汽车转向系统动力学(一.二)
汽车转向系统动力学(一.二)

前后侧偏柔度
D i D ai D bi D ci D di D ei D fe D gi
评价指标
瞬态响应的品质参数
固有频率ω0
0
mu ( ak 1 bk 2 ) muI
z
L k1k 2 u L u k1k 2 mI
z
2
1 Ku
2
- 汽车转向系统动力学
28
4-2 汽车操纵稳定性工程分析方法
阻尼比ζ
m a k1 b k 2 I z k1 k 2
- 汽车转向系统动力学
22
4-2 汽车操纵稳定性工程分析方法
Dai侧向力引起的轮胎弹性侧偏角 (º /g)
侧倾外倾引起的侧偏角,(º /g)
k
D bi
k
g
侧倾外倾系数
g 一个g时的外倾角
- 汽车转向系统动力学
23
4-2 汽车操纵稳定性工程分析方法
2
2 1 arctg mua 0 / Lk 2
反应时间τ 峰值反应时间ε
0 1
2
1 arctg
2
0 1
2
- 汽车转向系统动力学
19
4-2 汽车操纵稳定性工程分析方法
频率响应特性
- 汽车转向系统动力学
动力转向工作原理

动力转向工作原理
动力转向是一种用于汽车等车辆的转向系统,其工作原理主要基于液压力。
它通过将驾驶员在转向盘上施加的力转化为液压控制信号,以改变车辆行驶方向。
动力转向系统主要由助力转向泵、助力转向缸和转向阀组成。
当驾驶员转动转向盘时,助力转向泵会自动感应并通过液压来提供额外的力量。
这使得转向更加轻松,并且减少了驾驶员需要施加的力量。
在转向过程中,助力转向泵会将液压油送入助力转向缸。
数字驱动系统通过波纹管和液压缸传递驾驶员的输入力量。
转向阀控制液压油的流量和方向,以实现车辆转向。
当转向盘旋转时,液压油的流动方向和强度也会相应改变,从而使车辆转向。
动力转向系统的信号由转向传感器检测和传递。
转向传感器检测转向盘的位置和角度,并将该信息传送到转向阀。
转向阀再将相应的液压控制信号发送到助力转向泵和助力转向缸,从而调整车辆的行驶方向。
总之,动力转向工作原理是通过液压力来改变车辆方向。
驾驶员通过转动转向盘施加力量,在转向系统的作用下,液压油的流动方向和强度发生变化,使车辆完成转向动作。
第五章 汽车转向系统动力学,

第五章汽车转向系统动力学问题的提出汽车转向系统动力学是研究驾驶员给系统以转向指令后汽车在曲线行驶中的运动学和动力学特性。
这一特性影响到汽车操纵的方便性和稳定性,所以也是汽车安全性的重要因素之一,因而成为汽车系统动力学中重要研究内容之一。
汽车操纵稳定性是与汽车的车速密不可分的,早期的低速汽车还谈不上稳定性的问题,最早出现稳定性的问题,是在具有较高车速的轿车上或赛车上,目前,随着车速的不断提高,轿车、大客车、载货汽车的设计都离不开汽车操纵稳定性的研究。
近年来,有许多学者研究这一问题,并取得很多成果。
操纵性不好的汽车的主要表现:1.“飘” -有时驾驶员并没有发出转向的指令,而汽车开始自己改编本方向,使人感到汽车漂浮2.“贼”-有时汽车像受惊的马,忽东忽西,汽车不听驾驶员的指令;3.“反应迟钝”-驾驶员虽然发出指令。
但是汽车还没有转向反映,转向过程反应较慢;4.“晃”-驾驶员发出了稳定的转型指令,可使汽车左右摇摆,行驶方向难以稳定,当汽车受到路面不平,或者是侧向风扰动时,汽车就会出现左右摇摆;5.“丧失路感”-正常汽车转弯的程度,会通过转向盘在驾驶员的手上产生相应的感觉,有些汽车操纵性不好的汽车,特别是在汽车车速较高时,或转向急剧时会丧失这种感觉,这会增加驾驶员操纵困难,或影响驾驶员的正确判断6.“失去控制”-某些汽车的车速超过一个临界值以后,驾驶员已经不能控制器行驶的方向。
汽车的操纵稳定性:在驾驶者不感到过分紧张、疲劳的条件下,汽车能遵循驾驶者通过转向系及转向车轮给定的方向行驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。
