如何理解电子测量仪器的精度指标

合集下载

34461a数字万用表技术指标

34461a数字万用表技术指标

xxxA数字万用表是一种高精度、高性能的测试仪器,广泛应用于电子、通信、电力、航空航天等领域。

它具有多项技术指标,包括精度、带宽、速度、测量范围等方面的特点。

在本篇文章中,我将全面评估这些技术指标,并探讨xxxA数字万用表在实际工程中的应用和意义。

让我们来看看xxxA数字万用表的精度。

精度是指仪器测量结果与被测量真实数值之间的偏差程度。

在实际工程中,精度是一项非常重要的技术指标,尤其是在对电子元器件、电路板等精密电子产品进行测试时。

xxxA数字万用表具有非常高的精度,通常在0.05至0.02之间,因此能够满足对高精度测试的需求。

带宽是另一个重要的技术指标。

带宽是指仪器能够接受和处理的信号频率范围。

在电子领域,信号频率的变化是非常常见的,因此xxxA数字万用表通常具有较宽的带宽,能够满足对不同频率信号的测试需求。

一般来说,xxxA数字万用表的带宽可以达到几百kHz至数MHz不等,因此在测试高频信号时表现优秀。

除了精度和带宽之外,速度也是一个关键的技术指标。

xxxA数字万用表具有快速的采样速度和数据传输速度,能够快速准确地完成测试过程,并及时将测试结果传输到计算机或其他设备上进行分析和处理。

这对于提高测试效率和工作效率非常重要。

测量范围也是xxxA数字万用表的一项重要技术指标。

它能够满足对不同信号幅值和电压范围的测试需求,通常能够覆盖从微伏到千伏的范围,因此在实际工程中具有很强的通用性和适用性。

在实际工程中,xxxA数字万用表被广泛应用于各种测试场景。

它可以用于测量电压、电流、阻抗、电容、电感等多种电气参数,同时还具有温度测量、频率计数、峰值保持等实用功能,能够满足工程师对于多种测试需求的要求。

xxxA数字万用表具有高精度、宽带宽、快速度和大测量范围等技术指标,能够满足各种实际工程中的测试需求,是一种非常实用和可靠的测试仪器。

作为我的写手,你还可以加入自己的个人观点和理解,或者举一些实际案例来进一步说明xxxA数字万用表的应用和意义。

电子测量仪器主要技术指标的剖析

电子测量仪器主要技术指标的剖析

电子测量仪器主要技术指标的剖析刘苏英【摘要】根据多年电子测量技术课程的教学工作经验,通过对在校生和毕业生的了解,以及对我国电子测量仪器现状的调查,发现技术指标对选择使用和销售购买电子测量仪器至关重要,正确选择测量方案和一定指标的测量仪器能够大大提高测量准确度.基于此,从电压、频率和数字三个方面深入剖析了17个电子测量仪器的常用技术指标.【期刊名称】《喀什大学学报》【年(卷),期】2018(039)006【总页数】4页(P32-35)【关键词】电子测量仪器;技术指标;电压;频率【作者】刘苏英【作者单位】[1]安徽机电职业技术学院电气工程系,安徽芜湖241000;【正文语种】中文【中图分类】TM9300 引言科学技术的发展促进了人类社会的进步,而正是测量奠定了科学技术发展的基石.它不但能够使人们得到真知,而且能够使人们发现未知.科学技术的发展促进了测量的发展,测量的发展促进了测量仪器的发展,而测量仪器的发展主要是技术指标的提高.近10年来,经过市场和技术的推动,我国电子测量仪器技术指标已经有了长足的进步,并在一些方面已接近并超过国际先进水平.目前,电子测量仪器正朝着高兼容性、高稳定性、高精确性、高便捷性的方向发展,使用也不像过去那么复杂.但要选择好、使用好,并得到精准的测量数据,除了要对测量对象有准确的了解外,还要了解其相关技术指标.