高一数学《数列》经典练习题附答案
高一必修数列测试题及答案详解高一数学

高一必修数列测试题及答案详解高一数学一、填空题1. 若\[a_n = 2n - 1\],则数列\[\{a_n\}\]的前5项分别为\[1, 3, 5, 7, 9\]。
2. 若\[b_n = 3^n\],则数列\[\{b_n\}\]的前4项分别为\[3, 9, 27, 81\]。
3. 若\[c_n = \frac{n(n+1)}{2}\],则数列\[\{c_n\}\]的前6项分别为\[1, 3, 6, 10, 15, 21\]。
二、选择题1. 以下是等差数列的是(B)。
A. 1, 2, 4, 7, 11B. 2, 4, 8, 16, 32C. 1, 3, 6, 10, 15D. 3, 8, 15, 24, 352. 若\[a_1=2\],\[a_2=5\],则\[a_3=8\),\[a_4=11\),则\(a_n\)的通项公式是(C)。
A. \(a_n=2n+1\)B. \(a_n=3n-1\)C. \(a_n=3n-1\)D. \(a_n=2n+4\)3. 若对于等差数列\(\{a_n\}\)有\(\frac{{a_5 - a_2}}{7}=3\),则\(d=\)(A)。
A. 1B. 2C. 3D. 4三、解答题1. 求等差数列\(\{a_n\}\)的前5项之和,已知\(a_1=1\),\(a_3=7\)。
(解答略)2. 若等差数列\(\{a_n\}\)的首项为-3,公差为4,求该数列的第n项和。
\({S_n}=\)(解答略)3. 若等差数列\(\{a_n\}\)的首项为2,公差为3,已知\(\frac{{a_m+a_n}}{2}=13\),求\(m\)与\(n\)的值。
(解答略)四、解题思路详解1. 填空题1解析:根据数列通项公式\[a_n = 2n - 1\],带入\[n=1,2,3,4,5\],即可得到\[a_n\]的前5项。
2. 填空题2解析:根据数列通项公式\[b_n=3^n\],带入\[n=1,2,3,4\],即可得到\[b_n\]的前4项。
高中数学《数列》练习题(含答案解析)

高中数学《数列》练习题(含答案解析)一、单选题1.已知等差数列{an }的前n 项和为Sn ,且48S S =13,则816S S =( )A .310 B .37C .13D .122.已知等比数列{an }的前n 项和为Sn ,则“Sn +1>Sn ”是“{an }单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.现有下列说法:①元素有三个以上的数集就是一个数列; ①数列1,1,1,1,…是无穷数列; ①每个数列都有通项公式;①根据一个数列的前若干项,只能写出唯一的通项公式; ①数列可以看着是一个定义在正整数集上的函数. 其中正确的有( ). A .0个B .1个C .2个D .3个4.数列{}n a 的前n 项和为n S ,且1(1)(21)n n a n +=-⋅+,则2021S =( )A .2020B .2021C .2022D .20235.已知等差数列{}n a 中,6819,27a a ==,则数列{}n a 的公差为( ) A .2B .3C .4D .56.标准对数视力表(如图)采用的“五分记录法”是我国独创的视力记录方式.标准对数视力表各行为正方形“E ”字视标,且从视力5.1的视标所在行开始往上,每一行“E ”的边长都是下方一行“E ”的边长的视力4.0的视标边长为a ,则视力4.9的视标边长为( )A .4510aB .91010aC .4510a -D .91010a -7.已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a8.已知{}n a 是等差数列,公差0d >,其前n 项和为n S ,若2a 、52a+、172a +成等比数列,()12n n n a S +=,则不正确的是( ) A .1d= B .1020a = C .2n S n n =+ D .当2n ≥时,32n n S a ≥9.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .1010101110.等差数列{}n a 前n 项和为n S , 281112a a a ++=,则13S =( ) A .32B .42C .52D .62二、填空题11.已知a 是1,2的等差中项,b 是1-,16-的等比中项,则ab 等于___________. 12.已知等差数列{}n a 的前n 项和为n S ,若65210,6Sa a =+=,则d =_________.13.设n S 是等差数列{}n a 的前n 项和,若891715a a =,则1517S S =______.14.已知等差数列{}n a 的前n 项和为nS,且1516a a +=-,936S =-,则n S 的最小值是______.三、解答题15.已知数列{}n a 为等差数列,{}n b 是公比为2的等比数列,且满足11221,5a b b a ==+=(1)求数列{}n a 和{}n b 的通项公式; (2)令n n n c a b =+求数列{}n c 的前n 项和n S ;16.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (1)求{}n a 的通项公式;(2)2n nb a =-+求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 17.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利? 18.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}nb 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.参考答案与解析:1.A【分析】运用等差数列前n 项和公式进行求解即可. 