高一数学《圆的方程》典型例题

合集下载

最新高中数学圆的方程经典例题与解析

最新高中数学圆的方程经典例题与解析

精品文档高中数学圆的方程经典例题与解析0?yA(1,4))4P(2,3B(,2)与且圆心在直线、例1 求过两点上的圆的标准方程并判断点圆的关系.P与圆的分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆位置关系,只须看点外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.(待定系数法)解法一:222r??b)x(?a)?(y.设圆的标准方程为222r?(x?a)y?0?y0?b.上,故∴圆的方程为∵圆心在.22?r(1?a)?16??)A(1,4)B(3,2∴两点.、又∵该圆过?22?r?)?4(3?a?22220??1)?y(x20r?1a??,解之得:.所以所求圆的方程为.(直接求出圆心坐标和半径)解法二:)4(1,A)23,B(lCAB又因为两点,所以圆心因为圆过的垂直平分线、必在线段上,2?41k???),3(2llABAB的方程,故的中点为,故的垂直平分线的斜率为1,又AB31?01?x?2x?y?y?3?即为:.0?y)0C(?1,上,故圆心坐标为又知圆心在直线2222204?1)?r?AC?(1?20?1)??y(x故所求圆的方程为∴半径..22r??251)?4PCd??(2?)P(2,4)C0?1,(.又点到圆心的距离为P∴点在圆外.都围绕着求圆的圆心和半径这两个关键的量,说明:本题利用两种方法求解了圆的方程,若将点换成直然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,线又该如何来判定直线与圆的位置关系呢???22,P244y?O:x?O,求过点相切的切线.已知圆例2与圆????,4P24?x?y?k2OPT∵点上,∴切线的直线方程可设为不在圆解: ?2k?43?k2?r?d解得根据∴42k1?3???42x?y?3x?4y?10?0所以即4精品文档.精品文档因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条2x?切线为.说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.解决(也要本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于02ry?x?yxyx、.还可以运用此时没有漏解.,求出切点坐标的值来解决,注意漏解)0000224?x?y0?3x?y?23得的劣弧所对的圆心角为例3截圆、直线2222r?d?AB?3?d是等边三角,从而△解:依题意得,弦心距OAB,故弦长??AOB?.形,故截得的劣弧所对的圆心角为3229)?(y?3(x?3)?011??4y?3x的点有几个?4例圆上到直线的距离为1ll、借助图形直观求解.或先求出直线的方程,从代数计算中寻找解答.分析:2122),3(O39?3)?(x?3)?(y3r?,半径的圆心为.圆解法一:111?4?33?3?3d???2O011??4y?3x d,则的距离为设圆心.到直线12243?lO0?11?3x?4y与圆有两个交1同侧,与直线的直线如图,在圆心平行且距离为11点,这两个交点符合题意.12??d?3?r又.0??11x?4y3∴与直线平行的圆的切线的两个切点中有一个切点也符合题意.3个.∴符合题意的点共有011??4y?3x的直线和圆的解法二:符合题意的点是平行于直线,且与之距离为1m?11??1d0m?4yx3??,,则交点.设所求直线为2243?m??6m?5??16m?11?,也即∴,或,即l:3x?4y?6?0l:3x?4y?16?0.,或2122lldd:y?3O9)?()?(x3?设圆、、的圆心到直线的距离为,则12121精品文档.精品文档163?3?6?3?4?3?3?4?31?3?d?d?.,212222443??3llOOOO有两个公共点.即符与圆相切,与圆相交,与圆∴有一个公共点;与211111 3个.合题意的点共说明:对于本题,若不留心,则易发生以下误解:11?3?4?33?3??d?2O011?4y?3x?d设圆心的距离为到直线,则.1224?3O03x?4?y?11的点有两个.∴圆距离为到110?11?y3x?4drd?,只能说明此直是圆心到直线的距离,显然,上述误解中的线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1.因此到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,一般根据圆与题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断.22220y??4y??x?y2x?0x条。

高中数学圆的方程 经典例题(含详细解析)

高中数学圆的方程  经典例题(含详细解析)

