司机疲劳驾驶检测系统设计

合集下载

驾驶员疲劳驾驶主动预警系统毕业设计

驾驶员疲劳驾驶主动预警系统毕业设计

驾驶员疲劳驾驶主动预警系统随着社会的发展和车辆的普及,交通事故频发的问题一直备受关注。

而疲劳驾驶是造成交通事故的重要原因之一。

开发一套能够及时预警驾驶员疲劳驾驶的系统显得尤为重要。

本文将针对这一问题开展研究,并设计并实现一套驾驶员疲劳驾驶主动预警系统。

一、研究背景1.1 交通事故频发的问题随着城市化进程的加速,汽车成为一种必需品,车辆数量大幅增加。

而交通事故也因此频发,给社会造成了巨大的安全隐患。

1.2 疲劳驾驶的危害性疲劳驾驶一直是交通事故的重要诱因。

疲劳驾驶会导致驾驶员视觉模糊、反应迟钝、注意力不集中等问题,从而增加了发生交通事故的风险。

1.3 预警系统的必要性为了预防疲劳驾驶导致的交通事故,开发一套能够及时预警驾驶员的系统显得尤为重要。

本文拟对驾驶员疲劳驾驶主动预警系统展开深入研究。

二、研究内容2.1 疲劳驾驶的识别我们需要研究如何准确识别驾驶员的疲劳状态。

我们将通过对驾驶员的眼部运动、头部姿态、手部操作等进行监测,来判断驾驶员是否处于疲劳状态。

2.2 预警信号的输出一旦系统识别出驾驶员疲劳驾驶的情况,需要及时向驾驶员发出预警信号,提醒其休息或者停车休息。

2.3 系统的稳定性和实用性我们需要对设计出来的系统进行稳定性和实用性测试,验证系统是否能够稳定运行并在实际驾驶中发挥作用。

三、设计方案3.1 传感器的选择和布局为了准确监测驾驶员的状态,我们需要选择合适的传感器,并将其合理布局在车辆内部。

可以使用摄像头监测驾驶员的眼部活动,使用加速度传感器监测车辆的运动状态等。

3.2 数据处理算法的选择针对传感器采集到的数据,我们需要选用合适的数据处理算法,对驾驶员的疲劳状态进行识别和判断。

这可能涉及到图像处理、模式识别、机器学习等方面的算法。

3.3 预警信号的输出方式设计合适的预警信号输出方式,例如声音提示、振动提示等,以便及时提醒驾驶员。

四、系统实现4.1 硬件系统的搭建在设计方案确定后,我们将着手搭建硬件系统,包括传感器的安装和连接、预警装置的布置等。

《2024年基于深度学习的疲劳驾驶检测系统的设计与实现》范文

《2024年基于深度学习的疲劳驾驶检测系统的设计与实现》范文

《基于深度学习的疲劳驾驶检测系统的设计与实现》篇一一、引言随着社会的发展和科技的进步,交通安全问题越来越受到人们的关注。

疲劳驾驶作为交通事故的重要原因之一,其危害性不容忽视。

为了有效减少因疲劳驾驶导致的交通事故,本文提出了一种基于深度学习的疲劳驾驶检测系统。

该系统通过深度学习算法对驾驶员的面部特征进行识别和分析,实现对驾驶员疲劳状态的实时检测和预警。

二、系统设计(一)系统架构本系统采用客户端-服务器架构,其中客户端负责实时获取驾驶员的面部图像并进行预处理,服务器端则负责接收客户端传输的图像数据,并利用深度学习算法进行疲劳状态检测。