【详解】设等差数列{an }的公差为d , ①41181461582832a d a d a d S S +==⇒=+,显然0d ≠, ①8161182820283161204012010a d d d a d S d S d ++===++, 故选:A 2.D【分析】由110++>⇒>n n n S S a ,举反例102=>n na 和12nn a =-即可得出结果 【详解】110++>⇒>n n n S S a ,例如102=>n na ,但是数列{}n a 不单调递增,故不充分; 数列{}n a 单调递增,例如12n na =-,但是1n n S S +<,故不必要; 故选:D 3.B【分析】根据给定条件,利用数列的定义逐一分析各个命题,判断作答.【详解】对于①,数列是按一定次序排成的一列数,而数集的元素无顺序性,①不正确; 对于①,由无穷数列的意义知,数列1,1,1,1,…是无穷数列,①正确; 对于①0.1,0.01,0.001,0.0001,得到的不足近似值,依次排成一列得到的数列没有通项公式,①不正确;对于①,前4项为1,1,1,1的数列通项公式可以为1,N n a n =∈,cos 2π,N n b n n *=∈等,即根据一个数列的前若干项,写出的通项公式可以不唯一,①不正确;对于①,有些数列是有穷数列,不可以看着是一个定义在正整数集上的函数,①不正确, 所以说法正确的个数是1. 故选:B 4.D【分析】根据数列{}n a 的通项公式,可求得12342,2a aa a +=-+=-,依此类推,即可求解.【详解】①1(1)(21)n n a n +=-⋅+,故12343,5,7,9a a a a ==-==-故202112320202021S a a a a a =+++⋅⋅⋅++357940414043=-+-+⋅⋅⋅-+2101040432023=-⨯+=.故选:D. 5.C【分析】利用862d a a =-,直接计算公差即可. 【详解】等差数列{}n a 中,6819,27aa ==,设公差为d ,则86227198d a a =-=-=,即4d =.故选:C. 6.D【分析】由等比数列的通项公式计算.【详解】设第n 行视标边长为n a ,第n 1-行视标边长为()12n a n -≥,由题意可得()12n n a n -=≥,则()1101102nn a n a --=≥,则数列{}n a 为首项为a ,公比为11010-的等比数列, 所以101191010101010a a a ---⎛⎫== ⎪⎝⎭,则视力4.9的视标边长为91010a -,故选:D. 7.B【分析】令10t n =-≥,则1n t =+,22641411ttyt t t t ,然后利用函数的知识可得答案. 【详解】令10t n =-≥,则1n t =+,22,641411tty tt t t当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B . 8.A【分析】利用等差数列的求和公式可得出1n a na =,可得出10d a =>,根据已知条件求出1a 的值,可求得n a 、n S 的表达式,然后逐项判断可得出合适的选项.【详解】因为{}n a 是等差数列,则()()1122nn n n a n a a S ++==,所以,1n a na =, 所以,110n n d a a a +=-=>,因为()()2521722a a a +=+,可得()()2111522172a a a +=+,整理可得21191640a a --=,因为10a >,故12d a ==,A 错;12n a na n ==,则1020a =,B 对;()()112nn n a S n n +==+,C 对;当2n ≥时,()233202n n S a n n n n n -=+-=-≥,即32n n S a ≥,D 对.故选:A. 9.C【解析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=.故选:C【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和; (4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 10.C【分析】将2811a a a ++化成1a 和d 的形式,得到二者关系,求得7a ,利用13713S a =求得结果. 【详解】()()28111111()71031812a a a a d a d a d a d ++=+++++=+=164a d ∴+=,即74a = ()1131371313134522a a S a +∴===⨯= 故选:C.【点睛】思路点睛:该题考查的是有关数列的问题,解题思路如下:(1)根据题中所给的条件,结合等差数列通项公式,将其转化为关于首项与公差的式子; (2)化简求得数列的某一项;(3)结合等差数列求和公式,得到和与项的关系,求得结果. 11.6±【分析】根据等差和等比中项的定义求出,a b 得值,即可求解. 【详解】因为a 是1,2的等差中项,所以12322a +==, 因为b 是1-,16-的等比中项,所以2(1)(16)16b =-⨯-=,4b =±,所以6ab =±.故答案为:6±. 12.1【分析】由等差中项性质可求4a ,又510S =依据等差数列的前n 项和公式及通项公式列方程即可求得公差 【详解】由266a a +=有43a =,而510S = ①结合等差数列的前n 项和公式及通项公式113322a d a d +=⎧⎨+=⎩即可得1d = 故答案为:1【点睛】本题考查了等差数列,利用等差中项求项,结合已知条件、前n 项和公式、通项公式求公差13.1【分析】利用等差数列性质及前n 项和公式计算作答.【详解】在等差数列{}n a 中,891715a a =,所以1151511588117171179915(15(152152117(17)(1717)2))2a a S a a a a a a S a a a a ++⨯====⋅=++⨯. 