三角形内角和定理教案

合集下载

三角形的内角和定理教案

三角形的内角和定理教案

三角形的内角(一)(一)教学目标1.知识与技能(1)会证明三角形内角和定理。

(2)简单运用三角形内角和定理。

(3)通过添加辅助线证题,增强观察、猜想和理论证明的能力。

2. 过程与方法(1)通过拼图实践、合作探索、相互交流,培养学生的逻辑推理、敢于猜想、动手实践等能力。

(2)感受探索三角形内角和定理的证明过程。

(3)通过渗透数学的转化思想,培养学生解决数学问题的基本方法。

3. 情感、态度与价值观(1)通过师生的共同探究活动,培养学生的概括、总结能力,激发学生探索问题的兴趣。

(2)通过确认“三角形内角和是180度”体会学习数学的价值是发现和确认数学规律。

(二)教学重点、难点教学重点:理解三角形内角和定理以及简单的应用.教学难点:初步学会辅助线的添加.教学准备教师准备多媒体演示两幅,学生每人准备一个硬纸片三角板。

教学过程(一)创设情境、激发情趣在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结。

可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷(二)动手实践、感受探究的快感[师]同学们,我们做这样的实验:将三角形纸片的三个角剪下,随意将它们拼凑在一起,恰好得到一个什么角?[生]平角。

从而大家得出三角形的三个内角和等于180°。

[让学生自己动手探究,体会数学研究的乐趣.][师]现在,我们来看两个电脑的动画演示,验证这个结论是不是正确的。

1.动画演示一[师]先将△ABC中的∠A通过平移和旋转到如上图所示的位置,再将图中的∠B通过平移到上图所示的位置。

拖动点A,改变△ABC的形状,三角形的三个内角和总等于180°2.动画演示二[师]先将三角形纸片(图(1))一角折向其对边,使顶点落在对边上,折线与对边平行(图(2)),然后把另外两角相向对折,使其顶点与已折角的顶点相重合(图(3) (4)。

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形内角和》数学教案【优秀6篇】作为一位不辞辛劳的人·民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

三角形内角和教学设计(通用6篇)

三角形内角和教学设计(通用6篇)

三角形内角和教学设计三角形内角和教学设计(通用6篇)作为一名教师,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。

那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的三角形内角和教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。