高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r . 所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x . 例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上, 又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a . 由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2.∴222b r =又圆截y 轴所得弦长为2.∴122+=a r . 又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=abb a 4422-+=)(242222b a b a +-+≥1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r 故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a .由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x 因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D . 练习:1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程. 解:设切线方程为1(3)y k x -=-,即310kx y k --+=, ∵圆心(1,0)到切线l 的距离等于半径2, ∴()22|31|21k k k -+=+-,解得34k =-,∴切线方程为31(3)4y x -=--,即34130x y +-=, 当过点M 的直线的斜率不存在时,其方程为3x =,圆心(1,0)到此直线的距离等于半径2, 故直线3x =也适合题意。

高考数学复习圆的方程专项练习(附解析)

高考数学复习圆的方程专项练习(附解析)

高考数学复习圆的方程专项练习(附解析)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。

以下是圆的方程专题练习,请考生查缺补漏。

一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).因此该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(2021南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,因此圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(2021江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y |的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),因此a+b =2.因此+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b =时取等号.[答案] 96.(2021南京市、盐都市高三模拟)在平面直角坐标系xOy中,若圆x2 +(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,因此kOP==1,kAB=-1,而直线AB过P点,因此直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(2021泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a =________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2 +a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,因此的最小值为-4.10.已知圆的圆心为坐标原点,且通过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,因此圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2= 2.一样说来,“教师”概念之形成经历了十分漫长的历史。

高中数学圆的方程典型例题学生版

高中数学圆的方程典型例题学生版

⾼中数学圆的⽅程典型例题学⽣版⾼中数学圆的⽅程典型例题类型⼀:圆的⽅程例1 求过两点)4,1(A 、)2,3(B 且圆⼼在直线0=y 上的圆的标准⽅程并判断点)4,2(P 与圆的关系.解法⼀:(待定系数法)设圆的标准⽅程为222)()(r b y a x =-+-.∵圆⼼在0=y 上,故0=b .∴圆的⽅程为222)(r y a x =+-.⼜∵该圆过)4,1(A 、)2,3(B 两点.∴=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r .所以所求圆的⽅程为20)1(22=++y x .解法⼆:(直接求出圆⼼坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆⼼C 必在线段AB 的垂直平分线l 上,⼜因为13124-=--=AB k ,故l 的斜率为1,⼜AB 的中点为)3,2(,故AB 的垂直平分线l 的⽅程为:23-=-x y 即01=+-y x .⼜知圆⼼在直线0=y 上,故圆⼼坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的⽅程为20)1(22=++y x .⼜点)4,2(P 到圆⼼)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的⽅程.解:则题意,设所求圆的⽅程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为4,则圆⼼C 的坐标为)4,(1a C 或)4,(2-a C .⼜已知圆042422=---+y x y x 的圆⼼A 的坐标为)1,2(,半径为3.若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (⽆解),故可得1022±=a .∴所求圆⽅程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (⽆解),故622±=a .∴所求圆的⽅程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的⽅程.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆⼼C 在这两条直线的交⾓平分线上,⼜圆⼼到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交⾓的平分线⽅程是03=+y x 或03=-y x .⼜∵圆过点)5,0(A ,∴圆⼼C 只能在直线03=-y x 上.设圆⼼)3,(t t C ∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t .解得:1=t 或5=t∴圆⼼是)3,1(,半径为5或圆⼼是)15,5(,半径为55.∴所求圆的⽅程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .例4、设圆满⾜:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的⽐为1:3,在满⾜条件(1)(2)的所有圆中,求圆⼼到直线02=-y x l :的距离最⼩的圆的⽅程.解法⼀:设圆⼼为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆⼼⾓为? 90,故圆截x 轴所得弦长为r 2.∴222b r =⼜圆截y 轴所得弦长为2.∴122+=a r .⼜∵),(b a P 到直线02=-y x 的距离为5 2b a d -=∴2225b a d -=abb a 4422-+=)(242222b a b a +-+≥1222=-=a b当且仅当b a =时取“=”号,此时55min =d .这时有??=-=1222a b ba ∴??==11b a 或-=-=11b a ⼜2222==b r 故所求圆的⽅程为2)1()1(22=-+-y x 或2)1()1(22=+++y x解法⼆:同解法⼀,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=.将1222-=b a 代⼊上式得:01554222=++±d bd b .上述⽅程有实根,故0)15(82≥-=?d ,∴55≥d .将55=d 代⼊⽅程得1±=b .⼜1222+=a b ∴1±=a .由12=-b a 知a 、b 同号.故所求圆的⽅程为2)1()1(22=-+-y x 或2)1()1(22=+++y x .类型⼆:切线⽅程、切点弦⽅程、公共弦⽅程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.解:∵点()42,P 不在圆O 上,∴切线PT 的直线⽅程可设为()42+-=x k y 根据r d = ∴21422=++-k k解得 43=k 所以 ()4243+-=x y即 01043=+-y x 因为过圆外⼀点作圆得切线应该有两条,可见另⼀条直线的斜率不存在.易求另⼀条切线为2=x .例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的⽅程.分析:⾸先求A 、B 两点的坐标,再⽤两点式求直线AB 的⽅程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采⽤“设⽽不求”的技巧.解:设两圆1C 、2C 的任⼀交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满⾜⽅程0)()(212121=-+-+-F F y E E x D D .∴⽅程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线⽅程.⼜过A 、B 两点的直线是唯⼀的.∴两圆1C 、2C 的公共弦AB 所在直线的⽅程为0)()(212121=-+-+-F F y E E x D D .例7、过圆122=+y x 外⼀点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的⽅程。