本文从三个方面剖析电子测量仪器常用技术指标.1 电压相关1.1 电平特性包括输出电平及其平坦度,常作为信号发生器的技术指标.输出电平范围是指仪器输出信号幅度的有效范围.信号发生器的输出电平常用峰值表示,一般输出各种波形的最大峰峰值相同,使用时注意输出各种波形的最大有效值是不同的.输出电平平坦度是指在有效频率范围内,输出电平随频率变化的程度,选用和使用信号发生器时也尽量使用平坦度小的频段.1.2 输入阻抗和输出阻抗输入阻抗是后级电路或仪器对前级电路或仪器所呈现出来的阻抗.输入阻抗非常高,意味着从被测电路流入后级电路或仪器的电流非常小,即测量不影响电路正常工作. 信号源、放大器和电源都会向负载提供电压,但负载时输出电压总比空载时输出电压小,原因就是信号源、放大器和电源都存在输出阻抗,输出阻抗降低了一定的电压.输出阻抗越小,驱动负载的能力就越强.选用仪器或电路时要选用输入阻抗大、输出阻抗小的仪器或电路,但对负载功率有比较高的要求时,比如高频电路和仪器,一定要保证阻抗匹配,现在很多仪器输出阻抗可以直接在系统设置里调节,所以能非常方便的匹配.1.3 动态范围动态范围指能按要求精度测量、分析输入端同时出现的两个信号的最大功率比,用dB表示,上限受非线性失真的限制.能够表示频谱分析仪显示大信号和小信号频谱的能力.1.4 最大输入电压最大输入电压指仪器所能输入的最大信号幅度.为了确保安全使用测试仪器,很多测试设备都会标称CAT级别指标,IEC60664按照不同场合建立了由CATⅠ~Ⅳ的安全等级标准,也称为过电压范畴,定义如下:CATⅠ即通过变压器或类似设备连接到墙上插座的二次电气回路;CATⅡ即通过电源线连接到室内插座的用电设备的一次电气线路;CATⅢ即直接连接到配电盘的大型设备的一次回路及配电盘与插座之间的电力线路;CATⅣ即任何室外供电线路或设备.表1 过压分类Tab.1 Overvoltage classification过压分类工作电压(对地直流或交流有效值)峰值瞬间高压(重复20次)测试电阻(Ω=ΩV/A)一类 600V 2500V 30Ω源一类1000V 4000V 30Ω源二类600V 4000V 12Ω源二类 1000V 6000V 12Ω源三类600V 6000V 2Ω源三类1000V 8000V 2Ω源四类 600V 8000V 2Ω源衡量测试仪器或探头附件保护电路的关键除了最大输入电压这一指标,还包括抵御瞬间高压的能力.这一指标如若不高,则危害更大,因为当瞬间高压加在高能电路上时,能够导致比正常值大很多倍的电流.IEC1010关于耐压指标规定了三个准则:稳定状态电压、峰值瞬间高压和源电阻.它们组合在一起就可以确定一台仪器真正的耐压能力.过压分类如表1所示,由表1可知:(1)在同一过压分类下,工作电压越高,所能承受的峰值瞬间高压越高.(2)在不同过压分类下,因源电阻不同而有明显区别,例如二类的源电阻为12 Ω,三类是2 Ω,如果电压相同,那么三类仪器中的电流是二类的6倍,能量是二类的36倍.很明显满足三类600 V过压标准的仪器比二类1000 V的过压保护能力更强.1.5 灵敏度灵敏度指仪器测量小信号的能力,定义为显示幅度为满刻度时所能测量的最小电平值.受仪器中存在的噪声、杂波、失真以及杂散响应的限制,并与测量速度有关,速度越高,灵敏度越低.在测量小信号、判断电桥平衡及电路和仪器调零时一定要选择灵敏度高的仪器.1.6 分辨率分辨率指仪表所能显示被测电压最小变化值的能力.也即是显示器最末位读数跳一个单位所需要的最小电压变化值.在不同的量程上分辨率不同,最小的量程上分辨率最高.通常把一台仪器的最高分辨率作为这台仪器的分辨率指标.