纪禄平-计算机组成原理(第四版)PPT-4-1存储子系统-概述
纪禄平-计算机组成原理(第四版)PPT-4-6存储子系统-三级存储体系

虚页号 0000 有效位 1 实页号 0101 … …
0001 0010 …
1 0 …
1011 0010 …
… … …
←页表项 ←页表项 ←页表项
定位Cache的分组:直接映射;
定位Cache数据块:全相联映射;
→直接映射和全相联映射的折衷 速度快、硬件简单、成本低、易实现 (图4-49示)
10/24
0组
标记
0块
0块
标记
标记 标记 … 标记 标记 标记
1块
2块 3块 … 12块 13块 14块
1块
… 7块 8块 9块 … 15块
主存 0组 地址
255组
据此判断所在内存块 是否已映射到缓存中
图4-49 组相联映射 Na=20,每块512字节
11/24
[ 举例 ] 某计算机的 Cache 共有 16块,采用 2路 - 组相联映 射方式 ( 即每组包括 2 块 ) 。存储器按字节编址,每个主 存块大小为 32字节,那么 129号主存单元所在的主存块 应装入到的Cache组号是( ):
5/24
(1)直接映射
Cache:只分块、不分组 主存:既分块、也分组(每组的块数 = Cache块数)
[映射规则]主存的每一个数据块,只能映射到 与其组内序号相同的Cache数据块位置。
如果:K为Cache的块序号,J为主存块的序号,C为 Cache块号的位数。
则 K=J mod 2c =J mod 24
2046块
2047块
主存
将主存块的块号与Cache 块的标记字段比较,判 断主存块是否已映射到 缓存中
计算机组成原理(第四版)PPT课件

-
4
2.5 术语:存储元、存储单元、存储体、存储 单元地址,有何联系和区别?
存储元:存储一位二进制信息的基本单元电路。
存储单元:由若干存储元组成。一台机器的所有存储 单元长度相同,一般由8的整数倍个存储元构成。
存储体:是存储单元的集合,它由许多存储单元组成, 用来存储大量的数据和程序。
存储器单元地址:计算机在存取数据时,以存储单元 为单位进行存取。为区别不同单元,给每个存储单 元赋予地址,每个存储单元都有一条唯一的字线与 存储单元地址编码对应。
总称为
。
解:记录面号(磁头号)、磁道号(柱面号)、扇区号、 记录块、道密度、位密度、存储密度。
-
25
2.19 某磁盘组有4个盘片,5个记录面。每个记录面的内磁 道直径为22cm,外磁道直径为33cm,最大位密度为1600 位/cm,道密度为80道/cm,转速为3600r/min。求: (1)磁盘组的总存储容量是多少位(非格式化容量)? (2)最大数据传输率是每秒多少字节? (3)请提供一个表示磁盘信息地址的方案。
-
21
2.17 欲将10011101写入磁表面存储器中:
(1) 分别画出归零制、不归零制和调频制的写入电流 波形。
(2)改进不归零制(NRZl)的记录原则是见“1”就翻。 即当记录“1”时写电流要改变方向;记录“0”时不 改变方向。画出它的电流波。
(3)改进调频制(MFM)与调频制方式区别在于:FM在 信息元交界处写电流总要改变一次方向;而MFM仅 当连续记录两个“0”时,信息交界处翻转一次;其
解:该机的地址码为18b,字长8b,故该机的主存容 量为218X8b=28 X 210 X 8 b= 256KB,
(1)若每个模板块为32K X 8b,
纪禄平-计算机组成原理(第4版)3(5)-CPU子系统-MIPS-4-多周期-3-控制系统PPT课件

(组合逻辑与微程序)
-
1
※多周期CPU所需的控制信号
PCSrc[1:0]
01 00 10
PCWrite
PC
IorD MemWrite
存储器
0 1
Addr
RD
rst
WD
MemRead
IRWrite
<<2
U
RegDst RegWrite
RN1 RD1 A
operation 0 1
F
+4 00
MDR
1 0
WD
RD2 B
01 10
zero
MemtoReg
E
<<2
extend
11 AluSrc_B[1:0]
多路选择器: 4个+2个(2位/个); ALU: 1组(4位); 扩展器: 1个; 存储器: 2个; 寄存器堆: 1个; 专用寄存器: 2个; 共需13种控制信号, 共18位。
SC
Operation extend RegWrite IRWrite MemRead MemWrite PCWrite AluSrc_B AluSrc_A MemtoReg RegDst IorD PCSrc
2 1111 2 111 111 4 4
→00B08001H
-
2
24
❸ 整合所有指令的微程序并存储到Control Store √ T0中取指操作对应的微指令被全部指令共享 √各指令的其余微指令按顺序存储 √各指令的最末一条微指令中的顺序控制字段SC=10
写出各位的输出逻辑式:
PCsrc[1]=j_flag PCsrc[0]=beq_flag·zero PCWrite=FT_flag+beq_flag·zero+j_flag
2024版计算机操作系统第四版ppt课件