故答案为:1 14.42-【分析】根据给定条件求出等差数列{}n a 的首项、公差,探求数列{}n a 的单调性即可计算作答.【详解】设等差数列{}n a 的公差为d ,由1591636a a S +=-⎧⎨=-⎩得112416989362a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得1122a d =-⎧⎨=⎩, 因此,()1212214n a n n =-+-⨯=-,令0n a =,解得7n =,于是得数列{}n a 是递增等差数列,其前6项为负,第7项为0,从第8项开始为正, 所以6S 或7S 最小,最小值为()656122422⨯⨯-+⨯=-. 故答案为:42-15.(1)21n a n =-,12n n b -=(2)221nn S n =+-【分析】(1)根据等差数列和等比数列的通项公式得到2d =,根据通项公式的求法得到结果;(2)1221n n n n c a b n -+=+=-分组求和即可.【详解】(1)设{}n a 的公差为d , 由已知,有215d ++=解得2d =,所以{}n a 的通项公式为21,n a n n *=-∈N , {}n b 的通项公式为12,n n b n -*=∈N .(2)1221n n n n c a b n -+=+=-,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:212(121)21122n n n n n S n -+-=+=+--.16.(1)2n a n =-;(2)1n nT n =+.【解析】(1)由30S =,55S =-,可得113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩求出1,a d ,从而可得{}n a 的通项公式;(2)由(1)可得n b n =,从而可得11111(1)1n n b b n n n n +==-++,然后利用裂项相消求和法可求得n T 【详解】解:(1)设等差数列{}n a 的公差为d , 因为30S =,55S =-.所以113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩,化简得11021a d a d +=⎧⎨+=-⎩,解得111a d =⎧⎨=-⎩,所以1(1)1(1)(1)2n a a n d n n =+-=+--=-, (2)由(1)可知2(2)2n n b a n n =-+=--+=, 所以11111(1)1n n b b n n n n +==-++, 所以111111(1)()()1223111n nT n n n n =-+-+⋅⋅⋅+-=-=+++ 【点睛】此题考查等差数列前n 项和的基本量计算,考查裂项相消求和法的应用,考查计算能力,属于基础题17.(1)2n a n =;(2)第2年该公司开始获利.【分析】(1)根据题意得出数列的首项和公差,进而求得通项公式 (2)根据题意算出总利润,进而令总利润大于0,解出不等式即可. 【详解】(1)由题意知,数列{}n a 是12a =,公差2d =的等差数列, 所以()()112122n a a n d n n =+-=+-⨯=.(2)设引进这种设备后,净利润与年数n 的关系为()F n ,则()()2121222520252n n F n n n n n -⎡⎤=-+⨯-=--⎢⎥⎣⎦. 令()0F n >得220250n n -+<,解得1010n -<+ 又因为n *∈N ,所以2n =,3,4,…,18, 即第2年该公司开始获利.18.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ① 则1231111012112222Γ33333-----=++++n nn . ①由①-①得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n n T --=++++,① 231112133333n n n n n T +-=++++,① ①-①得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n n n T =--⋅, 所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2n n S T <. [方法三]:构造裂项法由(①)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243n n c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭. 则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二. [方法四]:导函数法设()231()1-=++++=-n n x x f x x x x x x ,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nx x . 又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n n n n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n nS T,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nnc n,使1+=-n n nb c c,求得nT的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.。
高中数列经典习题含答案