例如:3位半的DVM,在 200 mV量程上,可以测量的最大输入电压为199.9 mV,其分辨率为0.1 mV.1.7 1dB压缩点对于放大器,输入信号太大,会导致输出信号一部分截止失真,一部分饱和失真,所以输入电平过高会引起信号增益下降,在动态范围内,下降1 dB时的点,叫1 dB压缩点.它可以表示仪器的过载能力.2 频率相关2.1 频率范围频率范围指仪器各项指标均能得到保证时的最大频率区间.测量时,如果被测信号频率超出仪器频率范围,测得结果将不准确,甚至是错误的.2.2 频率准确度频率准确度指输出信号频率的实际值f与标称值f0的相对误差,其表达式为α=Δf/f0.2.3 频率稳定度频率稳定度指一定时间内仪器输出频率准确度的变化,它表示了信号源维持某一恒定频率的能力.分为短期频率稳定度(fmax-fmin)/f0和长期频率稳定度.2.4 非线性失真度信号发生器输出单一频率的正弦信号时,由于非线性失真、噪声等原因,往往输出信号中含有其他谐波成分,即信号的频谱不纯,用表示,式中:U1为信号基波有效值,U2~Un为各谐波有效值.2.5 频率分辨率、分辨率带宽频率分辨率是指频谱分析仪分辨相邻的两个频谱分量的能力,其受仪器中窄带滤波器的带宽限制;分辨率带宽是指窄带滤波器幅频特性的3 dB带宽,其高低反映出频谱仪的档次高低,高档的频谱仪分辨率带宽可做到1 Hz~5 MHz.其它相关的指标还有频率选择性(滤波器60 dB带宽与3 dB带宽之比),在使用频谱仪时,频率选择性越小,分辨不等幅信号的能力就越强;一般仪器的频率选择性是固定的,而分辨率带宽是可调的,所以可以通过减小分辨率带宽,减小平均显示噪声电平,达到更好的测量微弱信号的效果.2.6 扫宽、扫描时间扫宽、扫描时间通常作为频谱分析仪的技术指标.扫宽通常是指频谱分析仪在一次扫描分析过程中所显示的频率范围,修改扫宽将自动修改起始频率和终止频率,扫宽最大时,为全扫宽模式;最小为零扫宽模式,此时测量的是输入信号对应频率点处的时域特性.扫宽和分辨率带宽改变将引起扫描时间的变化.扫描时间是指在扫宽范围内完成一次扫描的时间.扫描时间小,测量速度高,但要保证设置的扫描时间大于自动耦合时的最短扫描时间,否则可能导致测量错误. 2.7 带宽与上升时间电路具有幅频特性,一般随频率升高或下降信号会有衰减,定义信号幅度下降到3 dB时的频率点为上升频率和下降频率,两者之差为带宽,使用时必须对高频和低频带宽都加以考虑.在电子测量中,示波器带宽不足会对测试信号产生两个方面的影响:(1)高频信号幅度下降;(2)信号高频成分消失,测得上升时间变慢.所以使用示波器,正确选择带宽很重要,一般分两种情况:(1)重点考虑谐波.以方波为例,方波是由基波和无数奇次谐波叠加而成的,谐波越多,越接近方波,普遍认为方波包含到9次谐波.即对于100 MHz的方波,带宽要在900 MHz以上才能进行测量,如图1所示.常见的三角波包含到3次谐波,不同占空比的脉冲包含的谐波数也不同,所以以谐波情况来选择示波器带宽首先要了解该波形的重要谐波数.(2)重点考虑上升时间.在1 GHz范围内,T上升=0.35/BW,测量所得上升时间波形上升时间越小,所含谐波越多.信号上升时间与仪表上升时间之比,会影响到测量精度,反之,根据对测量精度的要求,可以得知信号上升时间与仪表上升时间的比例要求,从而达到选择带宽的目的.图1 基波与谐波叠加方波Fig.1 Square wave is made up of fundamental wave and harmonic waves3 数字相关3.1 采样率采样是将时间上、幅值上都连续的模拟信号,在采样脉冲的作用下,转换成时间上离散、幅值上仍连续的离散模拟信号.