系统架构图如下:1. 客户端:包括摄像头、图像预处理模块、数据传输模块。

2. 服务器端:包括接收模块、深度学习模块、预警模块和数据库。

(二)模块设计1. 图像预处理模块:该模块主要负责通过摄像头获取驾驶员的面部图像,并进行灰度化、归一化等预处理操作,以便后续的深度学习算法处理。

2. 深度学习模块:该模块是本系统的核心部分,采用深度卷积神经网络(CNN)对预处理后的图像进行特征提取和分类,判断驾驶员是否处于疲劳状态。

3. 预警模块:当深度学习模块判断驾驶员处于疲劳状态时,预警模块将触发警报,并向驾驶员发出语音或文字提示,提醒其休息。

4. 数据库模块:用于存储驾驶员的疲劳状态数据、历史记录等信息,以便后续的数据分析和处理。

(三)算法选择与实现本系统采用深度卷积神经网络(CNN)进行疲劳状态检测。

首先,通过大量带标签的驾驶员面部图像训练CNN模型,使其具备识别驾驶员面部特征和判断疲劳状态的能力。

然后,将预处理后的驾驶员面部图像输入到训练好的CNN模型中,通过前向传播得到驾驶员的疲劳状态判断结果。

三、系统实现(一)硬件设备本系统所需的硬件设备包括摄像头、计算机等。

其中,摄像头用于实时获取驾驶员的面部图像,计算机则负责运行客户端和服务器端的软件程序。

(二)软件开发本系统的软件开发主要包括客户端和服务器端的程序编写、数据库设计等工作。

《基于深度学习的疲劳驾驶检测系统的设计与实现》范文

《基于深度学习的疲劳驾驶检测系统的设计与实现》范文

《基于深度学习的疲劳驾驶检测系统的设计与实现》篇一一、引言随着科技的发展,道路交通安全问题日益受到关注。

其中,疲劳驾驶是导致交通事故的重要原因之一。

为了有效预防和减少因疲劳驾驶引发的交通事故,基于深度学习的疲劳驾驶检测系统应运而生。

本文将详细介绍该系统的设计与实现过程,以期为相关研究与应用提供参考。

二、系统需求分析在系统设计之前,首先需要对疲劳驾驶检测系统的需求进行分析。

本系统旨在实时监测驾驶员的疲劳状态,以便及时提醒驾驶员休息,降低交通事故的发生率。

因此,系统需要具备以下功能:1. 实时性:系统能够实时监测驾驶员的面部特征,及时判断其是否处于疲劳状态。

2. 准确性:系统需具备较高的准确性,以降低误报和漏报的概率。

3. 便捷性:系统应易于安装、使用和维护,为驾驶员提供便捷的体验。

三、系统设计(一)硬件设计本系统主要基于摄像头进行驾驶员面部特征的捕捉,因此需要安装高清摄像头。

此外,为了确保系统的实时性,还需要配备高性能的计算机或嵌入式设备作为处理单元。

具体硬件配置如下:1. 摄像头:高清摄像头,用于捕捉驾驶员的面部特征。

2. 计算机或嵌入式设备:具备较高的计算性能,用于处理图像数据和判断驾驶员的疲劳状态。

(二)软件设计软件设计是本系统的核心部分,主要包括图像处理、特征提取、模型训练和疲劳判断等模块。

具体设计如下:1. 图像处理:对摄像头捕捉的图像进行预处理,如去噪、灰度化、二值化等,以便更好地提取面部特征。

2. 特征提取:通过深度学习算法提取驾驶员面部的关键特征,如眼睛、嘴巴等部位的动态变化。

3. 模型训练:利用大量样本数据训练疲劳检测模型,提高系统的准确性和稳定性。

4. 疲劳判断:根据提取的特征和训练好的模型判断驾驶员是否处于疲劳状态。

四、深度学习模型的选择与实现本系统采用卷积神经网络(CNN)作为核心算法,通过大量样本数据训练模型,实现疲劳驾驶的检测。

具体实现过程如下:1. 数据集准备:收集包含驾驶员面部特征的数据集,包括正常状态和疲劳状态下的图像数据。

防疲劳驾驶系统设计报告

防疲劳驾驶系统设计报告

防疲劳驾驶系统设计报告1. 简介随着城市化的快速发展,机动车辆的数量不断增加,驾驶人员面临的交通压力也逐渐增加。

长时间的驾驶往往会让驾驶人感到疲劳,从而降低了驾驶的安全性。

为了提高交通安全性,我们设计了一种防疲劳驾驶系统。

2. 系统设计目标本防疲劳驾驶系统的设计目标如下:- 及时检测驾驶人员的疲劳状态,防止发生交通事故- 提醒驾驶人员及时休息,保障驾驶安全- 结合智能驾驶技术,实现更加智能的疲劳驾驶检测与预警3. 系统架构本系统采用软硬件结合的方式设计,主要包括以下几个部分:- 摄像头:用于采集驾驶人员的眼部图像- 睡意检测算法:通过分析眼部图像的特征,判断驾驶人员是否处于疲劳状态- 警示装置:用于提醒驾驶人员及时休息或做出反应- 数据处理和智能驾驶系统的集成4. 工作原理本系统的工作流程如下:1. 摄像头采集驾驶人员的眼部图像。