高中数学圆的方程典型例题及详细解答之欧阳文创编

高中数学圆的方程典型例题及详细解答之欧阳文创编

新课标高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a 解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x .解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x .又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C .又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3.若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x . 说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等. ∴5252yx yx +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上.设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC , ∴22)53(532-+=+t t tt .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x . 说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2.∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为 ∴2225b a d -=当且仅当b a =时取“=”号,此时55min =d .这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x解法二:同解法一,得52ba d -=. ∴db a 52±=-. ∴2225544d bd b a +±=.将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d , ∴55≥d . 将55=d 代入方程得1±=b .又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y根据r d = ∴21422=++-k k解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有: 0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ② ①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程.又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

高中圆的方程典型例题[1]

高中圆的方程典型例题[1]

高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

类型三:弦长、弧问题例8、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长.例9、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为 例10、求两圆0222=-+-+y x y x 和522=+y x 的公共弦长例12、若直线m x y +=与曲线24x y -=有且只有一个公共点,求实数m 的取值范围.例13 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?类型五:圆与圆的位置关系问题导学四:圆与圆位置关系如何确定?例14、判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系,例15:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。

圆方程经典例题

圆方程经典例题

高中数学圆的方程典型例题类型一:圆的方程〔1〕标准方程,圆心a,b,半径为r;点M(x0,y0)与圆(x a)2(y b)2r2的位置关系:当,点在圆外当,点在圆上当,点在圆内〔2〕一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。

3〕求圆方程的方法:一般都采用待定系数法:先设后求。

确定一个圆需要三个独立条件,假设利用圆的标准方程,需求出a,b,r;假设利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