三角形内角和教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

【教学难点】对不同探究方法的指导和学生对规律的灵活应用。

【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。

【教学过程】一、激趣引入。

1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。

师:那么,下面老师给大家出个谜语。

请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。

(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。

3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。

试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。

1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。

师:三角形有几个内角啊?生:3个。

师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。

三角形的内角和教案

三角形的内角和教案

三角形的内角和教案一、教学目标:知识与技能:1. 让学生掌握三角形内角和定理,理解三角形内角和为180度的概念。

2. 能够运用三角形内角和定理解决实际问题。

过程与方法:1. 通过观察、操作、推理等过程,引导学生发现三角形的内角和定理。

2. 培养学生的逻辑思维能力和解决问题的能力。

情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探索精神。

2. 培养学生合作学习、积极思考的良好学习习惯。

二、教学重点与难点:重点:1. 三角形内角和定理的理解和运用。

难点:1. 三角形内角和定理的推导过程。

三、教学准备:教师准备:1. 三角形模型、量角器等教具。

2. 教学课件或黑板。

学生准备:1. 学习三角形相关知识。

2. 准备三角板或其他三角形教具。

四、教学过程:环节一:导入1. 引导学生回顾三角形的相关知识,如三角形的定义、特性等。

2. 提问:你们知道三角形内角和是多少度吗?环节二:探究三角形内角和1. 让学生拿出三角板或其他三角形教具,观察并测量三角形的内角。

2. 引导学生发现并总结三角形内角和的特点。

环节三:推导三角形内角和定理1. 引导学生通过量角器测量多个三角形的内角,记录数据。

2. 让学生观察数据,发现规律,推导出三角形内角和定理。

环节四:验证三角形内角和定理1. 让学生分组讨论,设计实验验证三角形内角和定理。

2. 各小组汇报实验结果,确认三角形内角和定理的正确性。

环节五:运用内角和定理解决问题1. 出示例题,让学生运用内角和定理解决问题。

2. 学生互相讨论,解答例题,分享解题思路。

五、作业布置:1. 请学生运用内角和定理,解决一些关于三角形的实际问题。

2. 总结本节课的学习内容,思考三角形内角和定理在实际生活中的应用。

六、教学反思:本节课通过引导学生观察、操作、推理等活动,发现了三角形内角和定理,并运用该定理解决了一些实际问题。

在教学过程中,注重培养学生的动手操作能力、逻辑思维能力和解决问题的能力。

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。

出示一些三角形,让学生指出内角和。

师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。

)(板书三角形的内角和是180度。

)师:那我们再看看刚刚汇报的结果。

为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。

现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。

早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。

(1)直角三角形的两个锐角的和是90°。

(2)一个等腰三角形的底角可能是钝角。

(3)三角形的内角和都是180°,与三角形的大小无关。

4、剪一剪。

把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。

七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。

是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。

教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。

教材还安排了“试一试”,“练一练”的内容。

已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。

他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。

四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。

⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。

⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

教学重点:检验三角形的内角和是180°。

教学难点:引导学生通过实验探究得出三角形的内角和是180度。

教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。

1、复习三角形分类的知识。

师出示三角形,生快速说出它的名称。

2、什么是三角形的内角?我们通常所说的角就是三角形的内角。

为了便于称呼,我们习惯用∠A、∠B、∠c来表示。

什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。

用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。

3、今天这节课啊我们就一起来研究三角形的内角和。

〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。

师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。

是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。

一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。

教案及反思-三角形的内角和

教案及反思-三角形的内角和

教案及反思-三角形的内角和一、教学目标1.让学生掌握三角形内角和定理,理解三角形的内角和是180°。

2.培养学生运用三角形内角和定理解决实际问题的能力。

3.培养学生的观察、分析和推理能力。

二、教学重难点1.教学重点:三角形内角和定理的理解和应用。

2.教学难点:三角形内角和定理的证明。

三、教学过程1.导入新课师:同学们,我们之前学习了三角形的分类和性质,那么大家知道三角形的内角和是多少度吗?生:不知道。

师:今天我们就来学习三角形的内角和,相信通过本节课的学习,大家一定能找到答案。

2.探索三角形内角和(1)分组讨论师:请同学们分成小组,每组准备一角形纸片,用量角器测量三角形的三个内角,然后将测量结果记录在黑板上。

师:请大家观察黑板上的数据,发现了什么规律?生:三角形的内角和是180°。

师:很好,这就是我们今天要学习的三角形内角和定理。

3.证明三角形内角和定理师:那么大家有没有想过,为什么三角形的内角和是180°呢?下面我们来证明这个定理。

(1)作辅助线①画出三角形ABC;②在BC边上任取一点D,连接AD;③作∠BAC的角平分线,交AD于点E。

(2)观察角的关系师:请大家观察图形,可以发现∠BAC、∠BDE和∠CDE有什么关系?生:∠BAC=∠BDE+∠CDE。

(3)证明三角形内角和定理师:由于∠BDE和∠CDE是∠BAC的角平分线,所以∠BDE=∠CDE。

又因为∠BAC+∠BDE+∠CDE=180°,所以∠BAC+2∠BDE=180°。

将∠BDE=∠CDE代入,得到∠BAC+∠BDE+∠CDE=180°,即三角形ABC的内角和是180°。

4.应用三角形内角和定理(1)已知一个三角形的两个内角分别是30°和60°,求第三个内角的度数。

(2)如果一个三角形的两个内角分别是90°和45°,那么这个三角形是什么三角形?师:通过本节课的学习,我们知道了三角形的内角和是180°,并且学会了运用三角形内角和定理解决实际问题。

三角形内角和教案3篇

三角形内角和教案3篇

三角形内角和教案3篇三角形内角和教案篇1探究与发觉:三角形内角和课型新授课设计说明本节课是在同学已经掌控了钝角、锐角、直角、平角及三角形分类的基础上,让同学通过直观操作来认识和学习的。