高中数列经典习题 ( 含答案 )1、在等差数列 {a n}中,a1=-250,公差 d=2,求同足以下条件的全部 a n的和 , (1)70≤n≤ 200;(2)n 能被7 整除 .2、等差数列 {a n}的前 n 和 S n.已知 a3=12, S12>0,S13<0.(Ⅰ)求公差 d 的取范;(Ⅱ)指出S1,S2,⋯,S12,中哪一个最大 ,并明理由.3、数列 { a n }是首23,公差整数的等差数列,且前 6 正,从第 7 开始的,回答以下各: (1)求此等差数列的公差d;(2) 前n和 S n,求 S n的最大;(3)当 S n是正数,求n的最大 .4、数列 { a n}的前 n 和S n.已知首1a =3,且S n 1+ S n=2a n 1,求此数列的通公式a n及前n 和Sn .5、已知数列 { a n }的前 n 和S n13n(n+1)(n+2),求数列 { 1a n}的前 n 和 .6、已知数列 { a n}是等差数列 ,此中每一 及公差d均不 零 ,a i x 2 2a i 1xa i 2=0(i=1,2,3,⋯)是对于x 的一 方程 .回答: (1)求全部 些方程的公共根;(2) 些 方 程 的 另 一 个 根m i, 求m1, m1, m1,⋯ ,1 ,⋯也成等差数列 .112131m n17、假如数列 { a n} 中 ,相 两 a n和 a n 1是二次方程 x n23nx n c n=0(n=1,2,3⋯)的两个根 ,当 a 1=2 , 求c 100 的 .8、有两个无 的等比数列 { a n }和{ a n }, 它 的公比的 都小于 1,它 的各 和分 是 1 和 2, 而且 于全部自然数 n,都有 a n 1, 求 两个数列的首 和公比 .9、有两个各 都是正数的数列{ a n},{ b n}. 假如a =1,b =2,a =3.且, ,an 1 成等差数列 ,,an 1 , bn 1 成112a nb nb n等比数列 ,试求这两个数列的通项公式.10、若等差数列 {log2x n}的第 m 项等于 n,第 n 项等于 m(此中 m n),求数列 {x n}的前 m+n 项的和。
高一数学数列练习题及答案

高一数学数列练习题及答案一、选择题1. 设数列 {an} 为等差数列,已知 a1 = 3,d = 2,求 a4 的值。
A. 4B. 5C. 6D. 72. 若数列 {bn} 的前 n 项和为 Sn = 2n^2 + 3n,求 b1 的值。
A. 3B. 4C. 5D. 63. 已知数列 {cn} 为等差数列,前 n 项和为 Sn = 3n^2 + n,求通项c3 的值。
A. 4B. 5C. 6D. 74. 数列 {dn} 的通项公式为 an = 2n^3,求第 5 项的值。
A. 200B. 250C. 300D. 3505. 若数列 {en} 的前 n 项和为 Sn = n(5n + 1),求 e1 的值。
A. 0B. 1C. 2D. 3二、填空题1. 设数列 {an} 的前 n 项和为 Sn = 3n^2 + 4n,其中 a1 = 2,则 a2 的值为 ________。
2. 已知等差数列 {bn} 的前 n 项和为 Sn = n^2 + 3n,其中 b2 = 7,则b1 的值为 ________。
3. 若数列 {cn} 的通项公式为 cn = 2n^2 + n,则第 4 项的值为________。
4. 设数列 {dn} 的前 n 项和为 Sn = 4n + 5n^2,则 d1 的值为________。
5. 已知数列 {en} 的前 n 项和为 Sn = 2n(3n + 1),其中 e3 = 28,则e1 的值为 ________。
三、解答题1. 设等差数列 {an} 前 n 项和为 Sn,已知 a1 = 3,an = 7,求 n 的值及 Sn 的表达式。
2. 设等差数列 {bn} 前 n 项和为 Sn,已知 b1 = 1,d = 5,求 n 的值及 Sn 的表达式。
3. 已知等差数列 {cn} 的通项公式为 cn = an - 2n,前 n 项和为 Sn = 3n^2 + 2n,求 a1 的值。
高一数学数列试题答案及解析

高一数学数列试题答案及解析1.数列1,,,…,,….是()A.递增数列B.递减数列C.常数列D.摆动数列【答案】【解析】显然该数列从第二项起,各项的分母是偶数且越来越大,所以数列的各项越来越小.【考点】数列增减性的判断.2.设数列满足:,,则()A.B.C.D.【答案】A【解析】由题可得:,对n分别取正整数后进进迭加,可得,又,当n=19时有,所以.【考点】迭加法求数列的通项公式.3.正项数列的前项和满足:(1)求数列的通项公式;(2)令,求数列的前项和.【答案】(1) ,(2)【解析】(1) 先化简关系式:,,再利用与关系,得时.最后验证,得到数列的通项. (2)因为数列通项是“等比乘等差”型,需用错位相减法求解前项和.运用错位相减法求和时需注意三点:一是相减时注意项的符号,二是求和时注意项的个数,三是最后结果需除以由相减得:所以.试题解析:(1)解:由,得.由于是正项数列,所以.于是时,.综上,数列的通项.(2),由相减得:所以【考点】由求,错位相减法求和4.(本小题满分12分)已知数列{an }满足 a1=1,an+1=.,写出它的前5项,并归纳出数列的一个通项公式(不要求证明)【答案】解:∵a1=1,an+1=,∴a2==, a3==, a4==, a5==.∴它的前5项依次是1,,,,…………………….8分故它的一个通项公式为an=. (12)【解析】略5.在等差数列中,已知,=4,则公差d等于()A.1 B. C.- 2 D 3【答案】C【解析】,所以.6.数列为等差数列,为正整数,其前项和为,数列为等比数列,且,数列是公比为64的等比数列,.(1)求;(2)求证.【答案】(1)(2)见解析【解析】(1)设的公差为,的公比为,则为正整数,,.依题意有①由知为正有理数,故为的因子之一,解①得,故.(2),∴.7.设,且则()A.B.C.D.【答案】C【解析】,,所以数列是等比数列,,首项,所以【考点】1.复合函数;2.等比数列.8.已知数列(Ⅰ)计算(Ⅱ)令是等比数列;(Ⅲ)设、分别为数列、的前,使得数列为等差数列?若存在,试求出的值;若不存在,请说明理由.