离散的采样点之间的间隔就是采样周期,采样周期的倒数就是采样率.以示波器为例,简要说明采样过程及采样率不足所产生的影响.采样过程:输入电压信号→前端放大器→采样/保持电路→A/D转换器→存储器→微处理器→显示屏.实际测量中,如果示波器带宽确定,采样率的选择还与采样模式是实时采样还是等效采样有关.实时采样非常直观,采样率超过模拟带宽4~5倍或更高,使用固定采样率采样.主要用来捕获单次信号或非重复性信号,一次触发后,连续采样(如图2所示). 等效采样如图3所示,对周期性波形中不同周期中不同点采样,把采样点拼接起来重建波形,需要多次稳定触发才能得到足够多的采样点.图2 实时采样Fig.2 Real time sampling图3 等效采样Fig.3 Equivalent sampling示波器采样率不足将会对波形带来两个方面的影响,在实际使用示波器测量中,如果采样率不足,将会使波形失真,即波形细节缺失;还会使波形混淆,即重建波形频率将小于实际信号频率.3.2 波形捕获率波形捕获率是指1秒内仪器捕获波形的次数,即对波形的更新速率.示波器从采集信号到屏幕上显示出信号波形的过程,由若干个捕获周期组成.一个捕获周期包括采样时间和死区时间,模拟信号通过ADC采样量变化为数字信号同时存储的时间称为采样时间;对存储的数据进行测量运算显示等处理的时间称为死区时间,死区时间内不进行波形采集.捕获周期的倒数就是波形刷新率也称为波形捕获率,快的波形捕获率意味着死区时间短,便于观察在一个信号中偶然出现的干扰.3.3 存储深度存储深度指存储波形样本或数据的数量.采样点由触发点前后的预采样与延迟采样两部分组成.存储深度等于波形存储时间与采样率的乘积.图4 存储深度与采样率之间的关系Fig.4 The relation between the storage depth and the sampling rate采集的样点在存储器中循环存放,采用先进先出原则.一个示波器所能采集信号的时间和能用的最大采样速率都由存储深度决定.图4中的3条线代表3种存储深度,它们的最高采样速率都是5 GSa/s.图中横坐标表示时基,纵坐标代表采样速率.在时基很小时,都可以实现最高采样速率;随着时基的增大,每次采集波形的时间会增长,采集的点数也就增多,当采集点数大于示波器的存储深度时,为了让信号可以继续采集和存储,示波器就要降低自己的采样率,也就是发生了欠采样.存储深度越深,越可以长时间内保持最高采样速率.仪器具有很高的存储深度在实际测试中意义重大.如:电源软启动过程的测量、电源纹波和噪声的测量、FFT分析、发现随机或罕见错误、统计分析、抖动追踪分析、眼图等实际应用都需要长存储.4 结语电子测量仪器的技术指标很多,而且随着电子测量仪器的发展,还会增加新的技术指标.深入了解和剖析常用电子测量仪器技术指标不但对测量准确度起着至关重要的作用,而且了解电子测量仪器技术指标也是销售、购买电子测量仪器所必须考虑的重要因素之一.参考文献:【相关文献】[1]刘苏英,侯秀丽.电子测量技术[M].合肥:中国科学技术大学出版社.2014,54-55,165,102-103.[2]李军.示波器的采样率和存储深度[J].今日电子,2009,(8):88-91.[3]蒋焕文,孙续.电子测量[M].北京:中国计量出版社,1988:163-164.[4]康华光.电子技术基础(数字部分)[M].北京:高等教育出版,2000:414-415.[5]汤德荣,刘苏英.电工电子技术实验与实训教程[M].合肥:中国科学技术大学出版社,2014:94-100.[6]高晋占.微弱信号检测[M].北京:清华大学出版社,2011:171-195.。

