空间点线面位置关系复习
空间点线面位置关系

(1)利用线面垂直的判定定理:a⊥b,a⊥c,b∩c=M,b⊂α,c⊂α⇒a⊥α
(2)利用平行线垂直于平面的传递性:a//b,a⊥α⇒b⊥α
(3)利用面面垂直的性质定理α⊥β,α∩β=l,a⊥l,a⊂β⇒a⊥α
(4)利用面面平行的性质α//β,a⊥β⇒a⊥α
(5)利用面面垂直的性质α∩β=l,α⊥γ,β⊥γ⇒l⊥γ
(1)DE//平面AA'C'C;
(2)BC'⊥AB'.
例2如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB//平面AEC;
(2)设二面角D-AE-C为60°,AP=1,AD= ,
求三棱锥E-ACD的体积.
直线、平面垂直的判定与性质
【知识清单】
一、线面垂直的判定和性质
平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求证:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值;
(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求BD/BC1的值。
3.两条直线被三个平行平面所截,截得的对应线段成比例;
4.同一条直线与两个平行平面所成角相等。
平行问题的转化:线线平行 线面平行 面面平行 线面平行
方法1 证明线面平行的方法
(1)利用线面平行的定义(一般用于反证法);
(2)利用线面平行的判定定理;(3)利用面面平行的性质.
方法2 平面与平面平行的判定方法
AB和A 的中点.
求证:(1)E、C、 F、四点共面;
(2)CE, F,DA三线共点.
方法2 异面直线所成角的求解方法
1、平移直线(线段)法(定义法):
点线面间的位置关系知识点总结(含题)(

点线面间的位置关系知识点总结一、三个公理公理1如果一条直线上的两点在一个平面内,那么_________________________________________公理2:过________________________ 的三个点,有且只有一个平面公理3:如果两个不重合的平面有一个公共点,那么它们有且只有_____________________________二、空间两条直线间的位置关系分类为:______________ , ______________ ,_______________ ;其中__________ , _________ 合称为______________三、空间直线与平面间的位置关系分类为:__________________ ,____________ ,__________________ ;其中__________ , _________ 合称为______________四、空间平面与平面间的位置关系分类为:______________ ,当两个平面成90。
时,属于____________ 关系常用证明技巧一、线面平行列1 (2IH1年怀化楓蝌)如图所示*已知几0是单位止方WABCn-A^.C^的面A^BA和面』肮2>的中心*求证:卩总〃平面ncr^n.练习1. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q且AP = DQ. 求证:PQ//平面BCE.2・妇匿,四棱链/一乩噸一平面所裁*截面为平厅四边形吕他求证,m/zz面日捌3* (加10年彌考■陕丙雜)如图’在四棱饰P ABCD中.底血ABCD^矩形「只4 丄平SLUJC/h .lP-.Ltf, BP-IiC-1, E, F分别&l f B T PC 的中点.门)证明* EF//平血知";卩)求二棱锥E—.【号「的休枳匚(2)1/3二、线面垂直1、(2006年北京卷)如图,在底面为平行四边形的四棱锥P ABCD中,AB 点E是PD的中点•(I)求证:AC PB ; (n)求证:PB〃平面AEC ;2、( 2006年浙江卷)如图,在四棱锥P-ABCD中,底面为直角梯形BAD=90 ° ,PA丄底面ABCD,且PA= AD=AB=2BC,M、N 分别为PC、PB 求证:PB丄DM;3、(2006年福建卷)如图,四面体ABCD中,0、E分别是BD、BC的中点,CA(I)求证:AO 平面BCD;AC , PA 平面ABCD,且PA AB , CB CD BD 2, AB AD . 2.,AD // BC, /的中点•ADOE4、( 2006年重庆卷)如图,在四棱锥P—ABCD中,PA 底面ABCD, PC、DAB 为直角,AB II CD,AD=CD=24B,E、F 分另U为CD的中点.(I)试证:CD 平面BEF;5、(全国H ?理?9题)如图,在四棱锥SCS-ABCD中,底面ABCD为正方形,侧棱SD丄底面ABCD , E、F分别是AB、的中点。
空间点线面位置关系(复习)-PPT

【知识梳理】 1.平面的性质 填一填
表示 基本性质
文字语言
图形语言
符号语言
公理1
如果一条直线上 的两点在一个平 面内,那么:
这条直线上的所有 点都在这个平面内
Al
Bl A
l
B
表示 基本性质
(√ )
一记
外一点有(
)条直线与已知直线平行.