2. 将图像传输至睡意检测算法进行分析。

3. 算法利用深度学习和图像处理技术,提取眼睛的特征,并通过对比以往的训练数据集,判断驾驶人员是否处于疲劳状态。

4. 如果系统检测到驾驶人员疲劳,警示装置将发出提醒声音或震动,提醒驾驶人员及时休息。

5. 驾驶人员可以通过智能驾驶系统的集成,自动寻找最近的休息区域。

5. 系统优势相较于传统的防疲劳驾驶系统,本系统具有以下优势:- 准确性:采用深度学习算法,能够准确判断驾驶人员的疲劳状态,降低误报率。

- 实用性:结合智能驾驶技术,提供了自动找寻休息区域的功能,进一步提升了驾驶的便利性。

- 可扩展性:本系统支持平台化开发,可以通过固件升级和算法训练优化,提高系统的功能和性能。

6. 结论防疲劳驾驶系统是提高交通安全性的重要措施之一。

本系统以深度学习算法为基础,结合图像处理等技术,能够准确检测驾驶人员的疲劳状态,并通过智能化集成提供更便捷的驾驶体验。

在未来,我们将继续优化算法和系统性能,致力于研发更智能、更可靠的防疲劳驾驶系统,为驾驶人员的安全出行提供更有效的保障。

《基于深度学习的疲劳驾驶检测系统的设计与实现》范文

《基于深度学习的疲劳驾驶检测系统的设计与实现》范文

《基于深度学习的疲劳驾驶检测系统的设计与实现》篇一一、引言随着道路交通日益繁忙,驾驶过程中的安全成为越来越重要的问题。

其中,疲劳驾驶作为常见的交通安全隐患,对于道路交通的威胁日益严重。

基于深度学习的疲劳驾驶检测系统以其强大的数据处理和模式识别能力,能够实时监控驾驶员的状态,有效地降低疲劳驾驶的风险。

本文旨在介绍一个基于深度学习的疲劳驾驶检测系统的设计与实现过程。

二、系统设计(一)需求分析首先,我们明确了系统的基本需求,包括实时性、准确性和易用性。

实时性意味着系统能够及时地捕捉到驾驶员的疲劳状态并给出警告;准确性是系统检测的精确度,这是决定系统有效性的关键因素;易用性则关系到系统的普及程度。

(二)硬件设计为满足实时性和准确性要求,我们采用了高分辨率的摄像头和性能稳定的计算设备作为硬件基础。

同时,考虑到车载环境的特殊性,我们还对设备的防震、防尘等特性进行了特别设计。

(三)软件设计软件设计是本系统的核心部分,主要包括数据采集、预处理、特征提取、模型训练和结果输出等模块。

我们采用了深度学习技术中的卷积神经网络(CNN)进行特征提取和模型训练。

三、数据采集与预处理(一)数据来源数据来源主要包括实际道路行驶中的视频数据以及公开的驾驶行为数据集。

通过对这些数据进行标注,我们可以为后续的模型训练提供丰富的数据资源。

(二)数据预处理在数据预处理阶段,我们主要进行图像的归一化、去噪、裁剪等操作,以便于后续的特征提取和模型训练。

同时,我们还需对数据进行标签化处理,即根据驾驶员的疲劳状态对数据进行分类。

四、特征提取与模型训练(一)特征提取在特征提取阶段,我们采用了卷积神经网络(CNN)进行特征的自动提取。

CNN具有强大的特征提取能力,能够从原始图像中提取出有效的视觉特征。

(二)模型训练在模型训练阶段,我们使用了深度学习中的分类算法进行模型的训练。

通过大量的训练数据,我们可以优化模型的参数,提高模型的准确性和泛化能力。

此外,我们还采用了迁移学习的方法,利用预训练模型进行微调,以加快模型的训练速度和提高模型的性能。

司机疲劳驾驶检测系统设计

司机疲劳驾驶检测系统设计

