水平。
A因素的三个水平为A1 = 10,A2 = 20,A3 = 30;B因素的三个水平为B1 = 5,B2 = 10,B3 = 15;C因素的三个水平为C1 = 2,C2 = 4,C3 = 6。
试用正交表安排试验,找出最佳的因素水平组合以提高产品质量(以产品质量指标越大越好)。
1. 选择正交表。
- 对于三因素三水平的试验,我们可以选用L9(3⁴)正交表。
2. 表头设计。
- 将A、B、C三个因素分别安排在正交表的三列上,例如A安排在第1列,B安排在第2列,C安排在第3列。
3. 确定试验方案。
- 根据正交表L9(3⁴)的安排进行试验。
例如,第1号试验的因素水平组合为A1、B1、C1;第2号试验为A1、B2、C2;第3号试验为A1、B3、C3;第4号试验为A2、B1、C2;第5号试验为A2、B2、C3;第6号试验为A2、B3、C1;第7号试验为A3、B1、C3;第8号试验为A3、B2、C1;第9号试验为A3、B3、C2。
4. 进行试验并记录结果。
- 假设经过试验得到9个试验结果分别为y1,y2,y3,y4,y5,y6,y7,y8,y9。
5. 分析试验结果。
- 计算各因素同一水平下试验结果的平均值。
- 对于A因素:- K1A=(y1 + y2+y3)/3,K2A=(y4 + y5 + y6)/3,K3A=(y7 + y8 + y9)/3。
- 计算极差RA = max(K1A,K2A,K3A)-min(K1A,K2A,K3A)。
- 对于B因素:- K1B=(y1 + y4 + y7)/3,K2B=(y2 + y5 + y8)/3,K3B=(y3 + y6 + y9)/3。
- 计算极差RB = max(K1B,K2B,K3B)-min(K1B,K2B,K3B)。
- 对于C因素:- K1C=(y1 + y6 + y8)/3,K2C=(y2 + y4 + y9)/3,K3C=(y3 + y5 + y7)/3。
三因素三水平正交表

三因素三水平正交表
三因素三水平正交表(Three-Factors Three-Levels Orthogonal Table)是实验设计中一种重要的工具,用于系统地研究多个因素对研究对象的影响。
这种设计方法基于对实验因素进行有效地设计和布局,以便从有限成本和时间内获得最大信息。
在三因素三水平正交表中,三个因素分别取三个不同的水平,每个因素的水平间都存在相等间隔。
因此,该实验设计方案中共有27个试验条件。
三因素三水平正交表是正交设计方法的一种,具有许多优点。
首先,它可以帮助研究人员确定各因素对研究对象的相对重要性,并识别任何交互作用等非线性关系。
其次,该方法可以更有效地检查因素之间的相互作用,尤其是在研究对象中存在较强的非线性作用时。
最后,三因素三水平正交表的设计允许研究人员对实验结果进行多因素统计分析,从而更全面地了解因素对结果的影响。
实际上,三因素三水平正交表在各种经济学、管理学、生物学和医学等领域中得到了广泛使用。
例如,在产业工程研究中,该方法被用于
研究决策和优化生产流程,以提高生产效率和降低成本。
在营销研究中,该方法可用于确定各种市场策略对顾客购买行为的影响。
在医学
研究中,该方法可用于研究疾病治疗方案的有效性。
总之,三因素三水平正交表是一种简便实用的多因素实验设计方法,
可以帮助研究人员更全面、系统地了解多种因素对研究对象的影响。
它已被应用于各种领域,成为现代实验设计方法中不可或缺的一部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.62
9
3
3(17.5) 2(12) 1(1.5) 6.668
5.909
11.38
脱水率X(%) 脱水率X(%)
12.5
12
11.5
11
10.5109.5 Nhomakorabea9
8.5
8
1.5
2
2.5
3
3.5
4
4.5
5
水土比L/S(ml•g-1)
水土比L/S对脱水材料脱水率影响
12.5
12
11.5
11
10.5
10 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 Cao用量(g)
R
0.68
0.45
0.74
从正交表数据处理中可以看出因素C的极差R 最大,其次是因素A,因素B的极差最小。故 可知CaO用量对脱水材料脱水率影响最显著。