解读测试设备的精度指标

解读测试设备的精度指标

对于采用互感器的工频电机试验,由于互感 器检定规程已对相位进行严格规定,用户即便不 考虑相位指标,在功率因数较高的境况下,相位 的影响可以忽略,当功率因数较低时,可采用低 功率因数表提高仪表的相位精度,并采用更高准 确度等级的互感器,提高传感器相位精度。
《GB/T 1032-2005 三相异步电动机试验方 法》附录 A 中明确指出,功率测量的相角误差包 括:
0.08% (0.03%rdg +0.05%f.s)
0.1% (0.05rdg + 0.05%f.s)
0.58%
1.1%
(滤波器+0.5%) (滤波器+1%)
0.28%
0.4%
(滤波器+0.2%) (滤波器+0.3%)
0.04% (0.01%rdg + 0.03%f.s)
0.06% (0.02%rdg +0.04%f.s)
事实上,对于采用量程表示精度的仪表而言, 在量程范围内,被测值(真值)越小,读数越小, 相对误差越大,相对误差与真值的关系如下图, 图中,仪表准确度为 0.2 级,真值在量程的 1/128~1(0.78125%~100%)之间,为表示方便, Y 轴采用对数刻度,由图可知,当真值在量程附 近,最大相对误差接近 0.2%,真值在量程的 1/128 倍时,最大相对误差为 25.6%。
1)功率表电压线圈回路的相角误差; 2)电流互感器的相角误差; 3)电压互感器的相角误差。 附录 A 还对相角误差的提出了有效的修正方 法。 对于变频测试而言,互感器不再适用,选用 其它传感器时,必须考虑相位误差对功率测试的 影响。以霍尔电压传感器为例,其相位误差一般 不在技术文档中出现,但是,可以由上升时间 tr 或上限频率 fH 通过时域或频域分析进行粗略估 算。