司机疲劳驾驶检测系统设计摘要:随着社会经济的发展,商用长途运输车越来越多,司机为了追求经济效益,经常罔顾交通法的规定疲劳驾驶,而一些私家车也因为各种各样的原因经常铤而走险疲劳驾驶,酿成很多人间惨剧。

为了减少减轻司机的精神压力并对疲劳及时提示预警,本论文以计算机视觉技术为主体,设计实用操作简单的疲劳驾驶检测系统,辅助驾驶员安全驾驶。

司机疲劳驾驶实时检测系统在实际应用中有很重要的意义。

设计了一个利用图像分析的方法,通过测量PERCLOS指标值来进行疲劳判断的该类系统。

系统首先对图像进行预处理,然后采用基于YCbCr颜色空间肤色模型进行人脸粗定位,根据人脸特征,逐次进行人眼区域缩小;最后通过对边缘信息进行先验知识结合积分投影的方法进行人眼定位和闭合度测量。

考虑到视频图像序列帧与帧之间的相关性,采用线性运动预测的方法对人眼进行跟踪,减少了系统的运算量。

实验结果表明系统能实时、准确地反映司机的疲劳状态。

关键词:疲劳驾驶人脸检测肤色检测交通安全疲劳判断总结目录摘要 Abstract1.疲劳驾驶检测系统研究背景与意义2.疲劳驾驶检测系统研究与实现2.1国内外疲劳驾驶检测系统研究现状2.1.1国外疲劳驾驶检测系统的研究成果2.1.2国内疲劳驾驶检测系统的研究现状2.2疲劳驾驶检测系统浅析2.3驾驶员疲劳检测系统的研究2.3.1人脸检测2.3.2人眼定位2.3.3疲劳程度的综合判定3.基于人脸特征的列车司机疲劳驾驶检测与识别系统研究3.1研究内容及目标3.1.1基于人脸特征的疲劳驾驶检测与识别算法开发 3.1.2疲劳驾驶检测与识别算法OSP移植 3.2基于Adaboost算法的人脸检测 3.2.1人脸检测技术概述3.2.2Adaboost人脸检测算法3.3基于Adaboost算法的人脸检测软件实现 3.3.1.样本训练过程3.3.2人脸检测程序3.4人眼检测与人眼状态分析算法 3.4.1基于Adaboost的人眼检测算法 3.4.2人眼级联分类器效果分析 3.4.3人眼状态分析算法4.基于贝叶斯网络的驾驶疲劳程度识别模型4.1基于贝叶斯网络模型的驾驶疲劳程度识别4.2驾驶疲劳程度识别模型4.2.1驾驶疲劳贝叶斯网络结构4.2.2贝叶斯网络条件概率表的确定4.2.3驾驶疲劳程度贝叶斯网络识别模型4.3模型有效性验证5.基于FPGA的疲劳驾驶检测系统设计5.1疲劳驾驶检测系统总体设计方案5.1.1系统红外光源原理5.1.2系统总体设计5.2系统硬件设计与实现5.2.1系统硬件总体架构5.2.2图像采集电路设计总结5.2.3主控板设计5.2.4辅助电路设计5.2.5系统硬件电路的物理测试6.基于 NiosII 多核驾驶疲劳检测系统设计 6.1系统介绍6.2系统关键模块设计6.2.1图像采集模块设计6.2.2图像处理算法6.2.3图像处理算法硬件加速的实现6.2.4数据存储模块设计7.疲劳驾驶预警系统的研究进展7.1预警系统的组成及工作原理7.2典型的疲劳驾驶预警系统7.3疲劳驾驶预警系统比较7.4发展趋势8.新型多功能驾驶员状态监测系统设计8.1无线脑电信号采集和分析8.1.1情绪预警8.1.2疲劳监测8.1.3突发疾病监测8.2酒精监测9.多源信息融合在驾驶疲劳检测中的应用9.1驾驶疲劳特征9.1.1PERCLOS值的计算9.1.2行驶方向改变与驾驶员反应不一致情况9.1.3方向盘动作状态9.1.4连续驾驶时间9.1.5实际时间参数9.2模糊神经网络疲劳识别9.2.1疲劳度量化。

