过程控制系统
《过程控制系统》课程简介

过程控制系统
(ProcessContro1System)
总学时:40学时理论40学时
学分:2.5
课程主要内容:
《过程控制系统》课程是电气工程与自动化专业的一门专业主干课程,具有很强的实践性。
主要内容包括单回路控制系统的方案设计、调节参数整定以及控制系统的投运:为提高控制品质或满足特殊操作要求的复杂过程控制系统及应用中的有关问题;对典型案例的学习,掌握对各典型单元操作静、动态特性的分析方法,和与之相匹配的典型控制方案的设计等三大部分。
通过本课程的学习,要使学生在掌握控制理论和过程检测与控制仪表等知识的基础上,用工程处理的方法去解决控制系统的分析、设计与研究方面的问题。
先修课程:自动控制理论、微机原理、过程检测与控制仪表、微机控制等。
适用专业:电气工程与自动化
教材:
邵裕森.过程控制工程.北京:机械工业出版社,2006年1月。
教学弁考书:
[1]金以慧.过程控制.北京:清华大学出版社,1993年4月。
[2]蒋慰孙.过程与控制.北京:化学工业出版社,1996年10月。
[3]邵裕森.过程控制及仪表(修订版).上海:上海交大出版社,1995年3月。
过程控制系统PCS(Process Control System)的介绍及应用

过程控制系统PCS(ProcessContro1System)的介绍及应用过程控制系统(ProcessContro1System,PCS)是在自动化技术的支持下对生产过程进行实时监测、控制和优化的一种系统。
PCS通过传感器、执行器、计算机和网络等技术手段,对现场各种参数进行实时监测、分析和控制,以确保产品质量、提高生产效率和降低成本。
以下是PCS的介绍及应用。
1.过程控制系统的基础功能核心模块:输入模块、控制模块和输出模块这三个模块是过程控制系统的基础。
其中输入模块主要负责采集现场的数据,如温度、压力、流量等;控制模块则对这些数据进行处理、分析,并制定相应的控制策略;输出模块则将控制信号传送给执行器,如阀门、电机等,来实现对生产过程的控制。
2.过程控制系统的应用2.1化工行业化工行业中存在许多高危作业环节,PCS可以帮助企业降低生产事故风险。
例如,作为一个严格遵循生产规范要求的工业领域,PCS能够在化学反应过程中确保反应的安全性,从而防止不必要的人员伤害和财产损失。
3.2石油行业在石油工业中,过程控制系统也发挥着至关重要的作用。
由于石油生产环境复杂,PCS可以通过对石油采集、加工、储存等环节的实时监测,精准掌握各个环节的生产数据,提高生产效率和节约成本。
4.3电力行业电力行业是一个需要高度自动化技术支持的领域,PCS通常被用来监测、控制和优化发电机组的运行状态。
例如,在燃气发电机组中,使用PCS能够实现自动控制温度、压力和电压等参数,以提高发电效率和减少排放。
5.4制药行业制药行业需要严格遵守安全、卫生、环保等法规标准,PCS在制药过程中的应用非常重要。
例如,通过对药品生产过程进行实时监测和控制,PCS能够确保药品的生产量和质量达到最佳效果,同时满足药品的安全标准。
6.5食品行业食品行业也是PCS的一个重要应用领域。
在生产食品过程中,PCS可以对温度、湿度、氧气等多项参数进行实时监测和控制,提高食品的生产效率和质量,并且确保生产过程符合卫生安全标准。
过程控制系统 第1章

1.1控制理论与过程控制系统的发展状况(续)
1970年左右起,为了解决大规模复杂系统的 优化与控制问题,现代控制理论和系统理论相 结合,逐步发展形成了大系统理论 (Mohammad,1983)。
核心思想是系统的分解与协调,多级递阶优化与
控制(Mesarovie,1970)正是应用大系统理论的 典范。 大系统理论仍未突破现代控制理论的基本思想与 框架,除了高维线性系统之外,它对其它复杂系 统仍然束手无策。
③操纵变量:受控制器操 纵的用以克服干扰的影 响,使被控变量保持设 定值的物料量或能量 (流过控制阀介质的流 量)。 ④扰动:除操纵变量外, 作用于被控过程并引起 被控变量变化的因素 (使被控变量偏离
图7-4 锅炉汽包水位控制
操纵变量:水的流量 扰动:水压力、蒸汽压力
⑤设定值:工艺参数 所要求保持的数值 ⑥偏差:被控变量设 定值与实际值之差
蒸汽 汽 包
给水
操作人员所进行的工作有三方面:
①检测
用眼睛观察玻璃管液位计液位的高 低,并通过神经系统告诉大脑. 大脑根据眼睛看到的液位高度 , 加以思考分析 , 然后根据操作经 验,经思考决策后发出命令。 根据大脑发出的命令 , 通过双手去 改变阀门开度.
