部分相容聚合物共混体系的流变学研究

合集下载

第四章-聚合物流体的流变性

第四章-聚合物流体的流变性

(4)聚合物链结构中的侧基 当侧基体积较大时,自由体积增
大,流体黏度对压力和温度敏感性增 加. 如PMMA和PS可以提高T或者改 变P来改善流动性
顺丁胶的黏度与相对分子质量的关系 1-直链,2—三支链,3—四支链
2. 相对分子质量的影响
(1)相对分子质量对0 的影响
丙烯腈共聚物在NaSCN-H2O 中浓溶液的零切黏度对分子量的依赖性
0 A exp E RT
ln0 ln A E RT
lg 0
lg
A
E 2.303 RT
当T>Tg+100℃时, 由Arrhenius方程式:
0 A exp E RT
ln0 ln A E RT
lg 0
lg
A
E 2.303 RT
须知
➢ 黏流活化能的大小显著受剪切应力或剪切速率的 影响,因此,测定黏流活化能必须说明具体的实 验条件。
C =45.4%,Mc=1.3103; C = 15%时, Mc=6.03104
(2)分子量对流动曲线的影响(P71)
聚合物流体流动曲线对分 子量的依赖性
M ↑ 流动曲线上移 , 0 ↑
相cr同向低值移下动的a ↑
cr
3.相对分子质量分布的影响
(二) 聚合物溶液浓度对黏度的影响
1.聚合物溶液浓度对0 (或)的影响
不稳定流动
• 凡流体在输送通道中流动 时,其流动状况及影响流 动的各种因素都随时间而 变化,此种流动称为不稳 定流动。如在注射成型的 充模过程中,在模腔内的 流动速率、温度和压力等 各种影响流动的因素均随 时间而变化。
等温流动和非等温流动
等温流动
• 流体各处的温度保持不变 情况下的流动。在等温流 动情况下,流体与外界可 以进行热量传递,但传入 和输出的热量保持相等, 达到平衡。

聚合物共混原理聚合物共混物的形态学课件

聚合物共混原理聚合物共混物的形态学课件

聚合物共混原理聚合物共混物的形
2
态学课件
1、非晶-非晶聚合物共混体系
1.1 单相连续的形态结构
单相连续的形态结构是指,构成聚合物共混物 的两个相或者多个相只有一个相连续。称之为 连续介质或者基体。其它的相分散于基体中, 称为分散相。
连续介质+分散相
聚合物共混原理聚合物共混物的形
3
态学课件
从分散相结构特征来看,可分为以下三种情况:
根据润湿-接触理论,粘合强度主要取决于界面张力, 张力越小,则粘合强度越大。根据扩散理论,粘合强度 主要取决于两种聚合物之间的热力学混溶性。混溶性越 大,粘合强度越高。这两种理论之间存在内在联系,是 统一的。
聚合物共混原理聚合物共混物的形
10
态学课件
两种组分都形成三维空间连续的 形态结构。典型的例子是互穿网 络聚合物(IPN)。
如图所示。注意,互穿网络聚合 物不是分子级别的的相互贯穿, 而是分子微小聚集体相互贯穿。 两组分的相容性和交联度越大, 相互贯穿网络聚合物两相结构的 相畴就越小。
白色部分为PS
聚合物共混原理聚合物共混物的形
4
态学课件
③分散相形状、大小不规则,分散相包容了大量连续相成分. 分散相成香肠状结构、胞状结构、蜂窝状结构。
如由接枝共聚共混法生产的ABS,HIPS.
聚合物共混原理聚合物共混物的形
5
态学课件
例 如 : 通 过 熔 融 共 混 法 制 备 了 苯 乙 烯 - 马 来 酸 酐 共 聚 物 (SMA) 增 容 的 尼 龙 6(Nylon-6)/ABS共混物。研究了SMA增容的Nylon-6/ABS共混物的相形态与 性能.发现在Nylon-6/ABS共混体系中,分散相易聚集,相界面清晰,断裂面光 滑,呈脆性断裂,相容性差。加入少量SMA后,共混物由共连续相结构转变为 典型的"海-岛"结构,分散相分布均匀,界面粘接程度增加,表明SMA对Nylon6/ABS体系有显著的增容效果-高分子学报,2007 / /5