外一点有(
)个平面与已知直线垂直.
外一点有(
)个平面与已知平面平行.
外一点有(
)条直线与已知平面垂直.
且只有一 且只有一 且只有一 且只有一
真题小试 感悟考题 试一试
(1)(2013·安徽高考)在下列命题中,不是公理的是 ( ) A.平行于同一个平面的两个平面相互平行 B.过不在同一条直线上的三点,有且只有一个平面 C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都 在此平面内 D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该 点的公共直线 【解析】选A.因为B,C,D是经过人类长期反复的实践检验是真实的,不 需要由其他判断加以证明的命题和原理,是公理.而A平行于同一个平 面的两个平面平行是性质定理而不是公理.
[提醒]
(1)三点不一定确定一个平面.当三点共线时,可有无数个平
面.
(2)公理与推论中“有且只有”的含义是“存在且唯一”,
“有且只有”有时也说成“确定”.
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
(5)异面直线所称的角
(1)定义:设 a,b 是两条异面直线,经过空间中任一点 O 作直 线 a′∥a,b′∥b,把 a′与 b′所成的锐角(或直角)叫做异面直 线 a 与 b 所成的角(或夹角).
人教高中数学必修第二册8.4空间点线面之间的位置关系 知识点

位置关系
交点个数图形Βιβλιοθήκη 言符号语言直线在平面内
无数个
直线在平面外
直线与平面相交
只有一个
直线与平面平行
没有
2、直线和平面平行
1.定义:如果一条直线和一个平面没有公共点,那么这条直线与这个平面平行.
2.判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.
推论3:经过两条平行直线,有且只有一个平面.
(1)以上是确定平面的四个不同的条件,是判断两个平面重合的依据,是证明点线共面的依据,也是作截面、辅助面的依据.
(2)“有且只有一个”的含义要准确理解.这里的“有”是说图形的存在,“只有一个”是说图形唯一.因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.
(3)异面直线所成角的范围是 .
2.求异面直线所成角的步骤
(1)恰当选点,由平移构造出一个交角;
(2)证平行关系成立;
(3)把角放入三角形或其它平面图形中求出;
(4)作结论:若求出的角是锐角或直角,则它就是所求异面直线所成的角;若求出的角是钝角,则它的补角才是所求异面直线所成的角.
七、直线、平面的位置关系
5.直线与平面垂直的性质
(1)性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.
符号语言:a⊥α,b⊥α⇒a∥b,
如图:
(2)一条直线垂直于一个平面,它就和平面内的任意一条直线垂直.
符号语言:a⊥α,b⊂α⇒a⊥b,
如图:
6.设P是三角形ABC所在平面α外一点,O是P在α内的射影
(1)若PA=PB=PC,则O为△ABC的外心.特别地当∠C=90°时,O为斜边AB中点.
必修2 第二章空间点线面的位置关系知识点

必修2 第二章《点、直线、平面之间的位置关系》知识点
编写人:元丽丽
第一讲 空间点、直线、平面之间的位置关系 1.四个公理
2.异面直线的概念:把 的两条直线叫做异面直线.
3.等角定理
空间中如果有两个角的两边分别对应平行,那么这两个角 或 . 4.两条异面直线所成的角(夹角)
(1)定义:已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或 角)叫异面直线,a b 所成的夹角. (2)异面直线所成角的范围:
5.空间两条直线的位置关系:
7.空间中平面与平面之间的位置关系
第二讲 直线、平面平行的判定及其性质
1.四个定理
第三讲直线、平面平垂直的判定及其性质
1.直线与平面垂直:
如果直线l与平面α内的一条直线都垂直,我们就说直线l与平面α垂直,记作 .
直线l叫做平面α的,平面α叫做直线l的 .直线与平面的公共点P叫做 .
2. 直线与平面所成的角:
过斜足上斜足以外的一点向平面平面引,过和的直线叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的,叫做这条直线和这个平面所成的角.
角的取值范围: .
3.二面角。
空间点线面位置关系(复习)ppt课件

[提醒]
(1)三点不一定确定一个平面.当三点共线时,可有无数个平 面.