②运算、命令 ③执行
2 自动控制
自动化装置的三个部分分别是 : ①测量元件与变送器
控制变压器活动触点的位 置即改变了输入电压,则 通过电阻丝的电流将产生 变化,使恒温箱得到不同 的温度。 被控变量是恒温箱的温度, 经热电偶测量并与设定值 比较后,其偏差经过放大 器放大,控制电动机的转 向,然后经过传动装置, 移动变压器的活动触点位 置。结果使偏差减少,直 到温度达到给定值为止。
随动控制系统
1.2.4 控制系统的分类
过程控制系统 (2)

过程控制系统简介过程控制系统(Process Control System)是一种用于监控和控制生产过程的系统。
它由多个硬件设备和软件组成,能够实时监测各种传感器和执行器的状态,并根据设定的规则和算法进行自动控制。
过程控制系统广泛应用于工业生产、能源管理、环境监测等领域,能够提高生产效率、降低能源消耗、提升产品质量和安全性。
架构过程控制系统通常由以下几个组件构成:1. 传感器传感器是过程控制系统的输入设备,用于实时监测和采集生产过程中的各种数据。
常见的传感器包括温度传感器、压力传感器、流量传感器等。
这些传感器将检测到的数据传输给控制系统进行处理和分析。
2. 执行器执行器是过程控制系统的输出设备,用于根据系统的控制策略执行操作。
例如,根据温度传感器的数据,过程控制系统可以控制执行器来调节加热或冷却设备的操作,以维持所需的温度。
3. 控制器控制器是过程控制系统的核心组件,负责接收传感器数据、计算控制策略,并通过执行器来实现控制。
控制器可以是硬件控制器,如可编程逻辑控制器(PLC),也可以是软件控制器,如基于计算机的控制系统。
4. 监视界面监视界面是过程控制系统的用户界面,用于显示实时数据、报警信息和操作状态,方便操作人员进行监控和操作。
监视界面通常具有图形化界面,方便用户进行数据浏览、参数调整和报表生成等操作。
5. 数据存储与分析过程控制系统还需要具备数据存储和分析功能,以便后续的监测和分析。
数据存储可以使用数据库或云存储等方式,分析可以使用数据挖掘、统计学等方法,以提供对生产过程的优化建议。
工作原理过程控制系统的工作原理可分为以下几个步骤:1.传感器实时采集生产过程中的数据,如温度、压力、流量等。
2.数据被传输到控制器,控制器将采集到的数据与设定的控制规则进行比较,并计算出相应的控制量。
3.控制器通过执行器来实现控制操作,例如调节温度、打开或关闭阀门等。
4.控制器还会将数据传输到监视界面,以便操作人员实时监测生产过程,并及时处理异常情况。
过程控制系统概述

过程控制系统概述杨峰电信学院06自动化3班学号:40604010321所谓过程控制(Process Control)是指根据工业生产过程的特点,采用测量仪表、执行机构和计算机等自动化工具,应用控制理论,设计工业生产过程控制系统,实现工业生产过程自动化。
一﹑过程控制的特点随着生产过程的连续化﹑大型化和不断强化, 随着对过程内在规律的进一步了解,以及仪表﹑计算机技术的不断发展, 生产过程控制技术近年来发展异常迅速.所谓生产过程自动化, 一般指工业生产中(如石油﹑化工﹑冶金﹑炼焦﹑造纸﹑建材﹑陶瓷及热力发电等)连续的或按一定程序周期进行的生产过程的自动控制.凡是采用模拟或数字控制方式对生产过程的某一或某些物理参数(如温度﹑压力﹑流量等)进行的自动控制统称为过程控制.生产过程的自动控制, 一般要求保持过程进行中的有关参数为一定值或按一定规律变化. 由于被控参数不但受内﹑外界各种条件的影响, 而且各参数之间也会相互影响, 这就给对某些参数进行自动控制增加了复杂性和困难性. 除此之外, 过程控制尚有如下一些特点:1. 被控对象的多样性.对生产过程进行有效的控制, 首先得认识被控对象的行为特征, 并用数学模型给以表征, 这叫对象特性的辨识. 