数字万用表的精度的理解

数字万用表的精度的理解

数字万用表的精度的理解
数字万用表是一种电子测量仪器,用于测量电压、电流、电阻等电学参数。

它的精度是指它在测量时的准确程度,通常以百分比或具体数值表示。

例如,一个数字万用表的精度为±0.5%,意味着在测量电压、电流或电阻时,其测量结果与真实值的误差范围在所测量数值的±0.5%之内。

如果测量的电压为10伏特,那么该万用表的精度为±0.05伏特。

精度的理解可以从以下几个方面考虑:
数字显示:数字万用表通过数字显示屏幕来展示测量结果,其精度决定了显示结果的准确性。

较高的精度意味着测量结果更接近真实值。

误差范围:精度也反映了测量误差的范围。

较低的精度表示测量结果可能存在较大的偏差,而较高的精度则意味着测量结果更为准确可靠。

应用需求:精度的选择应根据实际应用需求来决定。

对于一些对测量结果要求不高的场景,较低的精度可能已经足够;而在一些对测量结果要求非常高的场景,需要选择具有更高精度的数字万用表。

使用环境:精度也可能受到使用环境的影响。

例如,温度、湿度等因素可能对仪器的准确性产生影响,因此在特定环境下,可能需要选择适应环境要求的数字万用表。

1。

电子测量仪器主要性能指标

电子测量仪器主要性能指标

电子测量仪器主要性能指标
测量仪表是指将被测量的参数转换成可供直接观察的指示值的器具,包括各类指示仪器、比较仪器、记录仪器、传感器和变送器等。

利用电子技术对各种待测量进行测量的设备,统称为电子测量仪器。

为了正确地选择测量方法、使用测量仪器和分析测量结果,本节将对电子测量仪器的主要性能指标和分类作一概括。

电子测量仪器的主要性能指标
电子测量仪器的主要性能指标包括频率范围、准确度、稳定性、灵敏度和输入阻抗等。

1.频率范围
频率范围是指保证测量仪器其他指标正常工作的有效频率范围。

2.测量准确度
测量准确度又称测量精度,它是指测量仪器的读数或测量结果与被测量真实值相一致的程度。

对精度目前还没有一个公认的、定最的数学表达式,因此常作为一个笼统的概念来使用,其含义是:精度越高,表明误差越小;精度越低,表明误差越大。

因此,精度不仅用来评价测量仪器的性能.同时也是评定测量结果最主要、最基本的指标。

3.稳定性
稳定性是指在规定的时间内,其他外界条件恒定不变的情况下,保证仪器示值不变的能力。

造成示值变化的原因主要是仪器内部各元器件的特性、参数不稳定和老化等因素。

4.输入阻抗
测量仪表的输入阻抗对测量结果会产生一定的影响。

如电压表、示波器等仪表,测虽时并联接于待测电路两端,如图1-1所示。

不难看出,测量仪表的接。

电子测量仪器的功能和主要性能指标

电子测量仪器的功能和主要性能指标
3. 输入阻抗
负载效应:测量仪表的接入改变了被测电路的阻抗特
性,这种现象称为负载效应。 产生这种效应的原因就是测量仪器具有量仪表对被测量变化的敏感 程度,是增量与被测增量的比值。
S y x
另一种表述方式称作分辨力或分辨率
分辨力:测量仪表做能区分的被测量的最小变化量,
二、测量仪器的分类
电平测量仪器 模拟式电压表、毫伏表、数字式电压表、电压标准
电路参数测试仪器 电桥、Q表、RLC测试仪、晶体管、集成电路参数测试
仪、图示仪 频率、时间、相位测试仪器
电子计数式频率计、石英钟、数字式相位计、波长计 波形测量仪器
示波器、多踪示波器、多扫描示波器、取样示波器、 记忆和数字存储示波器
2.传输功能
在遥测、遥控等系统中,现场测量结果经变送器处 理后,需经较长距离的传输才能送到测试终端和控制 台。无论以何种方式传输,都会有信号失真和干扰, 因此测量仪器的传输功能很重要。
3.显示功能
测量结果必须以某种方式显示出来才有意义。 模拟式仪表通过指针在仪表刻度盘上的位置显示测
量结果, 数字式仪表通过数码管、液晶等显示测量结果
规定分辨力为允许绝对误差的1/3。
5. 线性度
如果y=f(x)为y-x平面上过原点的直线,则称之为 线性刻度特性,否则为非线性刻度特性。
6. 动态特性
结束
统误差都小,最终测量结果可信度高。
2. 稳定性
稳定性通常用稳定度和影响误差来表征。
稳定度:指在规定的时间区间,其他外界条件恒定
不变的情况下,仪器示值变化的大小。造成原因: 仪 器内部各元器件的特性、参数不稳定和老化等。
影响误差:由于电源电压、频率、环境温度、湿度、
气压、振动等外界变化造成的仪表示值变化量。

电子测量中实验误差分析与控制

电子测量中实验误差分析与控制

目录摘要 (2)一、绪论 (3)二、测量误差的基本原理 (4)2.1、研究误差的目的 (4)2.2、测量误差的表示方法 (4)2.3、电子测量仪器误差的表示方法 (4)三、测量误差的分类 (6)3.1、误差的来源 (6)3.2、测量误差的分类 (6)3.3、测量结果的评定 (7)四、随机误差的统计特性与估算方法 (8)4.2、贝塞尔公式及其应用 (9)4.3、均匀分布情况下的标准差 (10)4.4 非等精密度测量 (10)五、系统误差的特性及减小方法 (10)5.1、系统误差的特征 (10)5.2、判断系统误差的方法 (11)5.3、控制系统误差的方法 (11)5.3.1. 从产生误差的根源上采取措施。

(12)5.3.2.用修正法减小系统误差 (12)六、疏失误差及其判断准则 (13)6.1、测量结果的置信问题 (13)6.2、不确定度与坏值的剔除准则 (14)七、测量数据的处理 (15)7.1、数据的舍入规则 (15)7.2、测量结果的处理步骤 (15)7.3、最小二乘法原理 (17)八、最佳测量条件的确定与测量方案的设计 (18)8.1、最佳测量条件的确定 (18)8.2、测量方案设计 (18)8.2.1、在设计测量方案时,可以从下属几个方面考虑 (18)8.2.2、测量过程可分为三个阶段 (19)致谢 (20)参考文献 (21)摘要在实际实验测量工作中,由于外界条件、仪器本身和观测者技术水平等的不同,必然导致对同一测量对象进行的若干次测量所得到的结果彼此不同,或在各观测值与其理论值之间仍存在差异。

也就是说,测量结果含有误差是不可避免的。

为了消除或减少误差,需要对误差的来源、性质及其产生和传播的规律进行分析研究,来解决测量中经常遇到的一些问题。

例如,在一系列的观测值中如何确定最可靠值;如何来评定测量的精度;什么样的误差是被许可的,即如何确定误差的限度。

所有这些问题都要运用误差理论来得到解决。

电子水准仪精度等级的划分

电子水准仪精度等级的划分

水准仪按其精度划分为四个等级:精密水准仪DS05、DS1;普通水准仪DS3、DS10D -大地测量;S--水准仪;后面的数字代表仪器的测量精度(每公里往返测高差中数的中误差,即精度)。