【答案】(Ⅰ)(Ⅱ)详见解析(Ⅲ)【解析】(Ⅰ)将点代入直线可得到数列的递推公式,由首项可逐个求出的值;(Ⅱ)首先将数列的通项公式整理化简,找到相邻的两项,证明数列是等比数列主要需要证明相邻两项的比值是常数,常数即公比,需要说明数列首项不为零;(Ⅲ)首先由已知整理出两数列通项公式和前n项和,代入中化简,由定义数列是等差数列需满足相邻两项的差值为常数,因此找到数列的相邻项相减,使其为常数时寻求此时的取值试题解析:(Ⅰ)由题意,同理(Ⅱ)因为所以又,所以数列是以为首项,为公比的等比数列.(Ⅲ)由(2)得,又所以由题意,记则故当【考点】1.数列的通项公式递推公式;2.等差等比数列的判定;3.数列求和9.已知数列满足,(),则().A.0B.C.D.-【答案】D【解析】所以a的周期为3,.【考点】数列性质的应用10.等比数列的前项的和,且,,则.【答案】【解析】根据等比数列前项和的性质,,,,是等比数列,所以,,那么,所以.【考点】等比数列前项和的性质11.(本小题满分13分)已知数列的前项和,,等差数列中(1)求数列、的通项公式;(2)是否存在正整数,使得若存在,求出的最小值,若不存在,请说明理由.【答案】(1);;(2)存在,.【解析】(1)数列是等差数列,所以待定系数求首项和公差,求数列的通项公式的方法是已知求,当时,,然后两式相减,得到递推,再求的值,最后再写出通项;(2)第一步,先求的通项公式,是等差数列乘以等比数列,所以求和,采用错位相减法求和,,然后再解关于的不等式,求出整数.试题解析:(1)当时,,相减得:又数列是以1为首项,3为公比的等比数列,.又(2)令①②①-②得:…9分即,当,,当。
高一数学数列试题答案及解析

高一数学数列试题答案及解析1.已知数列中,其前项和满足:(1)试求数列的通项公式;(2)求数列的前项和.【答案】(1),(2)【解析】(1)先利用化简关系式得:再利用叠加得,又,所以.经验证和也满足该式,故(2)因为数列通项是一个等比加一个等差,所以用“分组求和法”求和,即.试题解析:(1)即这个式子相加得,又所以. 经验证和也满足该式,故(2)用分组求和的方法可得【考点】由求,叠加法求,分组求数列和.2.已知数列的首项,且,则为()A.7B.15C.30D.31【答案】D【解析】由两边同加1,可得,,则是以2为首项,以2 为公比的等比数列.则,所以,.【考点】构造法求数列的通项公式.3.已知数列是等比数列,且则【答案】1【解析】略}中的项组成一个新数列, ,4.由公差的等差数列{an,…,则下列说法正确的是K^S*5U.CA.该数列不是等差数列B.该数列是公差为的等差数列C.该数列是公差为的等差数列D.该数列是公差为的等差数列【答案】C【解析】略5.△ABC的三个内角A、B、C的对边的长分别为a、b、c,有下列两个条件:(1)a、b、c成等差数列;(2)a、b、c成等比数列,现给出三个结论:(1);(2);(3)。
请你选取给定的两个条件中的一个条件为条件,三个结论中的两个为结论,组建一个你认为正确的命题,并证明之。
(I)组建的命题为:已知_______________________________________________求证:①__________________________________________②__________________________________________(II)证明:【答案】略【解析】可以组建命题一:△ABC中,若a、b、c成等差数列,求证:(1)0<B≤(2);命题二:△ABC中,若a、b、c成等差数列求证:(1)0<B≤(2)1<≤命题三:△ABC中,若a、b、c成等差数列,求证:(1)(2)1<≤命题四:△ABC中,若a、b、c成等比数列,求证:(1)0<B≤(2)1<≤下面给出命题一、二、三的证明:(1)∵a、b、c成等差数列∴2b=a+c,∴b=≥且B∈(0,π),∴0<B≤(2)(3)∵0<B≤∴∴∴下面给出命题四的证明:(4)∵a、b、c成等比数列∴b2=a+c,且B∈(0,π),∴0<B≤6.(本小题满分12分)已知数列为等差数列,为其前项和,且().(1)求,;(2)若,,()是等比数列的前三项,设,求.【答案】(1);(2)【解析】(1)当时,,利用等式求出首项,第二步,令,,求出第二项,因为是等差数列,所以,代入等差数列的通项公式,然后再代入题设中所给的等式,求和;(2)按等差设,将,,三项设出,然后,求出,同时得到等比数列中的,然后再求公比,最后求出等比数列的通项,求和,按照错位相减法求和.试题解析:(1).,又,故;又,故,得;等差数列的公差..所以,.(2)由已知有,故,即.解得,或,又,故.等比数列的公比为,首项为.所以.所以.... 12分...【考点】1.等差数列;2.等比数列;3.错位相减法求和.7.在等比数列{an }中,如果a6=6,a9=9,那么a3为()A.4B.C.D.2【答案】A【解析】根据等比数列的性质,,代入数据解得.【考点】等比数列的性质8.设an =-n2+10n+11,则数列{an}前n项的和最大时n的值为()A.10B.11C.10或11D.12【答案】C【解析】,,所以当,时,,当时,,所以前非负数项的和最大,即,或.【考点】1.数列的定义;2.数列的和的最大值.9.若数列的前n项和为,则()A.B.C.D.【答案】A【解析】此题是已知求通项,当时,,当时,,验证:当时,成立,所以.【考点】已知求10.(本题12分)已知数列的前n项和为满足:.(1)求证:数列是等比数列;(2)令,对任意,是否存在正整数m,使都成立?若存在,求出m的值;若不存在,请说明理由.【答案】(1)详见解析;(2)【解析】(1)已知,求,利用公式,得到关于数列的递推公式,,,然后列式等于常数,所以是等比数列;(2)第一步,先计算,同时求和,得到的通项公式,第二步,计算,并且根据裂项相消法得到数列的和,和是,第三步,当恒成立,等价于,并且.试题解析:(1)当时,,解得, 1分当时,由得, 2分两式相减,得,即(), 3分则,故数列是以为首项,公比为3的等比数列.(2)由(1)知,,所以,则,由对任意都成立,得,即对任意都成立,又,所以m的值为1,2,3.【考点】1.已知求;2.等比数列的定义;3.裂项相消法求和;4.等差数列;5.数列的最值.11.等差数列中,已知,,,求n.【答案】【解析】本题主要考察等差数列的性质,在本题中,给出了两个不连续的数和前n项和,让我们求n,首先需要根据不连续的两个数值,列出有关第一项和公差的方程组,解出第一项和公差,再运用等差数列的前n项和公式联系本题所给条件,解出n的数值,即为本题答案。