由于被控对象多样性这一特点, 就给辨识对象特性带来一定的困难.2. 被控对象存在滞后.由于生产过程大多在比较庞大的设备内进行, 对象的储存能力大, 惯性也大. 在热工生产过程中, 内部介质的流动和热量转移都存在一定的阻力, 因此对象一般均存在滞后性. 由自动控制理论可知, 如系统中某一环节具有较大的滞后特性, 将对系统的稳定性和动态质量指标带来不利的影响, 增加控制的难度.3. 被控对象一般具有非线性特点.当被控对象具有的非线性特性较明显而不能忽略不计时, 系统为非线性系统, 必需用非线性理论来设计控制系统, 设计的难度较高. 如将具有明显的非线性特性的被控对象经线性化处理后近似成线性对象, 用线性理论来设计控制系统, 由于被控对象的动态特性有明显的差别, 难以达到理想的控制目的.4. 控制系统比较复杂.控制系统的复杂性表现之一是其运行现场具有较多的干扰因素. 基于生产安全上的考虑, 应使控制系统具有很高的可靠性.由于以上特点, 要完全通过理论计算进行系统设计与控制器的参数整定至今乃存在相当的困难, 一般是通过理论计算与现场调整的方法, 达到过程控制的目的.二﹑过程控制系统的组成过程控制系统的组成, 一般可用如下框图表示被控参数(变量)y(t ) ;控制(操纵)参数(变量)q(t) ;扰动量f(t) ;给定值r(t) ;当前值z(t); 偏差e(t) ;控制作用u(t)三、过程控制系统的分类按系统的结构特点来分反馈控制系统,前馈控制系统,复合控制系统(前馈-反馈控制系统)按给定值信号的特点来分定值控制系统,随动控制系统1.反馈控制系统偏差值是控制的依据,最后达到减小或消除偏差的目的。
过程控制系统基础知识

第一节过程控制发展概况过程控制通常是指石油、化工、电力、冶金、轻工、纺织、建材、原子能等工业部门生产过程的自动化。
40年代以后,工业生产过程自动化技术发展很快。
尤其是近些年来,过程控制技术发展更为迅猛。
纵观过程控制的发展历史,大致经历了如下几个阶段:50年代前后,一些工厂企业的生产过程实现了仪表化和局部自动化。
这是过程控制发展的第一个阶段。
这个阶段的主要特点是:过程检测控制仪表普遍采用基地式仪表和部分单元组合式仪表(多数是气动仪表),过程控制系统结构大多数是单输入、单输出系统;被控参效主要是温度、压力、流量和液位四种参数。
控制的目的是保持这些过程参数的稳定,消除或减小主要扰动对生产过程的影响;过程控制理论是以频率法和根轨迹法为主体的经典控制理论.主要解决单输人、单输出的定位控制系统约分析和综合问题。
自60年代来,随着工业生产酌不断发展,对过程控制提出了新的要求:随着电子技术的迅速发展,也为自动化技术工具的完善创造了条件.从此开始丁过程控制的第二个阶段。
在仪表方面,开始大量采用气动和电动单元组合仪表。
在过程控制理论方面,除了仍然采用经典控制理论解决实际工业生产过程中遇到的问题外.现代控制理论得到应用,为实现高水平的过程控制奠定了理论基础.从而过程控制由单变量系统转向多变量系统。
但是。
由于过程机理复杂,过程建模困难等等原因,现代控制理论一时还难以应用于实际工业生产过程。
70年代以来.过程控制得到很大发展。
随着现代工业生产的迅猛发展.随着大规模集成电路制造成功与微处理器的相继问世.使功能丰富的计算机的可靠性大大提高、性能价格比又大大提高、尤其是工业控制机采用了冗余技术和软硬件的自诊断措施.使其满足工业控制的应用要求。
随着微型计算机的开发、应用和普及.使生产过程自动化的发展达到了一个新的水平。
过程控制发展到现代过程控制的新阶段:计算机时代。
这是过程控制发展的第三个阶段。
这一阶段纳主要特点是:对全工厂或整个工艺流程的集中控制、应用计算机系统进行多参数综合控制,或者由多台计算机对生产过程进行控制和经营管理。
过程控制系统教案