(2)公理与推论中“有且只有”的含义是“存在且唯一”, “有且只有”有时也说成“确定”.
(5)异面直线所称的角
(1)定义:设 a,b 是两条异面直线,经过空间中任一点 O 作直 线 a′∥a,b′∥b,把 a′与 b′所成的锐角(或直角)叫做异面直 线 a 与 b 所成的角(或夹角).
B)
①如果两个平面有三个不在一条直线上的公共点,那么这两个平面重
合;
②两条直线可以确定一个平面; ③空间中,相交于同一点的三条直线在同一平面内; ④若M∈α ,M∈β ,α ∩β =l,则M∈l. A.1 B.2 C.3 D.4
5.(2014· 广东高考)若空间中四条两两不同的直线 l1,l2,l3,l4,满 足 l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是 A.l1⊥l4 B.l1∥l4 ( )
A,B,C三点不共线 ⇒有且只有一个平 面α,使A∈α, B∈α,C∈α
公理3
如果不重合的两 个平面有一个公 共点,那么它们 有且只有:
P ⇒ P
α∩β=l, 且P∈l
一条过这个点的公 共直线
• 2空间两条直线的位置关系:
①位置关系分类:
相交 平行 任何一个平面 ②基本性质4和等角定理:
2.(2015·江苏高考)已知 l,m 是两条不同的直线,α,β 是两 个不同的平面,下列命题: ①若 l⊂α,m⊂α,l∥β,m∥β,则 α∥β; ②若 l⊂α,l∥β,α∩β=m,则 l∥m; ③若 α∥β,l∥α,则 l∥β; ④若 l⊥α,m∥l,α∥β,则 m⊥β. 其中真命题________( ②④ 写出所有真命题的序号).
空间点线面的位置关系知识点归纳
空间点、线、面之间的位置关系知识点归纳1. 平面的表示法概念几何里的平面是_________, 常用平行四边形表示平面。
表示法平面一般用一个希腊字母α、β、γ…来表示,也可以用平行四边形的对角线上两个点的字母来表示。
若A、B、C三点不共线,则可称平面ABC。
2.平面的基本性质公理1如果一条直线的_______在一个平面内,那么这条直线上的所有点都在这个平面内。
公理2 过______________________的三点,有且只有一个平面。
推论1过一条直线和______________一点,有且只有一个平面。
推论2 经过两条________直线,有且只有一个平面。
推论3经过两条________直线,有且只有一个平面。
公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的_______________。
学法指导①公里1可证明直线在平面内,只要证明直线上有两个点在平面内即行。
②公里2体现了平面无限延展的性质。
利用公里2可证明两个平面相交(只需证明一个点同时在两个平面内),也可证明若干个点共线(证明若干个点同时在两个平面内,则这若干个点在两个平面的交线上,即共线)。
③公里3及三个推论是确定平面的条件,是将空间几何转化为平面几何的理论基础。
公里3中已知的三点不能在同一条直线上,推论1中已知的点不能在直线上,这些条件都不可以削弱,否则就有无数个平面。
3.异面直线__________________一个平面内的两条直线叫做异面直线。
即空间内既不平行又不相交的直线。
为了表示异面直线不共面的特点,作图时,通常用一个或两个平面衬托(如课本第45页的图)4.空间直线间、平面间的位置关系(1)两条直线的位置关系①相交直线:同一平面内,有且只有一个公共点;②平行直线:同一平面内,没有公共点;③异面直线:不同在任何一个平面内,没有公共点。
相交直线和平行直线也称共面直线(2)两个平面的位置关系①两个平行平面:没有公共点;②两个相交平面:有一条公共直线。
空间点线面之间位置关系知识点总结
4.斜二测法:在坐标系 中画直观图时,图形中平行于坐标轴的线段保持平行性不变,平行于x轴〔或在x轴上〕的线段保持长度不变,平行于y轴〔或在y轴上〕的线段长度减半。 重点记忆:直观图面积= 原图形面积
(三)空间几何体的外表积与体积
1、空间几何体的外表积
— 2.1.4 空间中直线与平面、平面与平面之间的位置关系
1、直线与平面有三种位置关系:
〔1〕直线在平面内 —— 有无数个公共点
〔2〕直线与平面相交 —— 有且只有一个公共点
〔3〕直线在平面平行 —— 没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示
a α a∩α=A a∥α
2 平面的画法及表示
〔1〕平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长〔如图〕
〔2〕平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
3 三个公理:
如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。
L
p
α
2、判定定理:一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。
注意点: a)定理中的“两条相交直线〞这一条件不可无视;
4 注意点:
① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为简便,点O一般取在两直线中的一条上;
② 两条异面直线所成的角θ∈(0,);
(完整word版)知识讲解_空间点线面的位置关系(基础)
空间点线面的位置关系【考纲要求】(1)理解空间直线、平面位置关系的定义; (2)了解可以作为推理依据的公理和定理;(3)能运用公理、定理和已经获得的结论证明一些空间图形的位置关系的简单命题。