分布式处理系统的应用
如云计算、大数据处理等。
分布式文件系统与数据库系统
分布式文件系统的基本概念
01
将文件分布在多个计算机节点上,通过网络进行访问和
管理。
分布式数据库系统的基本概念
02
将数据库分布在多个计算机节点上,通过网络进行访问
和管理,同时保持数据的一致性和完整性。
分布式文件系统和数据库系统的关键技术
文件共享是指多个用户或进程可以同时访问和使用同一文件。
文件保护
文件保护是指操作系统采取一定的措施,防止文件被非法访问、修 改或破坏。
共享与保护的实现方法
操作系统可以通过访问控制列表(ACL)、权限位和加密等机制来 实现文件的共享和保护。
文件操作及实现方法
文件操作
文件操作包括文件的创建、打开、读/写、定位和关闭等。
调度算法的性能评价指标
包括系统吞吐量、处理机利用率、周转时间、响应时间等。
典型的多处理机调度算法
如最短作业优先算法、最高响应比优先算法等。
分布式处理系统的特点与分类
分布式处理系统的特点
自治性、并发性、资源共享、透 明性等。
分布式处理系统的分类
根据系统中计算机的类型和互连 方式,可分为同构型分布式系统 和异构型分布式系统。
并行处理系统的基本结构 包括多个处理单元、互连网络、存储器等部件,通过相互 协作完成并行任务。
并行处理系统的分类 根据处理单元的数量和互连方式,可分为共享内存系统和 分布式内存系统。
多处理机调度算法及性能评价
多处理机调度算法的种类
包括静态调度算法和动态调度算法,其中动态调度算法又可分为集中式调度和分布式调度。
进程调度算法的实现需要考虑系统 效率、公平性和实时性等因素。
2024版《计算机组成原理》ppt课件

《计算机组成原理》ppt课件目录•计算机系统概述•数字逻辑基础•计算机各部件的功能和组成•指令系统•CPU的结构和功能•存储器的层次结构•计算机组成原理的应用和发展01计算机系统概述Part计算机的发展历程第一代计算机(1946-1957)电子管时代,采用电子管作为基本元件,体积大、功耗高、可靠性差。
第二代计算机(1958-1964)晶体管时代,采用晶体管作为基本元件,体积减小、功耗降低、可靠性提高。
第三代计算机(1965-1970)集成电路时代,采用中小规模集成电路,使得计算机体积更小、功耗更低、可靠性更高。
第四代计算机(1971年至今)大规模和超大规模集成电路时代,计算机性能得到极大提升,应用领域不断扩展。
计算机系统的层次结构微程序机器级微指令由硬件直接执行,微程序由微指令构成,用于描述机器指令。
高级语言级用高级语言编写程序,通过编译或解释程序翻译成机器语言程序或汇编语言程序。
传统机器级用微程序解释机器指令系统,提供传统机器级虚拟机器。
汇编语言级用汇编语言编写程序,通过汇编程序翻译成机器语言程序。
操作系统级通过系统调用实现操作系统功能,提供扩展机器。
计算机的性能指标机器字长指CPU一次能处理数据的位数,通常与CPU的寄存器位数有关。
字长越长,数的表示范围越大,精度也越高。
存储容量包括主存容量和辅存容量。
主存容量通常以字节为单位,辅存容量通常以位为单位。
存储容量越大,系统能存储的信息就越多。
运算速度用每秒钟所能执行的指令条数来表示,单位通常用MIPS(百万条指令/秒)。
运算速度越快,系统处理任务的能力越强。
02数字逻辑基础Part数制与编码数制的基本概念介绍二进制、十进制、十六进制等数制的基本概念及转换方法。
编码方式详细阐述原码、反码、补码等编码方式及其在计算机中的应用。
数的定点与浮点表示解释定点数与浮点数的表示方法,包括整数和实数的表示。
1 2 3引入逻辑变量和逻辑函数的概念,为后续的逻辑运算打下基础。
纪禄平-计算机组成原理PPT(第4版)3(1)-CPU子系统-概述