过程控制系统教案一、教学目标1. 理解过程控制系统的概念及其重要性。
2. 掌握过程控制系统的分类和基本组成。
3. 了解过程控制系统的性能指标和应用领域。
4. 学会使用过程控制系统的基本工具和软件。
二、教学内容1. 过程控制系统的概念及其重要性1.1 定义及作用1.2 过程控制系统与自动控制系统的区别2. 过程控制系统的分类和基本组成2.1 连续过程控制系统2.2 离散过程控制系统2.3 开环控制系统与闭环控制系统2.4 过程控制系统的硬件和软件组成三、教学方法1. 讲授法:讲解过程控制系统的概念、分类和基本组成。
2. 案例分析法:分析实际应用中的过程控制系统案例,加深学生对过程控制系统的理解。
3. 实验法:安排实验室实践,让学生动手操作过程控制系统。
4. 小组讨论法:分组讨论过程控制系统的设计和应用,提高学生的团队协作能力。
四、教学资源1. 教材:过程控制系统相关教材。
2. 课件:制作精美的课件,辅助讲解过程控制系统相关知识。
3. 实验室设备:供学生进行实验操作的过程控制系统设备。
4. 网络资源:查找与过程控制系统相关的视频、案例等资源,用于课堂拓展。
五、教学评价1. 平时成绩:考察学生的课堂表现、发言和作业完成情况。
2. 实验报告:评估学生在实验室实践过程中的操作能力和分析问题能力。
4. 期末考试:设置相关试题,测试学生对过程控制系统的理解和掌握程度。
六、教学安排1. 课时:本课程共计32课时,包括理论讲授16课时,实验操作16课时。
2. 授课计划:第1-8课时:讲解过程控制系统的概念、分类和基本组成。
第9-16课时:分析过程控制系统的性能指标和应用领域。
第17-24课时:学习过程控制系统的设计方法和工具。
第25-32课时:实验室实践和案例分析。
七、教学注意事项1. 确保学生掌握基本概念和原理,避免过于深入的技术细节。
2. 注重理论与实践相结合,让学生在实际操作中巩固知识。
3. 鼓励学生提问和参与讨论,提高课堂互动性。
过程控制系统设计

❖ 具体步骤:
1.根据工艺要求和控制目标确定系统变量 2.建立数学模型 3.确定控制方案 4.选择硬件设备 5.选择控制算法,进行控制器设计 6.软件设计
设备安装、调试与整定、运行
❖ 3-2 确定控制变量与控制方案 根据稳定性、安全性和经济性原则确定控制目标
❖ 1.被控变量 在定性地确定目标以后,需要用工业过程的被控变 量来定量地表示控制目标 被控变量也是工业过程的输出变量
❖ 检测部件一般宜采用定型产品,设计过程控制系统 时,根据控制方案选择测量仪表和传感器 选型原则:
❖ (1) 可靠性原则 可靠性是指产品在一定的条件下,能长期而稳定地 完成规定功能的能力。 是测量仪表和传感器的最重要选型原则。
❖ (2) 实用性原则 完成具体功能要求的能力和水平。根据工艺要求
考虑实用性,既要保证功能的实现,又应考虑经济 性,并非功能越强越好。
❖
模拟量控制回路较少,开关量较多的过程控制系统 宜采用PLC控制。
❖ 测量仪表和传感器的选型原则
一个简单的控制系统就是由被控对象、检测部件( 测量仪表和传感器)和执行机构组成
❖ 自动控制系统中检测部件的作用相当于人的感觉器 官,它直接感受被测参数的变化,提取被测信息, 转换成标准信号供显示和作为控制的依据
2.输入变量
有两类:
控制(或操作)变量,扰动变量。
研究调节阀的流量特性对于选用调节阀有重要意义。
研究调节阀的流量特性对于选用调节阀有重要意义。
②旁路阀逐渐开启,旁路流量增加,则B值减小,可调比下降;
(2)实际可调比
在实际使用中,调节阀前后的压降是随管道阻力的变化而改的。