多相_多组分聚合物体系流变学研究_郑强

多相_多组分聚合物体系流变学研究_郑强

多相/多组分聚合物体系流变学研究郑强*浙江大学高分子系,杭州,310027*Email: zhengqiang@由于具有重大的学术价值和应用价值,对于非均相高分子复杂体系的流变行为和形态结构的研究已经引起了广泛关注[1, 2]。

多相/多组分聚合物的流变性质与其组分间相互作用、相形态密切相关,而且与均相高聚合物相比较,其行为要复杂得多。

近年来,随着大量新型功能高分子材料的不断出现,对于材料流变性质与功能特性(例如,凝胶和聚电解质的特殊结构以及热和导电等功能特性)的相关研究,无论是其重要的理论价值还是其重要的工程指导意义,均为人们所共知。

近年来,浙江大学流变学课题组利用流变学方法对多相/多组分聚合物体系的形态结构展开了多方面的研究,其中包括:(1) 填充体系的结构与流变行为[3-7],(2) 导电高分子复合材料的流变响应[8-12],(3) 聚电解质溶液的流变特性[13, 14],(4) 生物食品材料的流变行为[15, 16]等。

上述研究的开展,不仅丰富了流变学研究体系,也为应用流变学方法研究和表征多相/多组分聚合物体系的结构-性能关系提供了大量有价值的依据。

参考文献1.Ferry J D. Viscoelastic Properties of Polymers. New York: Wiley, 19802.Zheng Q, Zuo M, Chin. J. Polym. Sci., 2005, 4: 341~3543.Hu HG, Zheng Q, J. Mater. Sci., 2005, 40: 49~2514.Dong Q Q, Zheng Q, Du M, Song Y H, J. Soc. Rheo. Japan, 2004, 32: 271~2765.Zhang X W, Pan Y, Zheng Q, Yi X S, J. Polym. Sci. Polym. Phys., 2000, 38, 27396.Xu X M, Tao X L, Gao CH, Zheng Q, J. Appl. Polym. Sci., 2008, 107: 1590~15977.Shangguan Y G, Zhang C H, Xie Y L, Zheng Q, Polymer, 2010, 51: 500~5068.Zhou J F, Song YH, Zheng Q*, Wu Q, Zhang M Q, Carbon, 2008, 46: 679~691.9.Zhou J F, Song Y H, Shangguan Y G, Zheng Q, J Appl. Polym. Sci., 2008, 110:2001~2008.10.Liu Z H, Song Y H, Zhou J F, Zheng Q, J Mater Sci., 2008, 43: 4823 ~ 483311.Cao Q, Song Y H, Tan Y Q, Zheng Q. Polymer, 2009, 50(26): 6350~635612.Cao Q, Song Y H, Tan Y Q, Zheng Q. Carbon, 2010, 48(15): 4268~4275.13.Wu Q, Du M, Ye T, Shangguan Y G, Zhou J P, Zheng Q, Coll. & Polym. Sci., 2009, 287:911~91814.Wu Q, Shangguan YG, Du M, Zhou J P, Song Y H, Zheng Q, J. Coll. Interface Sci. 2009,339: 236~24215.Sun SM, Song YH, Zheng Q, Food Hydrocolloids, 2008, 22: 1090~109616.Sun SM, Song YH, Zheng Q, J. Cereal Sci., 2008, 48: 613~618.。

聚合物流变学(绪论)