✓处理指令-控制指令的执行顺序; ✓执行操作-产生控制信号控制部件工作; ✓控制时间-控制各步操作的时序; ✓数据运算-算术和逻辑运算;
2、执行指令的流程
✓读取指令-从存储器中读取; ✓指令译码-通过控制器进行、产生控制信号; ✓指令执行-寻址、取数、运算; ✓后续工作-保存结果、响应外部请求等;
9
⑤程序状态字寄存器(PSW)
[主要用途] 仅1个,记录现行程序的运行状态和程序的工作模式。
❖ PSW-特征位 也叫标志位,反映CPU的当前状态。 指令执行时,根据情况自动设置这些特征位,作为后 续操作的判断依据,通常有5类:
进位 溢出 零值
P
…
自动设置(具备该特征,就设置该标志位=1)
10
❖ PSW-编程设定位
PSW中某些位或字段可通过程序来设定,以决定程 序的调试、对中断的响应、程序的运行模式等。
跟踪位
T
允许中断
I
程序优 先级P
运行模式
⑥地址寄存器(MAR)
[主要用途] 只有1个,读写存储器时,先要定位存储单元,因此 设置MAR来存放目标单元的地址码。 先将有效地址送入MAR,再启动后续的读写操作。
数据1 数据0
栈底
堆栈(存储器)
12
4、控制器
[主要作用] 根据指令、时钟信号、外部信号等信息,产生各种 控制信号(微命令),以便控制各种功能部件协同工 作,完成指令的功能。
指令代码
控制单元
时序信号 状态信号
各种控制信号
根据产生微命令的方式,有两类控制单元:
①组合逻辑控制器 组合逻辑硬件电路→控制信号
第3章 CPU子系统
※本章主要介绍:
功能部件
计算机组成原理第04章 存储子系统

4.2 半导体存储原理及存储芯片
4.2.1 双极型存储单元与芯片 1. TTL型存储单元举例 ·保持 字线Z为高电平3伏,而位线 W 、W均 为1.6伏。则D1与D2均处于反偏状态而截止, W 和 W 这一对位线与双稳态电路隔离不通,T1、 T2通过交叉反馈维持原态不变。
4.2 半导体存储原理及存储芯片
4.2 半导体存储原理及存储芯片
4.2.1 双极型存储单元与芯片 1. TTL型存储单元举例 ·写入 字线Z加负脉冲,其电平从3伏下降 至0.3伏。 写0 位线W电平上升至高电平3伏,而 W 维 持1.6伏不变。二极管D2通导,写入电流从W 经D2流入T1基极,使T1通导,经交叉反馈使 T2截止。
4.2 半导体存储原理及存储芯片
4.2.3 动态MOS存储单元与芯片 1. 动态MOS四管存储单元 ·暂存信息 字线Z加低电平,门管T3与T4断开,基本上 无放电回路,仅存在泄漏电流,信息可暂存 数毫秒。
4.1 概述
4.1.1 存储系统的层次结构 对存储器的最基本要求是:存储容量大、存 取速度快、成本价格低。在同一存储器中通 常难以同时满足这些要求。解决方法: ·改进制造工艺,寻求新的存储机理,以提 高存储器的性能 ·将整个存储系统由几个层次组成。经过合 理的搭配组织,对用户来说,整个存储系统 能提供足够大的存储容量和较快的有效速度, 这基于程序访问的局部性原理。
4.2 半导体存储原理及存储芯片
4.2.2 静态MOS存储单元与芯片 2. 静态MOS存储芯片举例 Intel 2114
4.2 半导体存储原理及存储芯片
4.2.3 动态MOS存储单元与芯片 1. 动态MOS四管存储单元 依靠T1与T2的栅极电容存储电荷来存储信息 ·若C1充电至高电平使T1通导,而C2放电至 低电平使T2截止,存入信息为0; ·若C1放电至低电平使T1截止,而C2充电至 高电平使T2通导,存入信息为1。
计算机组成原理ppt文档