《2024年基于深度学习的疲劳驾驶检测系统的设计与实现》范文

《2024年基于深度学习的疲劳驾驶检测系统的设计与实现》范文

《基于深度学习的疲劳驾驶检测系统的设计与实现》篇一一、引言随着道路交通的日益繁忙,驾驶安全已成为社会关注的焦点。

疲劳驾驶是导致交通事故的重要原因之一。

因此,开发一种能够实时检测驾驶员疲劳状态的检测系统显得尤为重要。

本文将介绍一种基于深度学习的疲劳驾驶检测系统的设计与实现。

二、系统设计(一)系统架构本系统采用模块化设计,主要包括数据采集模块、数据处理模块、深度学习模型模块和结果输出模块。

其中,数据采集模块负责收集驾驶员的面部图像数据;数据处理模块负责对收集到的数据进行预处理,以便于深度学习模型的训练和推理;深度学习模型模块是本系统的核心部分,负责实现疲劳驾驶的检测;结果输出模块则将检测结果以可视化的形式展示给用户。

(二)数据采集与预处理数据采集模块通过车载摄像头收集驾驶员的面部图像数据。

在预处理阶段,系统将对面部图像进行灰度化、归一化、去噪等操作,以提高深度学习模型的训练效果。

此外,系统还需对驾驶员的眼部状态进行精确检测,以便判断其是否处于疲劳状态。

(三)深度学习模型本系统采用卷积神经网络(CNN)作为核心的深度学习模型。

通过训练大量的驾驶员面部图像数据,模型可以学习到疲劳驾驶的特征,从而实现对疲劳驾驶的准确检测。

在模型训练过程中,系统采用批量梯度下降算法对模型参数进行优化,以提高模型的泛化能力。

(四)结果输出与反馈当系统检测到驾驶员处于疲劳状态时,将通过车载显示屏、手机APP等方式向驾驶员发出警报,提醒其注意休息。

同时,系统还将将检测结果上传至云端服务器,以便后续的数据分析和优化。

此外,系统还支持用户反馈功能,用户可以通过手机APP对系统的误报和漏报情况进行反馈,以便系统进行持续改进。

三、系统实现(一)技术选型本系统采用Python作为主要编程语言,利用TensorFlow、Keras等深度学习框架实现深度学习模型的训练和推理。

在数据采集和预处理阶段,系统使用OpenCV等计算机视觉库对图像进行处理。

驾驶员疲劳驾驶检测与预警系统设计

驾驶员疲劳驾驶检测与预警系统设计

驾驶员疲劳驾驶检测与预警系统设计驾驶员疲劳驾驶是一种非常危险的行为,在道路上造成了许多交通事故。

为了减少这些事故的发生,疲劳驾驶检测与预警系统应运而生。

本文将探讨这个系统的设计和功能。

首先,让我们先来了解一下疲劳驾驶对驾驶员的影响。

长时间的开车会让驾驶员感到疲劳和困倦,导致反应能力下降和注意力不集中。