聚合物流变学(绪论)
31
❖ 加工流变学:属于宏观流变学,主要研究
与高分子材料加工工程有关的理论与技术 问题。
❖ 比如说,研究加工条件变化与材料流 动性质(主要指粘度、弹性)及产品力学 性质之间的关系,异常的流变现象如挤出 胀大、熔体破裂现象发生的规律、原因及 克服办法;高分子材料典型加工成型操作 单元(如挤出、吹塑、注射等过程的流变 学分析;多相高分子体系的流变性规律, 以及模具与机械设计中遇到的种种与材料 流动性质有关的问题等。)
32
主要内容:
挤出流变学 密炼流变学 塑炼流变学 压延流变学 注模流变学 吹塑流变学 熔体纺丝流变学
33
研究和学习流变学的意义
1)对高分子材料合成而言,流变学与高分子化学结合在一 起,流变性质通过与分子结构参数的联系成为控制合成产 物品质的重要参数。
2)对高分子材料成型加工而言,流变学与高分子物理学和 高分子材料成型工艺原理结合在一起,成为设计和控制材 料配方及加工工艺条件,以获取制品最佳的外观和内在质 量的重要手段。
图 1-8 孔压误差 21
牛顿型流体不存在孔压误差,无论压力传 感器端面安装得与流道壁面是否相平,测得 的压力值相等。高分子液体有孔压误差现象。
22
2 原因:在凹槽附近,流线发生弯曲,但法向应
力差效应有使流线伸直的作用,于是产生背向凹 槽的力,使凹置的压力传感器测得的液体内压力 值小于平置时测得的值。在实施流变测量时,应 当注意这一效应。同样地,当高分子液体流经一 个弯形流道时,液体对流道内侧壁和外侧壁的压 力,也会因法向应力差效应而产生差异。通常内 侧壁所受的压力较大。
10
11
二、Weussebberg效应
12
三、Barus效应
13
四、不稳定流动与熔体破裂

第4章 聚合物流体的流变性

第4章 聚合物流体的流变性
和应变速
它们都是三维空间的二阶对称张量。 总的应变张量和应变速率张量也可以分为各向同性张量和偏张量。 各向同性张量引起体积改变, 偏张量引起形状改变。
三.材料函数和本构方程
材料函数是指在外界作用下,应力分量和应变(或应变速率)分量
之间的具体关系。
材料函数可由试验测量,并表达为实验数据或代表这些实验数据的函 数。
Eη↑
聚合物本性的影响:链刚性↑极性↑ M的影响:M>103, E η=k

T的影响:T 的影响:
E η↓ E η↑
溶剂的影响
聚合物浓度的影响:C↑
的影响:↑
E η↓
E η反映聚合物流体流动的难易程度,更重要的是反映了材料黏度 随温度变化的敏感性。 例:PLLA熔体的Eη为123kJ/mol, PET熔体的Eη为80kJ/mol. 所以PLLA熔体在纺丝过程中对温度极其敏感,应严格控制纺丝温 度.
a ↓
聚乙烯熔体的流动曲线
2.大分子链段取向效应
↑, 链段取向↑
流层间牵曳力↓
a ↓
a ↓
3.大分子链的脱溶剂化(浓溶液情况)
聚合物浓溶液: σ ↑, 脱溶剂化↑ 大分子链有效尺寸↓
(四) 切力增稠的原因

增加到某数值时,流体中有新的结构的形成。
大多数胀流型流体为多分散体系,固体含量较多,且浸润性不好。 静止时,流体中的固体粒子堆砌得很紧密,粒子间空隙小并充满了液 体。 当
lg 3.4 lg M w
17 .44 (T Tg ) 51 .6 T Tg
C
2.温度对流动曲线的影响
T↑
流动曲线下移 cr ↑ 0 ↓ a ↓
(四)溶剂性质对黏度的影响

相容剂对弹性体 TPU/POE 共混体系流变性的影响

相容剂对弹性体 TPU/POE 共混体系流变性的影响

相容剂对弹性体 TPU/POE 共混体系流变性的影响沈岳辉;马青华;周建奇【摘要】我们通过动态频率、应变流变仪研究了添加POE-g-MAH、 POE-g -NH2相容剂的TPU/POE共混物三元共混体系在200℃下的动态流变学行为。