1.重视知识的探究与发觉。

在教学中,概念的形成没有径直给出,而是整节课都是在引导同学的试验操作、活动探究中进行。

在探究活动中,不但重视知识的形成过程,而且留意留给同学充分进行主动探究和沟通的空间,让同学归纳出三角形内角和等于180°。

2.重视同学的合作探究学习。

使同学能够积极主动地参加到数学活动中,能在实践中感知、发表自己的见解,同学感受到通过自己的努力取得胜利所带来的满意感,同时也培育了同学的探究技能和创新技能。

课前预备老师预备:PPT课件量角器直尺三角尺同学预备:量角器三角尺教学过程一、常识导入。

(3分钟)1.介绍帕斯卡:早在300多年前有一个科学家,他在12岁时验证了任意三角形的内角和都是180°,他就是法国科学家、物理学家帕斯卡。

2.导入新课:这节课我们也来验证一下三角形的内角和。

1.倾听老师的介绍,了解帕斯卡。

2.明确本节课的学习内容。

1.填空。

(1)有一个角是钝角的三角形是( )三角形;有一个角是直角的三角形是( )三角形;三个角都是锐角的三角形是( )三角形。

(2)平角=( )°直角=( )°周角=( )°二、合作沟通,探究新知。

(18分钟)(一)量算法。

1.探究非常三角形的内角和。

(1)出示一副三角尺,引导同学说一说各个角的度数。

(2)引导同学算一算它们的内角和各是多少度。

(3)引导同学得出结论。

2.探究一般三角形的内角和。

(1)引导同学猜一猜其他三角形的内角和是多少度。

(2)组织同学验证一般三角形的内角和是180°。

①引导同学量出每个内角的度数,再计算三个内角的和。

②引导同学分工合作,把结果填入记录表中。

③引导同学说说自己的发觉。

(3)引导同学明确由于测量有误差,事实上三角形的内角和是180°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】三角形内角和定理
【教学类型】新知课
【教学目的】
1.知识与技能目标:掌握三角形内角和定理的证明和简单应用,初步学会作辅助线证明的基本方法,培养学生观察、猜想、和推理论证能力。

2.过程与方法目标:
(1)对比过去折纸、撕纸等探索过程,体会思维实验和符号化的理性作用。

(2)通过一题多证、一题多变体会思维的多向性。

(3)引导学生应用运动变化的观点认识数学。

3.情感与态度目标:通过一题多证、一题多变激发学生勇于探索、合作交流的精神,体验成功的乐趣,引导学生的个性发展。

感悟逻辑推理的价值。

【教学方法】引导发现法、尝试探究法
【教学重点】探索证明三角形内角和定理的不同方法,利用三角形内角和定理进行简单的计算或证明。

【教学难点】应用运动变化的观点认识数学。

从拼图过程中发现并正确引入辅助线是本节课的关键。

【教具】尺规,三角板
【教学过程】
一、创设情境,自然引入
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

1. 三角形三条边的关系我们已经明确了,而且利用三边关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
答:三角形的三个内角的和等于180°。

2.这个结论从哪里来?
在纸上任意画一个三角形,并将它的内角减下来拼合在一起。

(1)观察:三个内角拼成了一个什么角?
(2)此实验给我们一个什么启示?(把三角形的三个内角之和转化为一个平角)
(3)由图中AB 与CD 的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
二、讲授新课,深入了解
三角形内角和定理:三角形的三个内角的和等于180°。

即:△ABC 中, ∠A +∠B +∠C=180 °
如何证明这个结论的正确性?
结论:三角形的内角和等于180 °
已知:如图,△ABC
求证:∠A+∠B+∠C=180°
证法一:
证明:作BC 的延长线CD ,过点C 作射线CE ∥BA .
∵CE ∥BA
∴∠B=∠ECD (两直线平行,同位角相等),
∠A=∠ACE (两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°
∴∠A+∠B+∠ACB=180°(等量代换)
证法二:
证明:过A 作E F ∥B C.
∵ E F ∥B C.
∴∠E A B =∠B
∠F A C = ∠C ﹙两直线平行,内错角相等﹚ A B C E
D
又∵∠F A C,∠BAC,∠E A B组成平角,
∴∠F A C +∠B A C +∠EA B =180°﹙平角定义﹚
∴∠B +∠B A C +∠C= 180°﹙等量代换)
注:(1)证明:是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程
(2)辅助线:为了证明的需要在原来图形上添画的线叫辅助线且辅助线须用虚线.
三、例题解析,强化重点
已知:如图, AB∥CD。

求证:∠ABE+∠BED+∠EDC=360°(用两种方法证明)。

四、应用知识,深化主题
学习了以上定理,我们来看看特殊三角形内角和有什么特殊的地方?
问题:“直角三角形的两锐角之和是多少度?等边三角形的一个内角是多少度?请证明你的结论。


五、理解巩固,反馈练习
(1)△ABC中,∠C=90°,∠A=30°,∠B=?
(2)∠A=50°,∠B=∠C,则△ABC中∠B=?
(3)三角形中三角之比为1∶2∶3,则三个角各为多少度?(4)课本239页随堂练习2
六、课堂小结
这堂课,我们证明了一个很有用的三角形内角和定理。

证明的基本思想是:运用辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角。

辅助线是联系命题的条件和结论的桥梁,今后我们还要学习使用它。

七、布置作业(略)
【设置悬念·思考难题】
证明三角形内角和定理时,是否可以把三角形的三个角“凑”到BC边上的一点P?(如图9(1))如果把这三个角“凑”到三角形内一点呢?(如图9(2))“凑”到三角形外一点呢?(如图9(3)),你还能想出其他证法吗?
(1)(2)(3)
图9
设题原因:学生在证明这个题的过程中,进一步了解三角形内角和定理的证明思路,并且了解一题的多种证法,从而拓宽学生的思路。

答案:证明三角形内角和定理时,既可以把三角形的三个角“凑”到BC边上的一点P,也可以把三个角“凑”到三角形内一点,还可以把这三个角“凑”到三角形外一点。

(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档