水准仪按其构造可分为四种:微倾式水准仪、自动安平水准仪、电子水准仪和数字水准仪。

目前,一般工程测量中最常用的水准仪是:DS3倾斜水准仪(或DS3自动水准仪)。

水准仪的结构:根据水准测量原理,水准仪的主要功能是提供水平视线,并从水准尺上读取读数。

因此,水准仪由望远镜、水准仪和基座三部分组成。

水准仪的原理:水准测量是利用水平视线,借助水准尺,确定地面上两点之间的高差,使已知点的高程可以由未知点的高程计算出来。

扩展资料:水准仪误差校正:仪器误差1、仪器校正后的残余误差虽然在水平测试前,仪器已经过严格的检查和校正,但仍然有残留的角度电阻。

理论上,水平管轴应与对准轴平行。

即两轴线不平行形成角,这种误差的影响与仪器至水准尺的距离成正比,属于系统误差。

可以在测量中采取一定的方法加以减弱或消除。

若观测时使前、后视距相等,可消除或减弱此项误差的影响。

2、水准尺误差由于水准尺标记不准、尺长变化、尺身弯曲等原因,使用前必须对水准尺进行检验。

另外,由于长期使用水平尺导致尺底零磨损,或是水平尺底部粘土改变了水平尺的零位,它可以在一个水平段内交替作为两个水平尺的前后读数,或者甚至测量出要消除的位置。

仪器简介:目前,电子水准仪的照准标尺和调焦仍需目视进行。

人工调试后,标尺条码一方面被成像在望远镜分化板上,供目视观测,另一方面通过望远镜的分光镜,又被成像在光电传感器(又称探测器)上,供电子读数。

由于各厂家标尺编码的条码图案各不相同,因此条码标尺一般不能互通使用。

当使用传统水准标尺进行测量时,电子水准仪也可以像普通自动安平水准仪一样使用,不过这时的测量精度低于电子测量的精度,特别是精密电子水准仪,由于没有光学测微器,当成普通自动安平水准仪使用时,其精度更低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何理解电子测量仪器的精度指标
精确度是衡量电子测量仪器性能最重要的指标,通常由读数精度、量程精度两部分组成。

本文结合几个具体案例,讲述误差的产生、计算以及标定方法,正确理解精度指标能够帮助您选择合适的仪器仪表。

一、测量误差的定义
误差常见的表示方法有:绝对误差、相对误差、引用误差。

1)绝对误差:测量值x*与其被测真值x之差称为近似值x*的绝对误差,简称ε。

计算公式:绝对误差 = 测量值 - 真实值;
2)相对误差:测量所造成的绝对误差与被测量(约定)真值之比乘以100%所得的数值,以百分数表示。

计算公式:相对误差 =(测量值 - 真实值)/真实值×100%(即绝对误差占真实值的百分比);
3)测量的绝对误差与仪表的满量程值之比,称为仪表的引用误差,它常以百分数表示。

引用误差=(绝对误差的最大值/仪表量程)×100%
引用误差越小,仪表的准确度越高,而引用误差与仪表的量程范围有关,所以在使用同一准确度的仪表时,往往采取压缩量程范围,以减小测量误差
举个例子,使用万用表测得电压1.005V,假定电压真实值为1V,万用表量程10V,精度(引用误差)0.1%F.S,此时万用表测试误差是否在允许范围内?
分析过程如下:
绝对误差:E = 1.005V - 1V = +0.005V;
相对误差:δ=0.005V/1V×100%=0.5%;
万用表引用误差:10V×0.1%F.S=0.1V;
因为绝对误差0.005V<0.1V,所以10V量程引用误差0.1%F.S的万用表,测量1V相对误差为0.5%,仍在误差允许范围内。

二、测量误差的产生
绝对误差客观存在但人们无法确定得到,且绝对误差不可避免,相对误差可以尽量减少。

误差组成成分可分为随机误差与系统误差,即:误差=测量结果-真值=随机误差+系统误差因此任意一个误差均可分解为系统误差和随机误差的代数和系统误差:
1)系统误差(Systematic error)
定义:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。