汽车的操纵性:汽车能及时而准确的反映驾驶员主观操作的能力,也就是按照驾驶员的愿望维持或改变原来的行驶路线的能力。
汽车的稳定性:汽车在外力干扰下,仍能保持或很快恢复原来行驶状态和方向,而不致丧失控制、发生侧滑或翻车的能力。
101两者的关系:操纵性的丧失常导致侧滑、回转、甚至翻车;而稳定性的破坏也往往使汽车失去操纵性,处于危险状态。
第四章汽车转向操纵系统动力学

m0 h c b1 b0
式中 m0 mIz ;
h [mD Iz A];
c mB (AD B2 ) ;
(4 16)
b1 mLa K1;
b0 LK1K 2
回主目录
如果令 r ,则式(4-16)可写成
m0r hr cr b1 b0
(4 17)
这是一个强迫振动的二阶微分方程,可进一步改写为
K
此时
max ch 2L
回主目录
此最大值为轴距L相等的中性转向汽车横摆角
速转代度向轿增量车益增把的加特一时征半,车,即速此设K增时计大为,c6h特5称~征为1车0特0速k征m车/ hch速之。降间当低。不,足当
3. K<0 此时式(4-9)中的分母小于1,横摆角速度增益
比中性转向时大,随着车速的增加,曲线将
回主目录
在国外把这一比值称为静态储备系数S·M(Static
Margin), S M La La K 2 La (4 13)
L
K1 K 2 L
当中性转向作用点
C
与质心重合时,
n
La
L'a
S M 0 中性转向( a1 a2 )
当质心在中性转向作用点之前, La L'a
S M 0 不足转向( a1 a2 )
先将式(4-5)、(4-6)改写成下式 :
A BB DK1aK m1(Iz)
式中 A K1 K 2
B (La Ka1 Lb Ka2 )
D (La 2 K1 Lb 2 K 2 )
(4 14)
(4 15)
回主目录
由式(4-15)得
( I z
D
K1
)
B
代人式(4-14)中消去 ,最后可整理成的微分方程:
汽车系统动力学第二版

汽车系统动力学第二版《汽车系统动力学第二版》是一本关于汽车系统动力学的专业书籍,旨在为读者提供关于汽车动力学的全面理解。
本书通过详细介绍汽车动力学的基本概念、原理和数学模型,帮助读者深入了解汽车系统的运行原理,并掌握相关的分析和设计方法。
第一章介绍了汽车系统动力学的基本概念和研究对象。
汽车系统动力学是研究汽车运动和力学特性的学科,涉及到车辆的加速、制动、转向和悬挂等方面。
本书强调了汽车系统动力学的重要性,指出了它对汽车性能和安全性的影响。
第二章详细介绍了汽车的运动学特性。
运动学是研究物体运动规律的学科,而汽车的运动学特性则包括车辆的速度、加速度和位移等参数。
本章通过引入几何学和向量分析的知识,解释了汽车运动学的基本原理,并给出了相关的计算方法。
第三章讨论了汽车的轮胎力学特性。
轮胎是汽车与地面之间的唯一接触点,它对车辆的牵引、制动和操纵性能起着至关重要的作用。
本章介绍了轮胎的结构和工作原理,并详细阐述了轮胎与地面之间的力学相互作用。
第四章介绍了汽车的悬挂系统。
悬挂系统是连接车身和车轮的重要组成部分,它对车辆的舒适性、稳定性和操控性起着重要作用。
本章从悬挂系统的基本原理入手,介绍了常见的悬挂结构和悬挂元件的设计原则,并讨论了悬挂系统对车辆动力学性能的影响。
第五章讨论了汽车的转向系统。
转向系统是控制车辆转向运动的关键部件,它对车辆的操纵性和稳定性有着重要影响。
本章介绍了转向系统的工作原理和组成部分,并讨论了转向系统的设计和调整方法。
第六章介绍了汽车的制动系统。
制动系统是保证车辆安全的重要组成部分,它对车辆的制动性能和稳定性起着至关重要的作用。
本章详细介绍了制动系统的原理、结构和工作过程,并讨论了制动系统的设计和优化方法。
最后一章总结了全书的内容,并展望了汽车系统动力学领域的未来发展方向。
本书通过详细的理论分析和实例应用,帮助读者深入了解汽车系统动力学的原理和方法,并为汽车工程师和研究人员提供了有价值的参考资料。
汽车系统动力学第1章 车辆动力学概述

第一节 历史回顾