随POE-g-MAH、 POE-g-NH2添加量的增加,共混体系的动态模量G′也显著增加,而且曲线随着频率增大而逐渐靠近。

这是因为POE分子链上的酸酐及氨基基团与TPU分子上的氨基甲酸酯发生反应, TPU与POE之间形成的界面区和界面粘结力增加,从而使相态结构的稳定性提高。

POE-g-MAH、 POE-g-NH2的加入,导致二元共混斜率完全偏离线性关系,极大地提高了POE与TPU 的相容能力。

%The blends of thermoplastic urethane ( TPU) and polyolefin elastomer ( POE) were produced with the aid of the compatibilizers, and their dynamic rheological behaviors under 200 ℃ were investigat ed by a dynamic frequency strain-rheometer.Results showed that the dynamic modulis of the blends increase significantly with increasing content of POE-g-MAH or POE-g-NH2 , and the storage and the loss moduli were getting close to each other radually as the frequency increases.The reactions between the anhydride and amino groups on the POE molecular chains and the carbamates on the TPU molecules resulted in a larger interfacial layer and stronger interfacial adhesion stress, which improved the stabilities of the phase structures.The addition of POE-g-MAH or POE-g-NH2 caused the slope of the binary blend deviating from the linear relation completely and improved the compatibility between POE and TPU greatly.【期刊名称】《广州化工》【年(卷),期】2015(000)008【总页数】3页(P132-134)【关键词】弹性体;TPU/POE共混体系;流变性;相容剂【作者】沈岳辉;马青华;周建奇【作者单位】海军湛江地区装备修理监修室,广东湛江 524005;海军装备技术研究所,北京 102442;海军装备技术研究所,北京 102442【正文语种】中文【中图分类】O631高分子合金是由两种或两种以上高分子材料构成的共混体系,它可以使原有高分子材料的性能得以改良或使其具有其它优异的新性能。

聚合物流变学研究意义

聚合物流变学研究意义

聚合物流变学研究意义聚合物流变学是研究聚合物在外力作用下的流变特性的学科。

聚合物是一类大分子化合物,具有高分子量、高分子链的柔韧性和长期的耐久性等特点。

聚合物在外力作用下会产生不同的变形和流动行为,而聚合物流变学正是研究这些变形和流动行为的学科。

聚合物流变学的研究意义主要体现在以下几个方面:1. 工程应用:聚合物流变学的研究可以为聚合物工程应用提供重要的理论基础。

比如,聚合物在塑料加工中的流动行为和变形特性对于塑料工程的设计和制造至关重要。

另外,在航空、汽车、电子等领域,聚合物的流变特性也对产品的性能和可靠性有着重要的影响。

2. 医学应用:聚合物在生物医学领域中有着广泛的应用,比如注射用聚合物、生物材料、组织工程等。

聚合物流变学的研究可以为这些应用提供重要的理论支持和技术指导。

3. 环境保护:聚合物在环境领域中也有着重要的应用,比如塑料袋、塑料瓶等。

聚合物流变学的研究可以为这些应用提供技术支持,使其更加环保和可持续。

聚合物流变学的研究主要涉及到以下几个方面:1. 本构关系:聚合物的流变特性与其分子结构有关,通过研究聚合物的分子结构和流变行为,可以建立聚合物的本构模型,从而预测其力学性能。