从因素A列中均值K3较大,因素B列中K2较 大,因素C列中K2较大,故可知A3,B2,C2是 各因素中影响最大的水平。 即水土比为2.5:1 ml•g-1;反应时间为12h; CaO/活性白土质量比为0.4:1g• g-1这三个影 响较显著。
谢谢
结果与讨论 通过利用正交试验法得出的用乙醛作为还原剂做银镜反应时, 对实验影响最大的因素是乙醛的浓度。实验的最佳条件是 用水浴加热到80℃ ,2%的硝酸银溶液,使用40%的乙醛溶液。
设置三水平三因素正交试验
Example2正交试验设计优化碱性钙基膨润土的改性条件
因素 水平
1 2 3
A水土比 ( ml·g-
6.456
11.20
5
2
2(14) 3(14) 1(1.5) 7.880
7.011
11.03
6
2
3(17.5) 1(10) 2(2.0) 6.662
5.896
11.50
7
3
1(10.5) 3(14) 2(2.0) 8.053
7.134
11.41
8
3
2(14) 1(10) 3(2.5) 6.405
5.725
正交表每一列中,不同的数字出现的次数相等。 例如在两水平正交表中,任何一列都有数字“1”与“2”,且任何一列中它 们出现的次数是相等的; 如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的 出现次数均相等。
Three Applications
正交试验设计法探究银镜反应的反 应条件
常用的三个水平三个因素与三水平四因素的正交表一样都是L9(34)正交表。
正交表
简试介验:的正次交数表,是t为一水整平套数规,则c的为设列计数表,格也,就是Ln(可tc能)用安排L为最正多交的表因的素代个号数,。n例为 如3水正平交。表一L个9(3正4)交,表它中表也示可需以作各9次列实的验水,平最数多不可相观等察,4我个们因称素它,为每混个合因型素正均交为 表,如L8(4×24),此表的5列中,有1列为4水平,4列为2水平。
量(ml) 间(h) (g)
量(g) 量(g)
(%)
1
1
1(10.5) 1(10) 1(1.5)
5.872
5.232
10.90
2
1
2(14) 2(12) 2(2.0) 7.747
6.834
11.79
3
1
3(17.5) 3(14) 3(2.5) 7.861
7.022
10.67
4
2
1(10.5) 2(12) 3(2.5) 7.270
正交试验设计及在丝饼成形工艺过 程中的应用
正交试验设计优化等离子喷涂纳米 Al2O3-13%TiO2涂层工艺参数
Example1正交试验设计法探究银镜反应的反应条件 设置三水平三因素正交试验
L9(34) 正交试验
kI,k2,k3为其平均值,R 为极差
结果分析:
直接比较表2可知在这9个实验结果中,以实验5产生的银镜效果最好,其 水平组合为A2,B2,C3,分别是各因素中影响最大的水平。 由图可以看出本实验各因素组合中的最优组合为A2,B2,C3, 而通过R值的大小可以看出本实验因素存在显著性顺序,其主 次关系为C>A>B. 即影响银镜反应的因素最主要的是乙醛的浓度,其次 是温度、硝酸银的浓度。
三水平三因素正交试验设计
正交试验设计 Orthogonal experimental design
简介:日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格, 称为正交表。例如作一个三因素三水平的实验,按全面实验要求,须进行 3安作^排量3 =实。2验7,种只组需合作的实9次验,,按且L尚16(未45考)正虑交每表一进组行合1的6次重实复验数,。显若然按大L大9(3减4)少正了交工表
CaO与活性白土配比对脱水材料脱水率影响
脱水率X(%)
12.5
12
11.5
11
10.5
10
9.5
9
8.5
8
4
6
8
10
12
14
16
18
20
Time(h)
反应时间对脱水材料脱水率影响
正交表数据分析
K1
11.17 11.01 11.10
K2
11.15 11.46 11.57
K3
11.83
11.04 10.83
1)
1.5:1
2:1
2.5:1
B 反应 时间(h)
10 12 14
C CaO/活性白土质量 比(g·g-1)
0.3:1 0.4:1 0.5:1
L9(34) 正交试验
因素
(60℃) (200℃) Bent-Ca-
试验
A
B
C
Bent-Ca- Bent-Ca-
OH
号
1
蒸馏水用 反应时 CaO用量 OH恒重质 OH恒重质 脱水率X