这种状态下,驾驶员很容易发生错觉、分神或者甚至睡着,造成交通事故。

因此,疲劳驾驶检测与预警系统的设计就十分重要了。

疲劳驾驶检测与预警系统主要有两个部分:疲劳检测和疲劳预警。

在疲劳检测方面,系统需要借助各种传感器来监测驾驶员的状态。

例如,通过摄像头可以实时监测驾驶员的眼睛活动和眨眼频率。

当驾驶员长时间地不眨眼或者频繁眨眼时,系统会判断其可能处于疲劳状态。

此外,系统还可以通过感应驾驶员的脑电波来分析其注意力水平和专注程度。

当这些指标低于一定的阈值时,就表明驾驶员可能疲劳。

通过监测这些生理指标,系统可以快速准确地识别疲劳驾驶行为。

当系统检测到驾驶员疲劳时,他应该及时发出预警。

预警的方式有多种,如声音警告、震动提示等。

最常见的是通过车内音响播放一段声音,提醒驾驶员休息或者进行一些活动以防止疲劳。

此外,一些高级别的系统甚至可以通过车辆座椅的震动来提醒驾驶员。

预警信号不仅可以起到提醒驾驶员的作用,也能引起其他乘客的注意,以便他们采取必要的措施。

为了有效地设计这个系统,我们还需要考虑一些其他因素。

首先,系统应该具有高灵敏度和准确性。

它必须能够及时地检测到驾驶员的疲劳状态,以便在事故发生前提前进行预警。

此外,系统还应该能够在各种环境下工作,例如光线暗或者噪音干扰较大的情况下。

为了达到这个目标,我们可以采用先进的算法和强大的处理能力。

此外,系统的设计还应该考虑到用户的需求和体验。

它应该易于安装和使用,并且对用户友好。

一些高级别的系统还可以根据驾驶员的喜好和习惯进行个性化设置,例如音量调节、灵敏度设置等等。

最后,疲劳驾驶检测与预警系统设计应该是一个不断改进的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

司机疲劳驾驶检测系统设计司机疲劳驾驶检测系统设计摘要:随着社会经济的发展,商用长途运输车越来越多,司机为了追求经济效益,经常罔顾交通法的规定疲劳驾驶,而一些私家车也因为各种各样的原因经常铤而走险疲劳驾驶,酿成很多人间惨剧。

为了减少减轻司机的精神压力并对疲劳及时提示预警,本论文以计算机视觉技术为主体,设计实用操作简单的疲劳驾驶检测系统,辅助驾驶员安全驾驶。

司机疲劳驾驶实时检测系统在实际应用中有很重要的意义。

设计了一个利用图像分析的方法,通过测量PERCLOS指标值来进行疲劳判断的该类系统。

系统首先对图像进行预处理,然后采用基于YCbCr颜色空间肤色模型进行人脸粗定位,根据人脸特征,逐次进行人眼区域缩小;最后通过对边缘信息进行先验知识结合积分投影的方法进行人眼定位和闭合度测量。