1.假设过点P(a,a)可作圆x2+y2-2ax+a2+2a-3=0的两条切线,那么实数a的取值范围是.2.圆x2+y2-2x+6y+5a=0关于直线y=x+2b成轴对称图形,那么a-b的取值范围是()A.(-∞,4)B.(-∞,0)C.(-4,+∞)D.(4,+∞)3.求过两点A(1,4)、B(3,2)且圆心在直线y 0上的圆的标准方程并判断点P(2,4)与圆的关4.求半径为4,与圆x2y24x 2y 4 0相切,且和直线y0相切的圆的方程.5.求经过点A(0,5),且与直线x 2y 0和2x y0都相切的圆的方程.6.直线l:x+y-2=0和圆C:x2+y2-12x-12y+54=0,那么与直线l和圆C都相切且半径最小的圆的标准方程是.7、设圆满足:(1)截y轴所得弦长为2;(2)被x轴分成两段弧,其弧长的比为3:1,在满足条件(1)(2)的所有圆中,求圆心到直线l:x 2y0的距离最小的圆的方程.12+(y-1)2222=上的动点,那么|PN|-|PM|的8.点P(2,2),点M是圆O:x=上的动点,点N是圆O:(x-2)+y 最大值是()A.-1B.-2类型二:直线与圆的位置关系直线与圆的位置关系有三种情况:〔1〕设直线l:AxByC0222,圆心Ca,b到l的距离为,圆C:xa ybrAa BbC,那么有dB2A22〕过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),那么过此点的切线方程1、直线3x y 23 0和圆x2y24,判断此直线与圆的位置关系.2:直线x y 1与圆x2y22ay 0(a 0)没有公共点,那么a的取值范围是3:假设直线ykx2与圆(x2)2(y3)21有两个不同的交点,那么k的取值范围是.4.圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为.圆(x3)2(y3)29上到直线3x4y110的距离为1的点有几个6.、假设直线y x m与曲线y 4 x2有且只有一个公共点,求实数m的取值范围.7.圆M:x2(y2)21,Q是x轴上的动点,QA、QB分别切圆M于A,B两点(1)假设点Q的坐标为〔1,0〕,求切线QA、QB的方程;42(2)求四边形QAMB的面积的最小值;(3)假设AB,求直线MQ的方程.3类型三:圆与圆的位置关系通过两圆半径的和〔差〕,与圆心距〔d〕之间的大小比拟来确定。