20世纪90年代末期 – 研究人员发现,车辆在高速行驶过程中的横向稳定
裕度较小,通过调节四个车轮的纵向力而形成一定 的回转力矩,就可控制汽车的横摆角速度,由此提 出了“直接横摆控制”(Direct Yaw moment Control,简称DYC)算法,并经试验验证了该算法 的有效性。在此基础上,近年来又提出了限制一定 侧偏角范围的车辆动力学控制(Vehicle Dynamics Control,简称VDC)。 自2000年以来 – VDC系统得到了各国汽车厂商关注,并进行开发研 制。
第一章 车辆动力学概述
世纪商务英语听说教程 专业篇I (第五版)
主讲:朱明
高级工程师、高级技师、国家经济师 高级国家职业技能鉴定考评员 高级技能专业教师
汽车系统动力学
第一章 车辆动力学概述
• 第一节 历史回顾 • 第二节 研究内容和范围 • 第三节 汽车特性和设计方法 • 第四节 术语、标准和法规 • 第五节 发展趋势
汽车系统动力学
图1-1 底盘控制系统与车辆动力学关系示意图
汽车系统动力学
第一节 历史回顾
20世纪70年代末
– 从飞机设计技术中引入的防抱死制动系统 (Anti-lock Braking System,简称ABS) 可以称得上是向车辆底盘控制迈出的第一步, ABS通过限制制动压力来保证车轮的最佳滑移 率,从而避免了车轮抱死。
量、转向信号传感装置、变车道、J转向
等试验方法的测试技术日趋完善。 人们对非线性操纵响应的理解也愈加深
入,从而使操纵动力学的研究逐渐向高侧向 加速度的非线性作用域扩展。
汽车系统动力学
第一节 历史回顾
最近10年: 计算机技术及应用软件的开发,使建模的
汽车系统动力学习题答案

汽车系统动⼒学习题答案1.汽车系统动⼒学发展趋势随着汽车⼯业的飞速发展,⼈们对汽车的舒适性、可靠性以及安全性也提出越来越⾼的要求,这些要求的实现都与汽车系统动⼒学相关。
汽车系统动⼒学是研究所有与汽车系统运动有关的学科,它涉及的范围较⼴,除了影响车辆纵向运动及其⼦系统的动⼒学响应,还有车辆在垂向和横向两个⽅⾯的动⼒学内容,随着多体动⼒学的发展及计算机技术的发展,使汽车系统动⼒学成为汽车CAE技术的重要组成部分,并逐渐朝着与电⼦和液压控制、有限元分析技术集成的⽅向发展,主要有三个⼤的发展⽅向:(1)车辆主动控制车辆控制系统的构成都将包括三⼤组成部分,即控制算法、传感器技术和执⾏机构的开发。
⽽控制系统的关键,控制律则需要控制理论与车辆动⼒学的紧密结合。
(2)多体系统动⼒学多体系统动⼒学的基本⽅法是,⾸先对⼀个由不同质量和⼏何尺⼨组成的系统施加⼀些不同类型的连接元件,从⽽建⽴起⼀个具有合适⾃由度的模型;然后,软件包会⾃动产⽣相应的时域⾮线性⽅程,并在给定的系统输⼊下进⾏求解。
汽车是⼀个⾮常庞⼤的⾮线性系统,其动⼒学的分析研究需要依靠多体动⼒学的辅助。
(3)“⼈—车—路”闭环系统和主观与客观的评价采⽤⼈—车闭环系统是未来汽车系统动⼒学研究的趋势。
作为驾驶者,⼈既起着控制器的作⽤,⼜是汽车系统品质的最终评价者。
假如表达驾驶员驾驶特性的驾驶员模型问题得到解决后,“开环评价”与“闭环评价”的价值差别也许就不存在了。
因此,在⼈—车闭环系统中的驾驶员模型研究,也是今后汽车系统动⼒学研究的难题和挑战之⼀。
除驾驶员模型的不确定因素外,就车辆本⾝的⼀些动⼒学问题也未必能完全通过建模来解决。
⽬前,⼈们对车辆性能的客观测量和主观之间的复杂关系还缺乏了解,⽽车辆的最终⽤户是⼈。
因此,对车辆系统动⼒学研究者⽽⾔,今后⼀个重要的研究领域可能会是对主观评价与客观评价关系的认识2.⽬前汽车系统动⼒学的研究现状汽车系统动⼒学研究内容范围很⼴,包括车辆纵向运动及其⼦系统的动⼒学响应,还有车辆垂向和横向动⼒学内容。
车辆系统动力学

2. 系统具有整体性