考虑到视频图像序列帧与帧之间的相关性,采用线性运动预测的方法对人眼进行跟踪,减少了系统的运算量。

实验结果表明系统能实时、准确地反映司机的疲劳状态。

关键词:疲劳驾驶人脸检测肤色检测交通安全疲劳判断目录摘要Abstract1.疲劳驾驶检测系统研究背景与意义............................2.疲劳驾驶检测系统研究与实现2.1国内外疲劳驾驶检测系统研究现状2.1.1国外疲劳驾驶检测系统的研究成果......................2.1.2国内疲劳驾驶检测系统的研究现状......................2.2疲劳驾驶检测系统浅析.............................................2.3驾驶员疲劳检测系统的研究.....................................2.3.1人脸检测2.3.2人眼定位2.3.3疲劳程度的综合判定...........................................................................................3.基于人脸特征的列车司机疲劳驾驶检测与识别系统研究.......................................................................3.1研究内容及目标.........................................................3.1.1基于人脸特征的疲劳驾驶检测与识别算法开发...................................................................................3.1.2疲劳驾驶检测与识别算法OSP移植3.2基于Adaboost算法的人脸检测3.2.1人脸检测技术概述3.2.2Adaboost人脸检测算法3.3基于Adaboost算法的人脸检测软件实现3.3.1.样本训练过程3.3.2人脸检测程序3.4人眼检测与人眼状态分析算法3.4.1基于Adaboost的人眼检测算法3.4.2人眼级联分类器效果分析3.4.3人眼状态分析算法4.基于贝叶斯网络的驾驶疲劳程度识别模型4.1基于贝叶斯网络模型的驾驶疲劳程度识别4.2驾驶疲劳程度识别模型4.2.1驾驶疲劳贝叶斯网络结构4.2.2贝叶斯网络条件概率表的确定4.2.3驾驶疲劳程度贝叶斯网络识别模型4.3模型有效性验证5.基于FPGA的疲劳驾驶检测系统设计5.1疲劳驾驶检测系统总体设计方案5.1.1系统红外光源原理5.1.2系统总体设计5.2系统硬件设计与实现5.2.1系统硬件总体架构5.2.2图像采集电路设计5.2.3主控板设计5.2.4辅助电路设计5.2.5系统硬件电路的物理测试6.基于NiosII 多核驾驶疲劳检测系统设计6.1系统介绍6.2系统关键模块设计6.2.1图像采集模块设计6.2.2图像处理算法6.2.3图像处理算法硬件加速的实现6.2.4数据存储模块设计7.疲劳驾驶预警系统的研究进展....................................7.1预警系统的组成及工作原理7.2典型的疲劳驾驶预警系统7.3疲劳驾驶预警系统比较7.4发展趋势8.新型多功能驾驶员状态监测系统设计8.1无线脑电信号采集和分析8.1.1情绪预警8.1.2疲劳监测8.1.3突发疾病监测8.2酒精监测9.多源信息融合在驾驶疲劳检测中的应用9.1驾驶疲劳特征9.1.1PERCLOS值的计算9.1.2行驶方向改变与驾驶员反应不一致情况9.1.3方向盘动作状态9.1.4连续驾驶时间9.1.5实际时间参数9.2模糊神经网络疲劳识别9.2.1疲劳度量化9.3智能控制技术在汽车疲劳驾驶监控中的应用研究9.3.1硬件描述结束语............................................................................... 参考文献...........................................................................1.研究背景与意义驾驶疲劳川是指驾驶员由于睡眠不足或长时间持续驾驶造成的反应能力下降,这种下降表现在驾驶员困倦、打磕睡、驾驶操作失误或完全丧失驾驶能力。

美国印第安那大学对交通事故原因的调查研究发现85%的事故与驾驶员有关,车辆和环境因素只占15%。

驾驶员在事故发生前一瞬间的行为和故障直接导致了事故的发生,这些行为包括知觉的延迟、对环境的决策错误、对危险情况的处理不当等。

在所有的驾驶员错误中,最常见的是知觉延迟和决策错误,这些错误会产生注意力不集中、反映迟钝、操作不当等,产生这些错误的根本原因就是驾驶疲劳。

随着我国生活水平的提高,人们的衣食住行等方面有了很大的改善,在交通方面更是有了质的飞跃。

四通八达的道路、便捷的交通工具大大地缩短了人与人的距离,其中汽车保有量更是与日俱增,一个家庭拥有两辆以上的小车已经不是什么新鲜的事情。

但是,汽车在带给人们方便的同时,随之而来的交通事故也源源不断。

据统计,我国交通事故死亡人数己连续10多年居世界第一。

我国在滚滚车轮下丧生的人数,短短十几年间己从每年5万多人增长到10多万人,是交通事故死亡人数居世界第二位国家的两倍。

其中,驾驶员疲劳造成交通事故的占总数的20%左右,占特大交通事故的40%以上。

同样,在国外情况也不容乐观。

据美国国家公路交通安全委员会的估计,在美国大约发生56000次与睡眠有关的交通事故,其中约40000人次受伤和1550人死亡。

1965年美国俄克拉荷马州收费公路局发表了1953年至1964年2128名机动车驾驶员发生车辆碰撞事故的调查结果:22%的驾驶员打吨驾驶,48%的交通事故归结于疲劳驾驶疲劳。

由此可以知道,疲劳驾驶正逐渐成为交通事故的主要原因之一,成为马路上的“第一杀手”,如果我们能积极开展疲劳检测的工作,提醒驾驶者,很大程度上就能预防和减少交通事故的发生,使得公民的出行更加安全。