高一数学圆的方程经典例题

高一数学圆的方程经典例题

例1圆(Λ∙-3)2+(y-3)2=9±到直线3Λ-+4>'-11=0的距离为1的点有几个?分析:借助图形直观求解.或先求出直线厶、厶的方程,从代数计算中寻找解答.解法圆(x-3)2 + (y-3)2=9 的圆心为q(3,3),半径∕ = 3∙设圆心O I到直线3x + 4V-Il = O的距离为〃,则∣3×3 + 4×3-Il∣√3¼41如图,在圆心Q同侧,及直线3x÷4y-ll=0平行且距离为1的直线厶及圆有两个交点,这两个交点符合题意.・•・及直线3x÷4y-ll = 0平行的圆的切线的两个切点中有一个切点也符合题意.・・・符合题意的点共有3个.解法二符合题意的点是平行于直线3Λ÷4y-ll = 0,且及之距离为1 的直线和圆的交点.设所求直线为3x + 4y + m = 0,贝∣J√=±≤ = 1,∙e∙ m+ll = ±5 9即In = -6 9或加= —16,也即∕1x3x + 4y-6 = 0 9⅛K∕23x + 4y-16 =0 •典型例设圆O1≡(x-3)2+(y-3)2=9的圆心到直线厶的距离为〃】、心则∣3×3÷4×3-6L ∣3×3÷4×3-16L K•••厶及q相切,及圆q有一个公共点;厶及圆q相交,及圆q有两个公共点•即符合题意的点共3个•说明:对于本题,若不留心,则易发生以下误解:设圆心O I到直线3x + 4y-ll = 0的距离为〃,则^∣3×3÷4×3-11L2<3.√P74Γ•I圆O]到3x + 4y-ll = 0距离为1的点有两个•显然,上述误解中的〃是圆心到直线3x÷4y-ll = 0的距离,d<r,只能说明此直线及圆有两个交点,而不能说明圆上有两点到此直线的距离为1∙到一条直线的距离等于定值的点,在及此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线及圆的公共点•求直线及圆的公共点个数,一般根据圆及直线的位置关系来判断, 即根据圆心及直线的距离和半径的大小比较来判断•典型例题三例3求过两点A(l,4)、B(3,2)且圆心在直线y = 0上的圆的标准方程并判断点P(2,4)及圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P及圆的位置关系,只须看点P及圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为(兀-d}2 +(y-by =r2.∙.∙圆心在y = 0上,故b = 0.圆的方程为(X-^)2 + >,2= r2.又Y该圆过4(1,4)、B(3,2)两点..J(l-α)2 + 16 = ∕*2[(3-α), +4 = r2解之得:Q=-I, r2 = 20.所以所求圆的方程为(x + l)2+y2=20・解法二:(直接求出圆心坐标和半径)因为圆过A(l,4)、3(3,2)两点,所以圆心C必在线段A3的垂直平分线/上,又因为S=苦1,故/的斜率为1,又AB的中点为(2,3),故AB的垂直平分线/的方程为:y-3 = x-2即x-y + l = 0.又知圆心在直线y = 0上,故圆心坐标为C(-l, 0)・*. Φ⅛ r = ∖AC∖ =√(l + l)2+42 = λ∕20 ・故所求圆的方程为(X +1)2+ b =20・又点P(2,4)到圆心C(-1,0)的距离为J=IPq = λ∕(2 +1)2+42=√25>r.・•・点P在圆外.说明:木题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心及定点之间的距离和半径的大小关系来判定点及圆的位置关系,若将点换成直线又该如何来判定直线及圆的位置关系呢?典型例题四例4圆X2 + y2 +2x + 4y-3 = 0上到直线x + y + ∖ = 0的距离为血的点共有().(A) 1 个(B) 2 个(C) 3 个(D) 4 个分析:把X2 + y2 +2x+4y-3 = 0化为(x +1)2 +(y + 2)2 =8 ,圆心为(-1,-2), 半径为「= 2血,圆心到直线的距离为√Σ,所以在圆上共有三个点到直线的距离等于运,所以选C.典型例题五例5 过点P(-3,-4)作直线/,当斜率为何值时,直线/及圆C:(X-I)2+(y + 2)2=4有公共点,如图所示.分析:观察动画演示,分析思路.解:设直线/的方程为y + 4 = k(x + 3)即kx- y + 3k -4 = 0根据(/S有比+2 + 3£-4|刁y∣∖+k2整理得3k2-4k=0解得40≤k≤-•3典型例题六例6己知圆Ot√ + y2=4,求过点P(2,4)及圆O相切的切线. 解:T点P(2,4)不在圆O上,・•・切线PT的直线方程可设为y =心- 2)+4根据d = r•• •7+4|_2√f+P解得k=〉4所以y = -(x-2)÷4即3x-4y + 10 = 0因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为;ι=2∙说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.木题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于O解决(也要注意漏解)・还可以运用v÷>v = r2,求岀切点坐标•5、儿的值来解决,此时没有漏解•例7自点衣-3,3)发出的光线/射到兀轴上,被兀轴反射,反射光线所在的直线及圆C:√ + y2-4x-4y + 7 = 0相切(1)求光线/和反射光线所在的直线方程.