系统虽是由多种元素组成,但系统的性能不 是各元素性能的简单组合,而是相互影响的,所 以这种组合使系统的整体功能获得新的内容,具 有更高的价值。例如一辆汽车是由发动机、传动 系、车轮、车身、操纵系统组成。单有发动机只 能发出动力,不会自己行走,但当发动机装在具 有车轮的汽车底盘上,就成为可以行走的汽车, 成为一种交通工具,其功能就与一台发动机大不 相同。由此可见,研究系统特性应从整体的观点 来看。系统的性能是由其整体性能为代表,而不 是由某一个元素所能代替的。
4. 系统具有功能共性
系统中存在着物质、能量和信息的流动, 并与外界(环境)进行物质、能量和信息的交 流,既可以从外界环境向系统输入或从系统向 外界环境输出物质、能量和信息。这是任何系 统都具有的功能,称为系统的功能共性。如汽 车系统中把燃料的燃烧热能转换为汽车的行驶 动能,在这一过程中,发动机吸收氧气,而排 除废气。这一过程有能量的交流,也有物质的 交流。
第一章 绪论
• 1.1 系统与系统动力学的概念 • 1.2 汽车系统动力学的研究内容和特点 • 1.3 汽车系统动力学的研究方法
1.1 系统与系统动力学的概念
在我们真实的大千世界中,存在着许多由一组物 件构成,以一定规律相互联系起来的实体,这就是系 统,自然界就有太阳系、银河系这样的大系统,这种 系统是脱离人的影响而自然存在,称为自然系统,还 有如生物、原子内部也构成了自然系统,还有一种系 统是通过人的设计而形成的系统,称为人工系统,如 生产系统、交通运输系统、通信系统;人工组合和自 然合成的组合系统,如导航系统。 本文主要是研究人工的物理系统及其特性。 如果把汽车的构成看成是一大系统,那么这一系 统应表示为(如图1-1):
一个系统可能由若干个环节组成,画出各环节的 方框图,然后将这些方框图联系起来,就构成了系 统的方框图。因此,方框图是数学模型-传递函数 的图解化 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 汽车转向系统动力学
3
4-1 概述
T
r1
r0
1.05r0
r (t) 0.95r0
t
sw
转向盘转角sw0
t
r
稳态横摆角速度
0
反应时间
r1最大横摆角速度 峰值反应时间
r1 100%超调量 r0
稳定时间
- 汽车转向系统动力学
4
4-1 概述
瞬态响应特征评价参数
➢横摆角速度响应时间 ➢横摆角速度峰值响应时间 ➢横摆角速度超调量 ➢横摆角速度总方差 ➢侧向加速度响应时间 ➢侧向加速度峰值时间 ➢侧向加速度超调量 ➢侧向加速度总方差 ➢汽车因素TB ➢稳态横摆角速度增益
- 汽车转向系统动力学
2
4-1 概述
ISO 试验
steady-state circular driving behaviour open-loop test procedure lateral transient response tests methods open-loop test methods braking in a turn – open-loop test procedure test track for a severe lane-change manoeuvre part 1 : double-
- 汽车转向系统动力学
11
4-2 汽车操纵稳定性工程分析方法
运动微分方程
lim ax
t0
u
t
ur
lim 和ay
t0
u+
t
ur+
Y向力平衡
FY1cosFY2m(ur+ ) FY1FY2m(ur+ )
对质心取矩
L1FY1c osL2FY2Iz r L1FY1L2FY2Iz r
- 汽车转向系统动力学
12
- 汽车转向系统动力学
15
4-2 汽车操纵稳定性工程分析方法
评价指标
➢ 稳态响应
转向灵敏度
r const,
0,
=
r
0
- 汽车转向系统动力学
5
4-1 概述
主观评价法:驾驶员根据不同的驾驶任务操纵汽车时, 依据对操纵动作难易程度的感觉来对汽车进行评价
直线行驶稳定性(包括转向回正能力、侧风敏感性、路面不 平敏感性等)
行车变道的操纵性 转弯稳定(包括转向的准确性、固有转向特性、转弯制动特