(word版)高一数学数列部分经典习题及答案

..数列一.数列的概念:〔1〕a n n2n(n*),那么在数列{a n}的最大项为__〔答:1〕;156N25〔2〕数列{a n}的通项为a n an ,其中a,b均为正数,那么a n与a n1的大小关系为__〔答:an a n1〕;bn1〔3〕数列{a n}中,a n n2n,且{a n}是递增数列,求实数的取值范围〔答:3〕;二.等差数列的有关概念:1.等差数列的判断方法:定义法a n1a n d(d为常数〕或a n1a n a n a n1(n2)。
设{a n}是等差数列,求证:以b n=a1a2n a n nN*为通项公式的数列{b n}为等差数列。
2.等差数列的通项:a n a1(n1)d或a n a m(n m)d。
(1)等差数列{a n}中,a1030,a2050,那么通项a n〔答:2n10〕;〔2〕首项为-24的等差数列,从第10项起开始为正数,那么公差的取值范围是______〔答:8d3〕33.等差数列的前n和:S n n(a1a n),Sn na1n(n1)d。
22〔1〕数列{a n}中,a n a n11(n2,n N*),a n3,前n项和S n15,求a1,n〔答:a13,n10〕;222〔2〕数列{a n}的前n项和S n12n2{|a n|}的前n项和T n〔答:T n12n n2(n6,n N*)〕. n,求数列n212n72(n6,n N*)三.等差数列的性质:1.当公差d0时,等差数列的通项公式a n a1(n1)d dna1d是关于n的一次函数,且率为公差d;前n和S n na1n(n1)d d n2(a1d)n是关于n的二次函数且常数项为0 .2222.假设公差d0,那么为递增等差数列,假设公差d0,那么为递减等差数列,假设公差d0,那么为常数列。
3.当mn p q时,那么有a m a n a pa q,特别地,当m n2p时,那么有a m a n2a p.〔1〕等差数列{a n}中,S n18,a n a n1a n23,S31,那么n=____〔答:27〕〔2〕在等差数列a n中,a100,a110,且a11|a10|,Sn是其前n项和,那么..A、S1,S2L S10都小于0,S11,S12L都大于0B、S1,S2L S19都小于0,S20,S21L都大于0C、S1,S2L S5都小于0,S6,S7L都大于0D、S1,S2L S20都小于0,S21,S22L都大于0〔答:B〕4.假设{a n}、{b n}是等差数列,{ka n}、{ka n pb n}(k、p是非零常数)、{a pnq}(p,q N*)、S n,S2n S n,S3n S2n,⋯也成等差数列,而{a a n}成等比数列;假设{a n}是等比数列,且a n0,{lg a n}是等差数列.等差数列的前n和25,前2n和100,它的前3n和。
高一数学必修一数列练习题含答案

高一数学必修一数列练习题含答案这里提供高一数学必修一数列的练题,供同学们练和复使用,每个题目均附有答案。
填空题1. 已知数列 $\{a_n\}$ 的前 $n$ 项和 $S_n=2n^2-n$,则$a_3+a_5=$ _________。
<br>解:由已知可得 $S_3=a_1+a_2+a_3=2\cdot 3^2-3=15$,$S_5=a_1+a_2+\cdots+a_5=2\cdot 5^2-5=45$,故 $a_3+a_5=(S_3-S2)+(S_5-S_4)=15+15=30$。
2. 已知数列 $\{a_n\}$ 的通项公式 $a_n=2^n-3\times 2^{n-1}$,则 $a_{25}-a_{24}=$ _________。
<br>解:$a_{25}-a_{24}=2^{25}-3\times 2^{24}-[2^{24}-3\times2^{23}]=2^{25}-2\times 2^{24}+3\times2^{23}=2^{23}+3\times 2^{23}=8\times 2^{23}$。
计算题1. 已知等差数列 $\{a_n\}$ 的第 $1$ 项为 $2$,公差为 $3$,求第 $10$ 项。
<br>解:$a_{10}=a_1+9d=2+9\times 3=29$。
2. 已知等比数列 $\{a_n\}$ 的第 $1$ 项为 $2$,公比为 $3$,求前 $5$ 项的和。
<br>解:$\sum_{i=1}^5 a_i=\frac{a_1(1-q^5)}{1-q}=\frac{2(1-3^5)}{1-3}=\frac{242}{3}$。
应用题1. 已知数列 $\{a_n\}$ 满足 $a_1=1$,$a_n=a_{n-1}+\frac{2}{a_{n-1}}$,求 $a_4$ 的值。