把控制器比喻为自动调节系统中的“头脑”,则调节阀就是自动调节系统的“手脚”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《控制系统》课程设计课题:加热炉温度控制系统系别:电气与电子工程系专业:自动化姓名:学号:*******(44、32、11)指导教师河南城建学院2010年12月29日成绩评定·一、指导教师评语(根据学生设计报告质量、答辩情况及其平时表现综合评定)。
二、评分(按下表要求评定)课程设计成绩评定一、设计目的:通过对一个使用控制系统的设计,综合运用科学理论知识,提高工程意识和实践技能,使学生获得控制技术工程的基本训练,培养学生理论联系实际、分析解决实际问题的初步应用能力。
二、设计要求:设计一个加热炉温度控制系统,确定系统设计方案,画出系统框图,完成元器件的选择和调节器参数整定。
三、总体设计:1.控制系统的设计思想串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。
前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。
整个系统包括两个控制回路,主回路和副回路。
副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。
2 .加热炉控制系统原理加热炉控制系统以炉内温度为主被控对象,燃料油流量为副被控对象的串级控制系统。
该控制系统的副回路由燃料油流量控制回路组成,因此,当扰动来自燃料油上游侧的压力波动时,因扰动进入副回路,所以,能迅速克服该扰动的影响。
由于炉内温度的控制不是单一因素所能实现的,所以,还要对空气的流量进行控制。
空气的控制直接影响炉内燃烧的状况,不仅影响炉温,还直接影响了能源的利用率和环境的污染。
所以,对空气的控制很有必要,其原理和燃料控制相同。
图2燃料串级控制系统流程3.在考虑燃料、空气流量比例自动控制系统考虑到空气、燃料的比例合理性,基于各方面因素的考虑,该设计只针对燃料、空气流量比例自动控制系统做以下说明。
其控制系统流程图如下图所示。
图3交叉限制式串级燃烧自动系统交叉限制式串级燃烧自动系统的工作原理,是利用最大、最小值选择器,当炉温低于设定值时,使系统为空气先行方式,而炉温高于设定值则为燃料先行方式,他可有效防止黑烟的产生。
既节约能源减少污染,有保证了生产质量。
4. 调节规律的确定和主、副调节器的选用(1)调节规律的确定在串级控制系统中,主,副调节器起的作用不同。
主调节器起定值控制作用,副调节器起随动控制作用,这是选择调节器规律的基本出发点。
主被控参数是工艺操作的主要指标,允许波动范围很小,一般要求无静差。
又由于温度的控制有明显的滞后性,因此,主调节器应选PID调节规律。
副被控参数的设置是为了克服主要干扰对主参数的影响,因而可以允许在一定范围的变化,并允许有静差。
为此,副调节器选择P调节规律。
(2)主、副调节器的选用DDZ-III型仪表采用了集成电路和安全火花型防爆结构,提高了仪表精度、仪表可靠性和安全性,适应了大型化工厂、炼油厂的防爆要求。
III型仪表具有以下主要特点:(1)采用国际电工委员会(IEC)推荐的统一信号标准,现场传输信号为DC4~20mA,控制室联络信号为DC1~5V,信号电流与电压的转换电阻为250 。
(2)广泛采用集成电路,仪表的电路简化、精度提高、可靠性提高、维修工作量减少。
(3)整套仪表可构成安全火花型防爆系统。
DDZ-III型仪表室按国家防爆规程进行设计的,而且增加了安全栅,实现了控制室与危险场所之间的能量限制于隔离,使仪表能在危险的场所中使用。
DDZ-III型PID调节器的结构框图如图2-1。
主要由输入电路、给定电路、PID运算电路、手动与自动切换电路、输出电路和指示电路组成。
调节器接收变送器送来的测量信号(DC4~20mA或DC1~5V),在输入电路中与给定信号进行比较,得出偏差信号,然后在PD与PI电路中进行PID运算,最后由输出电路转换为4~20mA直流电流输出。