因此,研究出一套疲劳检测的系统对社会和民众都有不可估量的社会意义和经济价值。

一套好的检测系统必须要有成熟而完善的算法。

本文对疲劳检测系统的实现方法进行研究,以期提高疲劳检测的速度和准确度。

如果能将好的算法应用于疲劳检测系统之中,无疑能更有效的预防驾驶员疲劳驾驶而引起不必要的人员伤亡和经济损失。

2. 疲劳驾驶检测系统研究与实现2.1国内外疲劳驾驶检测系统研究现状对疲劳驾驶的研究在国外最早可以追溯到20世纪30年代,但实际上,投入真正研究的却还是从上世纪RO年代美国国会通过的汽车驾驶状态与交通安全之间的关系研究开始的。

进入上世纪90年代,疲劳驾驶的科研工作得到了人们更大的重视,取得了一系列卓有成效的成果。

2.1.1国外疲劳驾驶检测系统的研究成果早期的疲劳驾驶测评主要是从医用角度出发,借助医疗器件进行生理特征测量的。

疲劳驾驶的实质性的研究工作是从20世纪80年代由美国国会批准交通部研究交通安全和机动车驾驶的关系,并健全汽车安全管理条例开始的。

由此把疲劳驾驶的研究提高到了立法高度,保证了开展疲劳驾驶研究的有效性、合法性和持续性。

其研究工作大概可以分为两大类:一是研究疲劳磕睡产生的原因和其他诱发因素,寻找能够降低这种危险的方法:二是研制智能报警系统,防止驾驶员磕睡状态下驾驶。

20世纪90年代,美国对疲劳驾驶电子装置的研发工作发展的较快。

在各国研制的装置中具有代表性的成果有:(1)美国研制的打磕睡驾驶员侦探系统DDDS(The Drowsy Driver DetectionSystem)。

采用多普勒雷达和信号处理方法,可获取驾驶员烦躁不安的情绪活动、眨眼频率和持续时间等疲劳数据,用以判断驾驶员是否打磕睡或睡着。

该系统可制成体积较小的仪器,安装在驾驶室内驾驶员头顶上方,完全不影响正常的驾驶活动。

(2)美国华盛顿大学通过自行开发的专用照相机、脑电图仪和其他仪器来精确测量头部运动瞳孔直径变化和眨眼频率,用以研究驾驶行为问题。

一般情况下入们眼睛闭合的时间在0. 2-0. 3 s 之间,驾驶时若眼睛闭合时间达到0. 5秒就很容易发生交通事故。

(3)卡内基梅隆研究所的Copilot装置。

研究所的Grace等人采用特制的红外LED装置,根据人的视网膜对不同波长红外光的反射量不同所表现出生理特征,使用850nm和950nm波长的红外光源,在同一时间内得到两幅眼部具有微小差别的图像,然后将这两幅图像进行差分相减,就可以提取出眼部瞳孔的位置和大小。

再用PERCLOS法则计算眼睛的闭合程度来判断疲劳的程度。

使用此装置能比较准确地定位出人眼然后进行疲劳判断。

(4)2000年1月明尼苏达大学计算机科学与工程系的Nikolaos P.Papanikolopoulos教授成功开发了一套驾驶员眼睛的追踪和定位系统,通过安置在车内的一个CCD摄像头监视驾驶员的脸部,用快速简单的算法确定驾驶员眼睛在脸部图像中的确切位置,追踪多幅图像来监控驾驶员是否驾驶疲劳。

同年3月,他对上述系统进行了改进,改用红外线彩色摄像头并加滤波器滤除图像的噪声和非脸部的图像,使搜索脸部图像的次数减少,加快了处理图像的速度。

(5)日本成功研制了电子“清醒带”,固定在驾驶员头部,将其一端的插头插入车内点烟器的插座,装在带子里的半导体温差电偶使平展在前额部位的铝片变凉,使驾驶员睡意消除,精神振作。

(6)日本先锋公司最近开发出防止驾驶员开车打磕睡的系统。

它可通过心跳感应器每隔巧秒检测司机的心跳速度,监测司机驾驶员是否打磕睡,在睡意来临巧分钟前提醒司机注意,防止发生事故。

先锋公司还研究了通过测量眨眼频率和车体摇晃频率监测司机是否磕睡的系统。

相关文档
最新文档