<br>解:$a_2=1+\frac{2}{1}=3$,$a_3=3+\frac{2}{3}=\frac{11}{3}$,$a_4=\frac{11}{3}+\frac{2}{\frac{11}{3}}=\frac{61}{18}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ).A .667B .668C .669D .6702.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ).A .33B .72C .84D .1893.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ).A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 54.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则 |m -n |等于( ).A .1B .43C .21D . 83 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ).A .81B .120C .168D .1926.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ).A .4 005B .4 006C .4 007D .4 0087.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ).A .-4B .-6C .-8D . -108.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S =( ). A .1 B .-1 C .2 D .21 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则212b a a -的值是( ). A .21 B .-21 C .-21或21 D .41 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).A .38B .20C .10D .9二、填空题11.设f (x )=221+x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为 .12.已知等比数列{a n }中,(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= .(2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6= .(3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= .13.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 . 14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为 .15.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .16.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)= ;当n >4时,f (n )= .三、解答题17.(1)已知数列{a n }的前n 项和S n =3n 2-2n ,求证数列{a n }成等差数列.(2)已知a 1,b 1,c 1成等差数列,求证ac b +,b a c +,c b a +也成等差数列. 18.设{a n }是公比为 q 的等比数列,且a 1,a 3,a 2成等差数列.(1)求q 的值;(2)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由.19.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n n 2+S n (n =1,2,3…). 求证:数列{nS n }是等比数列.第二章 数列参考答案一、选择题1.C解析:由题设,代入通项公式a n =a 1+(n -1)d ,即2 005=1+3(n -1),∴n =699.2.C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{a n }的公比为q (q >0),由题意得a 1+a 2+a 3=21,即a 1(1+q +q 2)=21,又a 1=3,∴1+q +q 2=7.解得q =2或q =-3(不合题意,舍去),∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84.3.B .解析:由a 1+a 8=a 4+a 5,∴排除C .又a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8.4.C解析:解法1:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4,∴d =21,a 1=41,a 4=47是一个方程的两个根,a 1=43,a 3=45是另一个方程的两个根. ∴167,1615分别为m 或n , ∴|m -n |=21,故选C . 解法2:设方程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n .由等差数列的性质:若γ+s =p +q ,则a γ+a s =a p +a q ,若设x 1为第一项,x 2必为第四项,则x 2=47,于是可得等差数列为41,43,45,47, ∴m =167,n =1615, ∴|m -n |=21. 5.B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27,∴q =3,a 1q =9,a 1=3,∴S 4=3-13-35=2240=120. 6.B解析:解法1:由a 2 003+a 2 004>0,a 2 003·a 2 004<0,知a 2 003和a 2 004两项中有一正数一负数,又a 1>0,则公差为负数,否则各项总为正数,故a 2 003>a 2 004,即a 2 003>0,a 2 004<0.∴S 4 006=2+006400641)(a a =2+006400420032)(a a >0,∴S 4 007=20074·(a 1+a 4 007)=20074·2a 2 004<0, 故4 006为S n >0的最大自然数. 选B .解法2:由a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,同解法1的分析得a 2 003>0,a 2 004<0,∴S 2 003为S n 中的最大值.