图2-4给出了温度变送器的原理框图,虽然温度变送器有多个品种、规格,以配合不同的传感元件和不同的量程需要,但他们的结构基本相同。
本设计采用DDZ-III型热电偶温度变送器图4 DDZ-III型调节器结构框图5.对主、副电路检测变送器的确定(1)温度检测元件热电偶作为温度传感元件,能将温度信号转换成电动势(mV)信号,配以测量毫伏的指示仪表或变送器可以实现温度的测量指示或温度信号的转换。
具有稳定、复现性好、体积小、响应时间较小等优点、热电偶一般用于500°C以上的高温,可以在1600°C高温下长期使用。
热电阻也可以作为温度传感元件。
大多数电阻的阻值随温度变化而变化,如果某材料具备电阻温度系数大、电阻率大、化学及物理性能稳定、电阻与温度的关系接近线性等条件,就可以作为温度传感元件用来测温,称为热电阻。
热电阻分为金属热电阻和半导体热敏电阻两类。
大多数金属热电阻的阻值随其温度升高而增加,而大多数半导体热敏电阻的阻值随温度升高而减少。
在使用热电偶时,由于冷端暴露在空气中,受周围环境温度波动的影响,且距热源较近,其温度波动也较大,给测量带来误差,为了降低这一影响,通常用补偿导线作为热电偶的连接导线。
补偿导线的作用就是将热电偶的冷端延长到距离热源较远、温度较稳定的地方。
补偿导线的作用如图2-2所示。
用补偿导线将热电偶的冷端延长到温度比较稳定的地方后,并没有完全解决冷端温度补偿问题,为此还要采取进一步的补偿措施。
具体的方法有:查表法、仪表零点调整法、冰浴法、补偿电桥法以及半导体PN结补偿法。
采用热电阻法测量温度时,一般将电阻测温信号通过电桥转换成电压,当热电阻的连接导线很长时,导线电阻对电桥的影响不容忽视。
为了消除导线电阻带来的测量误差,不管热电阻和测量一边之间的距离远近,必须使导线电阻的阻值图2—5 补偿导线的作用(2)温度变送器检测信号要进入控制系统,必须符合控制系统的信号标准。
变送器的任务就是将检测信号转换成标准信号输出。
因此,热电偶和热电阻的输出信号必须经温度变送器转换成标准信号后,才能进入控制系统,与调节器等其他仪表配合工作。
传感元件输入电路放大电路反馈电路电量输出电流+-图2—6 温度变送器原理框图6. 主、副调节器正、反作用方式和调节阀的确定(1) 主、副调节器正、反作用方式在串级控制系统中,主、副调节器正、反作用方式的选择原则是使整个系统构成负反馈。
串级控制系统中,主、副调节器的正反作用的选择方法是:首先根据工艺要求决定调节阀的气开、气关形式,并决定副调节器的正反作用;然后再依据主、副过程的正、反形式最终确定主调节器的正、反作用方式。
从生产工艺安全出发,燃料油调节阀选用气开式,即一旦出现故障或气源断气,调节阀应完全关闭,切断燃料油进入加热炉,确保设备安全。
对于副调节器,当炉膛温度升高时,测量信号增大、为保证副回路为负反馈,此时调节阀应关小,要求副调节器输出信号减小。
按照测量信号增大,输出信号减小的原则要求,副调节器应为反作用方式。
对于主调节器,当副参数升高时,主参数也升高,故主调节器应为反作用方式。
(2)调节阀的确定由前文得,从生产工艺安全出发,燃料油调节阀选用气开式,即一旦出现故障或气源断气,调节阀应完全关闭,切断燃料油进入加热炉,确保设备安全为了保证。
调节阀按其工作能源形式可分为气动、电动和液动三类。
气动调节阀用压缩空气作为工作能源,主要特点是能在易燃易爆环境中工作,广泛地应用于化工、炼油等生产过程中;电动调节阀用电源工作,其特点是能源取用方便,信号传递迅速,但难以在易燃易爆环境中工作;液动调节阀用液压推动,推力很大,一般生产过程中很少使用。