切线的斜率为图3k = -^ik =—3 4进一步求出反射光线所在的直线的方程为4x-3y + 3 = 0 或3x-4y-3 = 0最后根据入射光及反射光关于X轴对称,求出入射光所在直线方程为4x + 3y + 3 = 0 或3x+4y-3 = 0光路的距离为∖A'M∖ ,可由勾股定理求得PrMf=PrCf TCMf=7.说明:木题亦可把圆对称到兀轴下方,再求解.例8如图所示,已知圆O: x2+y2 =4及y轴的正方向交于A点,点B 在直线y = 2上运动,过B做圆O的切线,切点为C,求ΔABC垂心H的轨迹.分析:按常规求轨迹的方法,设H(.y),找;r,y的关系非常难.由于H点随B , C点运动而运动,可考虑H, B , C三点坐标之间的关系. 解:设H(X,y), C(X ,y),连结4H, CH ,贝IJAH丄BC, CH丄AB f BC是切线OC丄BC,所以OC//AH, CHIIOA, OA = OC f所以四边形AOCH是菱形.所以∖CH∖ = ∖θA∖ = 2f得I y= y~2'又C(X ,y)满足∕÷∕=4,所以√÷(y-2)2=4(x≠0)即是所求轨迹方程.说明:题目巧妙运用了三角形垂心的性质及菱形的相关知识.采取代入法求轨迹方程•做题时应注意分析图形的几何性质,求轨迹时应注意分析及动点相关联的点,如相关联点轨迹方程己知,可考虑代入法.典型例题九例9求半径为4,及圆√+∕-4x-2y-4 = 0相切,且和直线尸0相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆C:(X-Uy +(y-b)2 =r2.圆C及直线y = 0相切,且半径为4,则圆心C的坐标为G(α,4)或C2(^,-4)・又己知圆X 2 + y 2 _ 4 X _ 2_ 4 = 0的圆心A的坐标为(2,1),半径为3.若两圆相切,则IGAI=4 + 3 = 7或IGAl=4-3 = 1・⑴当GS,4)时,(α-2)2÷(4-l)2=72,或(α-2)2+(4-1)2 = I2 (无解),故可得0 = 2±2佰.・•・所求圆方程为(X-2-2√W+(V-4)2=42, 或(X - 2 + 2√10 )2 + (y - 4)2 = 42 .(2)当C?(“ , 一4)时,(α — 2)2 +(-4-1)2 = 7?,或(α一2)2 + (一4 — I)? = F (无解),故α = 2 ± 2√6 .・•・所求圆的方程为(x-2-2√6)2+(y + 4)2=42, 或(x-2 + 2√z6)2+(y + 4)2 =42 .说明:对本题,易发生以下误解:由题意,所求圆及直线)=0相切且半径为4,则圆心坐标为C(",4), 且方程形如(x-α)2+(y-4)2 =42・又圆x2 +y2 -4x-2y-4 = 0 ,即(x-2)2+(y-l)2=32 ,其圆心为A(2,1),半径为3.若两圆相切,则IcAI = 4 +3・故(«-2)2+(4-1)2 =72,解之得6∕ = 2±2√1O .所以欲求圆的方程为(X_2_2√"10)2+(y-4)2=42,或(X_2 + 2√Iθ)2+(y-4)2 = 42.上述误解只考虑了圆心在直线y = O上方的情形,而疏漏了圆心在直线下方的情形.另外,误解中没有考虑两圆内切的情况•也是不全面的.典型例题十例10已知圆x2 + y2+x-6y + m = O及直线x + 2y-3 = 0相交于P、Q两点,O为原点,且OP丄O0,求实数加的值.分析:设P、0两点的坐标为(x l,y l)> (X2O12) »则由S • % =7, 可得⅜÷>'1>'2=0,再利用一元二次方程根及系数的关系求解.或因为通过原点的直线的斜率为上,由直线/及圆的方程构造以上为未知数的X X一元二次方程,由根及系数关系得出為p∙褊。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学圆的方程典型例题
类型一:圆的方程
例1 求过两点、
且圆心在直线上的圆的标准方程并判断点与圆的关系.
例2 求半径为4,与圆相切,且和直线相切的圆的方程.
例3 求经过点,且与直线和都相切的圆的方程.
例4、 设圆满足:(1)截轴所得弦长为2;(2)被轴分成两段弧,其弧长的比为,在满足条件(1)(2)的所有圆中,求圆心到直线的距离最小的圆的方程.
)4,1(A )2,3(B 0=y )4,2(P 042422=---+y x y x 0=y )5,0(A 02=-y x 02=+y x y x 1:302=-y x l :
类型二:切线方程、切点弦方程、公共弦方程
例5 已知圆,求过点与圆相切的切线.
例6、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、
B ,求直线AB 的方程。

类型三:弦长、弧问题
例8、求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长.
例9、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为
42
2=+y x O :()42,P O
类型四:直线与圆的位置关系
例11、已知直线0323=-+y x 和圆422=+y x ,判断此直线与已知圆的位置关系.
例12、若直线m x y +=与曲线24x y -=
有且只有一个公共点,求实数m 的取值范围.
例13 圆上到直线的距离为1的点有几个?
类型七:圆中的最值问题
例18:圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是
9)3()3(22=-+-y x 01143=-+y x
例20:已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(22=-+-y x 上运动,则2
2PB PA +的最小值是 .。

相关文档
最新文档