⒍性能价格比C/S
C是指存储器价格: S是存储器的总容量。
4.1.4存储器系统的层次结构 存储大量数据的传统办法是采用如图4-3所示的层次存储结构。
⑴Cache-M•M层次 ⑵M•M-A•M层次
4.2 半导体存储器
半导体读写存储器简称RWM,也称为RAM。具有体积小、速度 快等到优点,按不同 的工艺半导体RAM分为双极型和MOS型 RAM两大类,主要介绍MOS型RAM。
4.2.1 半导体存储器的分类
1
1.RAM
由于随机存取存储器可读可写, 有时它们又被称为可读写存储器。 随机存取存储器分为三类:静态 RAM、动态RAM和非易失性RAM
4.1.3 存储器的主要性能指标
⒈存储容量S
存储容量:主存所能容纳的二进制信息总量。 对于字编址的计算机以字数与字长的乘积来表示容量。 例:某计算机的容量为64K16,表示它有64K个字,字长为16位。 若用字节表示,则可记为128KB。 1K=210=1024 1M=210K=220=1 048 576 1G= 210M=220K=230=1 073 741 824 1T=210G= 220M=230K=240=1 099 511 627 776
Ⅱ 是存储容量逐渐增大。
寄存器有128个字节就很合适; 高速缓存可以是几MB; 主存储器பைடு நூலகம்几十MB到数千MB之间; 磁盘的容量应该是几GB到几十GB; 磁带和光盘一般脱机存放,其容量只受限于用户的预算。
Ⅲ C/S即存储每位的价格逐渐减小。 主存的价格应该是每兆(M)字节几个美元, 磁盘的价格是每兆(M)字节几个美分, 磁带的价格是每吉(G)字节几个美元或更低一些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)光盘存储器 利用光斑的有无/晶相等变化表示信息,容量很大, 非破坏性读出,长期保存信息,速度慢,外存 ※只读型光盘CD-ROM ※一次写入型光盘WORM ※可擦除/重写型光盘
8/14
3.存储器的分类(按存取方式) (1)随机存取存储器(RAM,ROM)
随机存取:
按地址访问存储器中的任一单元,访问时间与存储单 元的地址无关。
(3)直接存取存储器(DAM)
访问时读/写部件先粗定位一个小区域,再在该区 域内顺序查找。
访问时间与数据位置有关,例如: 硬盘。
定位(寻道)操作 三步操作 等待(旋转)操作
读/写操作
速度指标
平均定位(平均寻道)时间(ms) 平均等待(平均旋转)时间(ms) 数据传输率(b/s)
12/14
ห้องสมุดไป่ตู้
4.存储器的技术指标
内存
虚拟存储技术
外存
逻辑上能提供比物理存储器更大的虚拟存储空间,相 关地址称为虚拟地址或逻辑地址。
6/14
3.存储器的分类(按存储介质)
(1)半导体存储器 静态存储器:利用双稳态触发器的两个稳定状态存 储信息,信息易失 动态存储器:依靠电容上的电荷暂存信息,主存
(2)磁表面存储器 利用磁层上不同方向的磁化区域表示信息,容量大, 非破坏性读出,长期保存信息,速度慢,外存 例如:IDE硬盘,SATA硬盘
第4章 存储子系统
-半导体 -磁表面 -光存储
原理及器件
-虚拟存储技术
1/14
本章需解决的主要问题:
(1)存储器如何存储信息? (2)在实际应用中如何用存储芯片组成具有 一定容量的存储器? (3)如何改进存储系统的性能?
2/14
4.1 概述
1.存储系统的层次结构 CPU Cache
主存 外存
L1和L2(L3)
(1)存取时间 从存储器收到读写命令,到存储器读出(写入)信息 所需要的时间,TA (2)存取周期 存储器做连续访问操作过程中一次完整的存取操作所 需的全部时间,TM (通常TM>TA)
存取时间 恢复期
存取周期
13/14
(2)数据传输率−R
单位时间内存取信息的数据量,也叫带宽或频宽
存储器的位宽
数据传输率(R) =
速度指标:频率-存取周期或读/写周期(ns) 通常用作主存、高速缓存。
10/14
(2)顺序存取存储器(SAM)
访问时读/写部件按顺序查找目标地址,访问时间与 数据的存储位置有关。
例如:磁带机(录音机)、电影胶片。
定位操作 两步操作
数据读/写操作
平均定位时间(ms) 速度指标
数据传输率(b/s)
11/14
RAM 例如,主存 ROM 例如,微程序控制器中的控制存储器(CM)
9/14
RAM:可读可写 如:SDR/DDR/DDR2-4
ROM:只读型
固化型:用户不能写入数据 PROM:用户可写入一次 EPROM:可多次编程(紫外线擦除) EEPROM:可多次写入(电擦除)
FLASH Memory(闪存) 接近
3/14
(1)主存(内存)
主要存放CPU当前使用的指令和数据。 能随机访问 工作速度快 有足够的存储容量
(2)辅存(外存)
速度较慢
存放大量的后备程序和数据
容量较大
4/14
(3)高速缓冲存储器(Cache)
存放CPU在当前一小段时间内多次使用的程序和数 据,以缓解CPU和主存的速度差异。
速度非常快
存取周期
bps
【例】某双通道DDR-4内存传输频率为3200MHz,位 宽64比特,则其有效带宽为:
RDDR-4=2×(64b×3200MHz÷8)=51.2GBps
14/14
内核
L1
CPU
容量却很小
L3
L2
MM 主存(DDR3/4)
EM 外存(硬盘等)
5/14
2.物理存储器与虚拟存储器
物理存储器: 物理形态上真实存在的存储器,简称为实存,其地址 称为物理地址或实地址。
虚拟存储器: 虚拟存储器是一个逻辑模型,并非物理存在,基于物 理存储器并靠硬件+操作系统的映射来实现。