故本设计采用了气动调节阀,且为气开形7. 控制回路的参数选择副回路的选择是确定副回路的被控参数,串级系统的特点主要来源于它的副回路,副回路的参数选择一般应遵行下面几个原则:(1)主、副参数有对应关系。
即通过调整副参数能有效地影响主参数,副参数的变化应反映主参数的变化趋势、并在很大程度上影响主参数;其次,选择的副参数必须是物理上可测的;另外,由副参数所构成的副回路,调节通道尽可能短,调节过程时间常数不能太大,时间滞后小,以便使等效过程时间常数显著减小,提高整个系统的工作频率,加快控制过程反应速度,改善系统控制品质。
(2)副参数的选择必须使副回路包含变化剧烈的主要干扰,并尽可能多包含一些干扰。
在选择副参数时一定要把主要干扰包含在副回路中,并力求把更多的干扰包含在副回路中,但也不是副回路包含的干扰越多越好,因为副回路包含的干扰越多,其控制通道时间常数必然越大,响应速度变慢,副回路快速克服干扰的能力将受到影响。
所以在选择副参数时,应在副回路反应灵敏与包含较多干扰之间进行合理的平衡。
(3)副参数的选择应考虑主、副回路中控制过程的时间常数的匹配,以防“共振”的发生。
在串级控制系统中,主、副回路中控制过程的时间常数不能太接近,一方面是为了保证副回路具有较快的反应能力,另一方面由于在串级控制系统中,主、副会理密切相关,如果主、副回路中的时间常数比较接近,系统一旦受到干扰,就有可能产生“共振”,使控制质量下降,甚至使系统因震荡而无法工作。
在选择副参数时,应注意使主、副回路中控制过程的时间常数之比为3~10,以减少主、副回路的动态联系、避免“共振”。
四、设计总结:通过这次课程设计我们深刻的认识到:自己在过程控制系统设计的知识远远不够,以前学习过的理论掌握的并不牢固,理论与实践结合的面和点的错位等等。
因此我们经过复习课本知识和查阅资料,对过程控制系统的设计有了更深刻的理解。
在设计过程中,从方案设计到方案确定,都经过了严谨的思考,回路的设计,调节器的正反作用的确定,被控参数的选择,使系统能够达到设计目的。
在设计中,遇到了许多困难,老师对该论文从开始的题目介绍,构思到最后定稿的各个环节给予细心指引与教导, 同时,其他的同学,在设计的过程中曾耐心给与帮助,使我得以最终完成毕业论文设计。
同时,通过这次设计,我对过程控制系统在工业中的运用有了深入的认识,对过程控制系统设计步骤、思路、有一定的了解与认识。
我学到了控制系统的设计方法和步骤,拓展了知识面,了解了工业工程中控制系统起到的重要作用。
参考文献[1] 张根宝.工业自动化仪表与过程控制.西北工业大学出版社.2003.8[2] 潘永湘,杨延西,赵跃.过程控制与自动化仪表[M]. 机械工业出版社. 2008.5[3] 侯志林. [M].过程控制与自动化仪表. 机械工业出版社.2000.1[4] 俞金寿,孙自强.过程控制系统. 机械工业出版社.2008.8[5] 施仁,刘文江,郑辑光. 自动化仪表与过程控制.电子工业出版社.2003.3[6] 中国自动化学会ASEA办公室组编. 冶金工业自动化.机械工业出版社,2007.3[7] 周庆海,翁维勤合编.过程控制系统工程设计,化学工业出版社,1992.12第1版[8] GB 2625-81 过程检测和控制流程图用图形符号和文字代号[9] GBJ93-86 工业自动化仪表工程施工及验收规范[10] 胡寿松.自动控制原理[M],北京:科学出版社,2001,1-3.[11] 朱瑞、张鹏等.自动温度控制系统[D],济南山东大学,2006.[12] 刘迎春.传感器原理设计与应用[M],长沙:国防科技大学出版社,1997.[13] 李亚芬.自动化仪表与过程控制,北京电子工业出版社,2003.3.[14] 中国冶金建设协会编,钢铁企业过程检测和控制自动化设计手册:北京冶金工业出版社, 2002.3[15] 马竹梧.冶金工业自动化,机械工业出版社,2007.03。