2. 流变行为:聚合物的流变行为包括弹性、塑性、粘弹性等,通过研究聚合物的流变行为,可以了解其在复杂工况下的行为规律,从而为工程应用提供理论指导。

3. 流变测试:聚合物的流变测试是研究聚合物流变行为的重要手段,包括剪切测试、拉伸测试、压缩测试等。

通过流变测试,可以获得聚合物的粘度、弹性模量、屈服点等流变参数,为聚合物工程应用提供重要的数据支持。

聚合物流变学的研究对于聚合物工程应用、生物医学、环境保护等领域都具有重要的意义。

在未来,随着聚合物材料的广泛应用,聚合物流变学的研究也将变得越来越重要。

第二章聚合物之间的相容性

第二章聚合物之间的相容性

高分子领域,即使在均聚物中,亦会有非均相结构存在,均
相体系判定标准:
——如果一种共混物具有类似于均相材料所具有的性能,认为 是具有均相结构的共混物。大多数情况下,,用玻璃化转变温度作
为评定标准,如果两种聚合物共混后,形成的共混物具有单一的
Tg,可认为是均相体系,如形身的Tg峰是基本相同的。
A
9
二、相容性、互溶性与溶混性
1、互容性 ——亦可称为溶解性。具有互溶性的共混物,指达到了分 子程度的混合的共混物。在聚合物共混物中,分子程度的混 合时难以实现的。这概念未得到普遍接受。
2、具有溶混性的共混物,指可形成均相体系的共混物。判据 为具有单一的Tg。溶混性的概念相当于签署相容性概念中 的完全相容。
(1) 极性相匹配原则:两相高分子材料极性相似,有助于混溶。
(2) 表面张力相近原则(胶体化学原则):表面张力相近,易在两 种混合高分子颗粒表面接触处形成较稳定的界面层,从而提 高共混稳定性。
(3) 溶解度参数相近原则(热力学原则):两相高分子共混不同于 高分子溶液。两相共混的目的是取长补短,开发新性能,因 此并不要求两相一定达到分子级的均匀混合,而希望各相保 持各自的特性,一般要求达到微米级的多相结构即可,即所 谓“宏观均相,微观非均相”的分相而又不分离的状态。但 是,为了混合的稳定性,为了提高力学性能,要求两相颗粒 界面之间有一定的微小混溶层。溶解度参数相近有助于稳定 混溶层的形成。
3、相容性 可涵盖溶混性的概念,包含了完全相容、部分相容等情况。
A
10
衡量聚合物相容性的三种定义
(1)热力学角度:指聚合物之间的相互溶解性,
也就是两种聚合物形成均相体系的能力。
(2)相结构的大小:两种聚合物混合时没有相分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

部分相容聚合物共混体系的流变学研究聚合物共混材料的性能不仅与共混体系各组分的物理、化学特性以及组成配比等有关,而且与其内部结构也密切相关,因此,掌握结构与性能的关系并在此基础上通过加工有目的地控制其内部结构是设计高性能材料过程中的关键环节。

在结构与性能关系的研究中,材料的流变性能一直倍受关注,这是因为它不仅能为加工成型提供必要的材料参数,而且还可提供材料内部结构方面的信息。

加工成型的精密化、自动化也迫切要求深入了解动态加工条件下聚合物共混体系的热力学特征和动力学行为。

聚合物加工成型是一个远离平衡热力学的动态过程,这使得在平衡条件下得到的热力学理论不再有效,因此,研究流动条件下共混体系相结构形成和演变的规律,是实现有目的地加工成型的必要条件。

可以看出,对部分相容共混体系的流变性能以及流场影响相行为的研究不仅是多组分、多相聚合物共混体系的流变学、热力学和动力学研究中极具挑战性的课题,而且对聚合物材料的加工成型有着重要的指导意义。

本论文报告了应用小角激光散射仪(SALS)、旋转流变仪结合透射电子显微镜(TEM)对具有低临界共容温度(LCST)相行为的苯乙烯-马来酸酐共聚物(SMA)/聚甲基丙烯酸甲酯(PMMA)共混体系的平衡热力学、粘弹性、相形态、相分离过程以及流场中的相行为进行的系统研究,主要内容如下:1)应用小角激光散射技术测定了SMA/PMMA共混体系的热力学相图并应用Flory-Huggins模型对其进行了分析,得到了该共混体系相互作用参数对温度的关系表达式;应用Helfand等的方法计算得到了不同温度下SMA/PMMA相分离体系的界面张力,发现随着温度的升高,界面张力增加,与不相容体系界面张力对温度的依赖性刚好相反;探索了该共混体系经由亚稳态分裂的相分离过程,并应用Cahn-Hilliard等的理论对相分离的初期、中期和后期阶段
进行了分析。

2)系统研究了不同组成的共混体系在均相区和相分离区的粘弹性质,结果表明,在均相区,不同温度下共混体系的动态模量利用时温叠加规则仅通过水平位移就可以很好地叠加在一起,无论是储能模量还是损耗模量在低频末端均近似地符合经典的低频末端标度关系;而在相分离区,动态模量偏离了经典的低频末端标度关系,其中储能模量的偏离尤为明显,从而导致了时温叠加的“失效”;相应地Han图、vGP图和Cole-Cole图也表现出不同于均相体系的特征;这些特。

相关文档
最新文档