【知识网络】【考点梳理】考点一、平面的基本性质1、平面的基本性质的应用(1)公理1:可用来证明点在平面内或直线在平面内;(2)公理2:可用来确定一个平面,为平面化作准备或用来证明点线共面; (3)公理3:可用来确定两个平面的交线,或证明三点共线,三线共点。
2、平行公理主要用来证明空间中线线平行。
3、公理2的推论:(1)经过一条直线和直线外一点,有且只有一个平面; (2)经过两条相交直线,有且只有一个平面; (3)经过两条平行直线,有且只有一个平面。
4、点共线、线共点、点线共面空间点线面位置关系三个公理、三个推论 平面平行直异面直相交直公理4及等角定理 异面直线所成的角 异面直线间的距离直线在平面内直线与平面平行 直线与平面相交 空间两条直概念垂斜空间直线 与平面 空间两个平面两个平面平行两个平面相交三垂线定理 直线与平面所成的角(1)点共线问题证明空间点共线问题,一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这些点都在这两个平面的交线上。
(2)线共点问题证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上。
要点诠释:证明点线共面的常用方法①纳入平面法:先确定一个平面,再证明有关点、线在此平面内;②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α、β重合。
考点二、直线与直线的位置关系(1)位置关系的分类⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线平行直线异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b 是两条异面直线,经过空间中任一点O 作直线a ’∥a,b ’∥b,把a ’与b ’所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:02π⎛⎤ ⎥⎝⎦,要点诠释:证明两直线为异面直线的方法:1、定义法(不易操作)2、反证法:先假设两条直线不是异面直线,即两直线平行或相交,由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设肯定两条直线异面。
点线面位置关系(知识点加典型例题)
点线面位置关系(知识点加典型例题)2.1 空间中点、直线、平面之间的位置关系2.1.1 空间点、直线、平面之间的位置关系本节主要介绍空间中点、直线、平面之间的位置关系,其中重点是空间直线和平面的位置关系,难点是三种语言(文字语言、图形语言、符号语言)的转换。
在介绍空间点、直线和平面之间的位置关系前,我们需要了解三个公理。
公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
符号表示为 A∈L,B∈L =。
Lα,A∈α,B∈α。
公理1的作用是判断直线是否在平面内。
公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为 A、B、C三点不共线 =。
有且只有一个平面α,使A∈α、B∈α、C∈α。
公理2的作用是确定一个平面的依据。
推论有:①一条直线和其外一点可确定一个平面;②两条相交直线可确定一个平面;③两条平行直线可确定一个平面。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P∈α∩β =。
α∩β=L,且P∈L。
公理3的作用是判定两个平面是否相交的依据。
另外,还有等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等。
在了解了这些公理后,我们可以进一步探讨空间中点、直线和平面之间的位置关系。
空间中两条不重合的直线有三种位置关系:相交、平行、异面。
异面直线所成角θ的范围是<θ≤90°。
2.1.2 空间中直线与直线之间的位置关系在空间中,两条直线有如下三种关系:相交直线(同一平面内,有且只有一个公共点)、共面直线、平行直线(同一平面内,没有公共点)和异面直线(不同在任何一个平面内,没有公共点)。
公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条直线,a∥b,c∥b。
公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4的作用是判断空间两条直线平行的依据。
另外,等角定理指出,如果空间中两个角的两边分别对应平行,那么这两个角相等或互补。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:空间几何复习
知识点梳理
知识点1:线面平行
直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。
简单概括:(内外)线线平行⇒线面平行
符号表示:
图形语言
注意:1.线面平行的判定定理的数学符号表示其中三个条件缺一不可
2. 线线平行⇒线面平行,线线平行是条件的核心
关键:在平面内找(或作)出一条直线与面外的直线平行。
证明平行的方法:(1)同位角,内错角,同旁内角(2)平行四边形类(3)三角形的中位线(4)成比例线段 知识点2:面面平行
平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.