性等) 操纵负荷 多弯道路段上汽车总特性的评价。 汽车的乘坐操纵舒适性(空间、力度等,如踏板、手柄)
➢ 反映稳态特性的参量:不足转向量1-2,转向灵敏度 和汽车重心侧偏角。
➢ 时域反映横摆运动瞬态响应的参量:峰值反应时间和横 摆角速度超调量。
➢ 频域反映横摆运动瞬态响应的参量:固有频率,幅值比 和相位差。
➢ 综合参量:汽车因素 TB,TB 必须在同一工况下得出, 通常 V=31.3 m/s,ay= 0.4g。
= i
- 汽车转向系统动力学
10
4-2 汽车操纵稳定性工程分析方法
假设条件
☆ 忽略转向系的影响,以前轮转角作为输入; ☆ 汽车只进行平行于地面的平面运动,而忽略悬架的作用; ☆ 汽车前进(纵轴)速度不变,只有沿y轴的侧向速度和绕z
轴的横摆运动(ay<0.4g) ;
☆ 驱动力不大,对侧偏特性无影响; ☆ 忽略空气阻力; ☆ 忽略左右轮胎因载荷变化引起轮胎特性的变化; ☆ 忽略回正力矩的变化。
驾驶员-汽车闭环系统
- 汽车转向系统动力学
9
4-2 汽车操纵稳定性工程分析方法
数学模型
为了简化数学模型并保证足够的工程分析精 度,把多自由度模型缩减为只有y 和的二自由 度模型。其方法是忽略y 和以外其它自由度的 惯性和阻尼而计及它们运动的静态耦合效应。
只要把简单的二自由度模型中的轮胎侧偏刚 度换以综合了各种侧偏效应的车轮当量侧偏刚 度,就可变成缩减的二自由度数学模型。即:
lane change test track for a severe lane-change manoeuvre part 2 : obstacle
avoidance power off reactions of a vehicle in a turn- open-loop test
method
- 汽车转向系统动力学
7
4-1 概述
实例
驾驶员对 14个车辆方案中的每 个方案进行汽车易操纵性的主观 评价,然后将14个车辆方案进行 主观排序。
- 汽车转向系统动力学
8
4-1 概述
理论研究方法
➢ 开环线性系统 ➢ 闭环系统
路面条件 交通状况
气候
驾驶员
驾驶员 的手脚
侧风 路面不平
汽车
汽车运动
(横摆、侧倾...)
4-2 汽车操纵稳定性工程分析方法
运动微分方程
, L1 r
u
u
1
(
)
L1 r
u
2
L2 r
u
L2 r
u
F Y 1 k 11 F Y 2 k 22
- 汽车转向系统动力学
13
4-2 汽车操纵稳定性工程分析方法
运动微分方程
k11 k 2 2 m(u r )
L1k1
1
L2 k 2 2
汽车转向系统 动力学(一.二)
- 汽车转向系统动力学
4-1 概述
客观评价法r、ay、p(侧倾)和 角转向力等
蛇形试验
转向回正性能试验
方向盘转角阶跃输入试验 转向轻便性试验
方向盘转角脉冲输入试验 稳态回转试验
GM 试验
Control Response Test Frequency Response Test Maximum Lateral Accelaration Test On-center Handling Test
- 汽车转向系统动力学
6
4-1 概述
主观评价法:驾驶员根据不同的驾驶任务操纵汽车时, 依据对操纵动作难易程度的感觉来对汽车进行评价
人数:不少于20,有经验、有文化 的普通驾驶员 路:L>50Km,Vmax不小于最高车速的70% 车辆:正常 主观评分:如5级分制:5,4,3,2,1 ,对应于
很好,较好,中等,较差,很差。 NT=(l*wl+c*wc+R*wr+S*ws+F*wf)/5
I z r
将
1
2
(
)
L2
u
r
L1 r
u
L2
u
r
代
入
,
则
FY
(k1 ( L1k1
k2)
L2k2
( L1k1
) (
L2k2 L12 k1
)r
u L22 k 2
k1 m(
)r
u
L1k1
u r )
TZ
I z r
- 汽车转向系统动力学
14
4-2 汽车操纵稳定性工程分析方法
评价指标