产生原因:由于测量工具(或测量仪器)本身固有误差、测量原理或测量方法本身理论的缺陷、实验操作及实验人员本身心理生理条件的制约而带来的测量误差。

特性:是在相同测量条件下、重复测量所得测量结果总是偏大或偏小,且误差数值一定或按一定规律变化。

优化方法:方法通常可以改变测量工具或测量方法,还可以对测量结果考虑修正值。

2)随机误差。

定义:随机误差又叫偶然误差,是指测量结果与同一待测量的大量重复测量的平均结果之差。

产生原因:即使在完全消除系统误差这种理想情况下,多次重复测量同一测量对象,仍会由于各种偶然的、无法预测的不确定因素干扰而产生测量误差。

特点:是对同一测量对象多次重复测量,测量结果的误差呈现无规则涨落,可能是正偏差,也可能是负偏差,且误差绝对值起伏无规则。

但误差的分布服从统计规律,表现出以下三个
特点:
●单峰性,即误差小的多于误差大的;
●对称性,即正误差与负误差概率相等;
●有界性,即误差很大的概率几乎为零。

优化方法:从随机误差分布规律可知,增加测量次数,并按统计理论对测量结果进行处理可以减小随机误差。

三、精密度、精确度与准确度
精确度和误差可以说是孪生兄弟,因为有误差的存在,才有精确度这个概念。

仪表精确度简言之就是仪表测量值接近真值的准确程度,通常用相对百分误差(也称相对折合误差)表示。

1)测量偶然误差的大小反映了测量的精密度
用同一测量工具与方法在同一条件下多次测量,如果测量值随机误差小,即每次测量结果涨落小,说明测量重复性好,称为测量精密度好也称稳定度好。

2)系统误差大小反映了测量可能达到的准确程度
根据误差理论可知,当测量次数无限增多的情况下,可以使随机误差趋于零,而获得的测量结果与真值偏离程度——测量准确度,将从根本上取决于系统误差的大小。

3)精确度是测量的准确度与精密度的总称
在实际测量中,影响精确度的可能主要是系统误差,也可能主要是随机误差,当然也可能两者对测量精确度影响都不可忽略。

在某些测量仪器中,常用精度这一概念,实际上包括了系统误差与随机误差两个方面,例如常用的仪表就常以精度划分仪表等级。

四、仪器精度等级与量程
精确度是仪表很重要的一个质量指标,常用精度等级来规范和表示。

精度等级就是最大相对百分误差去掉正负号和%。

按国家统一规定划分的等级有0.05,0.02,0.1,0.2,1.5等。

数字越小,说明仪器仪表的精确度越高。

仪表精确度不仅和绝对误差有关,而且和仪表的测量范围有关。

如果绝对误差相同的两台仪表,其测量范围不同,那么测量范围大的仪表相对百分误差就小,仪表精确度就高;反之亦然,精度等级相同的两台仪器,量程范围大的仪表绝对误差也更大。

五、应用精度的选择
在实际应用过程中,要根据测量的实际情况来选择仪器的量程和精度,并不一定精度等级小的仪器,就一定有最好的测量效果。

例如:测量10V标准电压,用100V挡、0.1级和15V挡、0.5级的两块万用表测量,哪块表测量误差小?
解:第一块表测的最大绝对允许误差
△X1=±0.1%×100V=±0.10V。

第二块表测的最大绝对允许误差
△X2=±0.5%×15V=±0.075V。

比较△X1和△X2可以看出:虽然第一块表准确度比第二块表准确度高,但用第一块表测量所产生的误差却比第二块表测量所产生的误差大。

因此,可以看出,在选用仪器仪表时,并非准确度越高越好,还要选用合适的量程,只有正确选择量程,才能发挥其潜在的准确度。

ZLG立功科技·致远电子PA8000示波器拥有丰富的触发方式,可以针对不同的场景进行触发,是一款认证级功率分析仪,功率精度高达0.01%、带宽高达5MHz,是逆变器、变频器与电源产品能效测量的基准,也是标准实验室认证检测的依据。

相关文档
最新文档