用符号表示为:
方法:证明两次的线面平行
注意:这这条直线一定要有交点。
知识点3:线面垂直
定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.
几何语言:
重要推论:的所有直线垂直于平面则若ααl l ,⊥
证明过程:先证明线线垂直(2次),再证明线面垂直
垂直的证明:1.矩形和正方形2.等腰角形三线合一3.勾股定理4.棱形的对角线5.向量的数量积为0.
ααα||||a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄a b
α//////a b a b P a b β
ββααα⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭
a l ⊥
b l ⊥α⊂a α⊂b A b a = α⊥⇒⎪⎪⎭⎪⎪⎬⎫l b a
l αA
知识点4:面面垂直
定理:若一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.
几何语言: 证明过程:先证明线面垂直,再到面面垂直,关键证明线面垂直。
知识点5:面面垂直的性质
定理:如果两个平面垂直,那么在一个平面内垂直于交线的直线必垂直于另一个平面
几何语言: 知识点6:外接球
1. 定点不在高上的公式:222)2(h r R +=,R 为求的半径;r 为小圆半径;h 为高
2. 定点在高上的公式:222)(R h r R -+=,R 为求的半径;r 为小圆半径;h 为高
类型1:命题的选择
1.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )
A .,,αγβγαβ⊥⊥若则‖
B .,,m n m n αα⊥⊥若则‖
C .,,m n m n αα若则‖‖‖
D .,,m m αβαβ若则‖‖‖ 2.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确的是( )
A .若//,m n αβ⊥且αβ⊥,则m n ⊥
B .若,m n αβ⊥⊥且m n ⊥,则αβ⊥
C .若,//m n αβ⊥且n β⊥,则//m α
D .若,m n αβ⊂⊂且//m n ,则//αβ
3.对于不同的直线l 、m 、n 及平面α,下列命题中错误的是()
A .若l m ,m n ,则l
n B .若l α⊥,n α,则l n ⊥ C .若l α,n α,则l n D .若l m ⊥,m n ,则l n ⊥
4.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题中正确的是()
A .若,,m n αβαβ⊥⊂⊂,则m n ⊥
B .若//,//,//m n αβαβ,则//m n
C .若//,//m n αα,则//m n
D .若,//,//m m n n αβ⊥,则αβ⊥
βαβα⊥⇒⎭
⎬⎫⊂⊥a a βαβαβα⊥⇒⎪⎪⎭⎪⎪⎬⎫
⊥⊂=⊥b l b b l
类型2:外接球
1.三棱锥D ABC -中,平面DAC ⊥平面ABC ,ABC 和ACD 均为边长是3的正三角形,则三棱锥D ABC -的外接球的表面积为______.
2.已知正三棱柱
的各条棱长都相等,且内接于球O ,若正三棱柱的体积是,则球O
的表面积为_____.
3.已知SAB ∆是边长为2的等边三角形,45ACB ︒∠=,当三棱锥S ABC -体积最大时,其外接球的表面积为__________.
4.直三棱柱111ABC A B C -中,190,2BC A A A ︒∠==,设其外接球的球心为O ,已知三棱锥O ABC -的体积为1,则球O 表面积的最小值为__________.
类型3:解答证明题
1.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD AB ⊥,AB CD ∥,2AD DC AP ===,1AB =,点E 为棱PC 的中点.
(1)证明:BE CD ⊥;
(2)求三棱锥P BDE -的体积.
111C B A ABC -32
2.如图,圆锥PO 中,AB 是圆O 的直径,C 是底面圆O 上一点,且6CAB π∠=,点D 为半径OB 的中点,
连PD .
(1)求证:CD ⊥平面APB ;
(2)当APB ∆是边长为4的正三角形时,求点A 到平面PBC 的距离.
3.如图,已知在直四棱柱1111ABCD A B C D -中,AD DC ⊥,//AB DC ,1222DC DD AD AB ====.
(1)求证:DB ⊥平面11B BCC ;
(2)求点1A 到平面1C BD 的距离.。