∵S n 是关于n 的二次函数,如草图所示,∴2 003到对称轴的距离比2 004到对称轴的距离小,∴20074在对称轴的右侧. 根据已知条件及图象的对称性可得4 006在图象中右侧零点B 的左侧,4 007,4008都在其右侧,S n >0的最大自然数是4 006.7.B解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6,又由a 1,a 3,a 4成等比数列,∴(a 1+4)2=a 1(a 1+6),解得a 1=-8,∴a 2=-8+2=-6.8.A解析:∵59S S =2)(52)(95191a a a a ++=3559a a ⋅⋅=59·95=1,∴选A . 9.A解析:设d 和q 分别为公差和公比,则-4=-1+3d 且-4=(-1)q 4,∴d =-1,q 2=2,(第6题)∴212b a a -=2q d -=21. 10.C解析:∵{a n }为等差数列,∴2n a =a n -1+a n +1,∴2n a =2a n ,又a n ≠0,∴a n =2,{a n }为常数数列,而a n =1212--n S n ,即2n -1=238=19,∴n =10.二、填空题11.23.解析:∵f (x )=221+x , ∴f (1-x )=2211+-x =x x 2222⋅+=x x 22221+, ∴f (x )+f (1-x )=x 221++x x 22221+⋅=x x 222211+⋅+=x x 22)22(21++=22. 设S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6),则S =f (6)+f (5)+…+f (0)+…+f (-4)+f (-5),∴2S =[f (6)+f (-5)]+[f (5)+f (-4)]+…+[f (-5)+f (6)]=62,∴S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=32.12.(1)32;(2)4;(3)32.解析:(1)由a 3·a 5=24a ,得a 4=2,∴a 2·a 3·a 4·a 5·a 6=54a =32.(2)9136)(324222121=⇒⎩⎨⎧=+=+q q a a a a , ∴a 5+a 6=(a 1+a 2)q 4=4.(3)2=+=+++=2=+++=4444821843214q q S S a a a S a a a a S ⇒⎪⎩⎪⎨⎧⋅⋅⋅, ∴a 17+a 18+a 19+a 20=S 4q 16=32.13.216.解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与38,227同号,由等比中项的中间数为22738⋅=6,∴插入的三个数之积为38×227×6=216. 14.26.解析:∵a 3+a 5=2a 4,a 7+a 13=2a 10,∴6(a 4+a 10)=24,a 4+a 10=4,∴S 13=2+13131)(a a =2+13104)(a a =2413⨯=26. 15.-49.解析:∵d =a 6-a 5=-5,∴a 4+a 5+…+a 10 =2+7104)(a a =25++-755)(d a d a =7(a 5+2d )=-49.16.5,21(n +1)(n -2). 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f (k )=f (k -1)+(k -1).由f (3)=2,f (4)=f (3)+3=2+3=5,f (5)=f (4)+4=2+3+4=9,……f (n )=f (n -1)+(n -1),相加得f (n )=2+3+4+…+(n -1)=21(n +1)(n -2). 三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数.证明:(1)n =1时,a 1=S 1=3-2=1,当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5,n =1时,亦满足,∴a n =6n -5(n ∈N*).首项a 1=1,a n -a n -1=6n -5-[6(n -1)-5]=6(常数)(n ∈N*),∴数列{a n }成等差数列且a 1=1,公差为6.(2)∵a 1,b 1,c 1成等差数列, ∴b 2=a 1+c1化简得2ac =b (a +c ). a c b ++c b a +=ac ab a c bc +++22=ac c a c a b 22+++)(=ac c a 2+)(=2++2)()(c a b c a =2·bc a +, ∴a c b +,b a c +,cb a +也成等差数列. 18.解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q ,∵a 1≠0,∴2q 2-q -1=0,∴q =1或-21. (2)若q =1,则S n =2n +21-)(n n =23+2n n . 当n ≥2时,S n -b n =S n -1=22+1-))((n n >0,故S n >b n . 若q =-21,则S n =2n +21-)(n n (-21)=49+-2n n . 当n ≥2时,S n -b n =S n -1=4-11-)0)((n n , 故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n .19.证明:∵a n +1=S n +1-S n ,a n +1=nn 2+S n , ∴(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1) S n , 所以1+1+n S n =n S n 2. 故{n S n }是以2为公比的等比数列.。