论述价键理论和分子轨道理论说明O2

合集下载

分子轨道理论好

分子轨道理论好

分子轨道理论价键理论、杂化轨道理论虽能较好地说明共价键形成的本质和分子的空间构型,但由于其都是以电子配对为基础的,只考虑形成共价键的电子,而未将分子看成是一个整体,因此在应用中有其局限性。

按照价键理论,O 2分子的路易斯电子式是..O O ......,分子中应该没有成单电子,但是测定其磁性,表明氧为顺磁性物质,液态氧和固态氧极易为磁铁所吸引,故O 2分子中应该有成单电子。

高温下的B 2分子虽具有偶数的价电子,但它也是顺磁性物质。

而H 2+、O 2+、NO 、NO 2等奇数电子分子或离子也能够稳定存在。

这些事实,价键理论无法加以解释。

1932年,美国密立根和洪特等人提出了分子轨道理论(molecular orbital theory ,简称MO 法)。

该理论以量子力学为基础,把原子电子层结构的主要概念,推广到分子体系中去,很好地说明了上述实验事实,从另一个方面揭示了共价分子形成的本质。

1.分子轨道理论的基本要点⑴ 分子轨道理论认为,分子中的电子不再从属于某个特定的原子而是在整个分子空间范围内运动。

因此,分子中的电子运动状态应该用相应的波函数ψ(简称分子轨道)来描述。

每个分子轨道也具有相应的能量E ,由此可得到分子轨道能级图。

⑵ 分子轨道是由分子中原子的原子轨道线性组合(1inear combination of atomic orbitals )而成的。

n 个原子轨道线性组合,可以形成n 个分子轨道。

其中,2n 个分子轨道的能量高于原子轨道,称为反键分子轨道(antibonding orbital ),2n 个分子轨道的能量低于原子轨道,称为成键分子轨道(bonding orbital )。

⑶ 原子轨道要有效组合成为分子轨道,必须遵循三个原则,即能量近似原则、轨道最大重叠原则和对称性匹配原则。

⑷ 分子中的电子将遵循保里不相容原理、能量最低原理和洪特规则,依次填入分子轨道之中。

2.原子轨道线性组合形成分子轨道原子轨道有效组合形成分子轨道必须遵循三个原则:能量近似原则、轨道最大重叠原则和对称性匹配原则。

分子的结构和性质:分子轨道理论

分子的结构和性质:分子轨道理论

1s
1s
··
σ 1s 分子结构式 ‫׃‬N≡ N‫׃‬
A.O M.O A.O
.3 分子轨道的应用
.31分. 推子测轨分道子的存应在用和阐明分子的结构
分子轨道 能级 1s
示意图
H+2
σ *1s 2s
1s
σ 1s
1s
Li2
σ *2s 2s
σ 2s σ *1s
1s
分子轨道式 价键结构式
H+2 [(1s)1] [H ·H]+
σ 2s
1s σ *1s 1s σ 1s
A.O M.O A.O源自第一、二周期同核双原子分子分子轨道能级
.3 分子轨道的能级
2p
σ *2p π *2p σ 2p
2p
能 量
1s<*1s<2s<*2s 2py=2pz <2px *2py=*2pz*2px
π 2p 2s σ *2s 2s
σ 2s
1s σ *1s 1s σ 1s
256 436
946
一般来说,键级越大,键能越大,分子越稳定
.3 分子轨道的应用
3. 预言分子的磁性
顺磁性——分子中的未成对电子,在磁场 中顺磁场方向排列的性质。
具有顺磁性的物质——顺磁性物质
反磁性——无未成对电子的分子,在磁场 中产生弱的反磁性。
具有反磁性的物质——反磁性物质
σ *2p
O2分子
1s
1s
O2A为.O顺磁M.O性σ物1As质.O
··· 1个σ键、 2个三电子键
分子轨道理论的崛起 能成功地说明许多分子的结构和反应性能
.1 分子轨道的基本概念
把分子作为一个整体,电子在整个分子中 运动。分子中的每个电子都处在一定的分 子轨道上,具有一定的能量。

2[1].价键理论和分子轨道理论

2[1].价键理论和分子轨道理论
s轨道:球形对称 p轨道:哑铃型,3 轨道:哑铃型,3 个,分别沿x 个,分别沿x,y,z 轴伸展.
电子云重叠
H2
HClbond) 由两个原子轨道沿轨道对称轴方向相 互重叠导致电子在核间出现概率增大而形 成的共价键,叫做σ 成的共价键,叫做σ键,可以简记为"头碰 头"(见右图) σ键属于定域键,它可以是一般共价键, 键属于定域键,它可以是一般共价键, 也可以是配位共价键.一般的单键都是σ 也可以是配位共价键.一般的单键都是σ键. 由于σ 由于σ键是沿轨道对称轴方向形成的, 轨道间重叠程度大,所以,通常σ 轨道间重叠程度大,所以,通常σ键的键能 比较大,不易断裂,而且,由于有效重叠 只有一 次,所以两个原子间至多只能形成 一条σ 一条σ键.
1919年,化学家欧文朗缪尔首次使用"共价"来 1919年,化学家欧文朗缪尔首次使用"共价"来 描述原子间的成健过程. 1922年,尼尔斯玻尔(N.Bohr)从量子化的角度 1922年,尼尔斯玻尔(N.Bohr)从量子化的角度 重新审视了卢瑟福的核式模型,这为化学家对化学键 的认识,提供了全新的平台,他认为电子应该位于确 的认识,提供了全新的平台,他认为电子应该位于确 定的轨道之中,并且能够在不同轨道之间跃迁,定态 定的轨道之中,并且能够在不同轨道之间跃迁,定态 跃迁可以很好的解释氢原子光谱的各个谱线. 1923年,美国化学家吉尔伯特路易斯(G.N.Lewis) 1923年,美国化学家吉尔伯特路易斯(G.N.Lewis) 发展了柯塞尔的理论,提出共价键的电子对理论.路 发展了柯塞尔的理论,提出共价键的电子对理论.路 易斯假设:在分子中来自于一个原子的一个电子与另 一个原子的一个电子以"电子对"的形式形成原子间 的化学键.这在当时是一个有悖于正统理论的假设, 因为库仑定律表明,两个电子间是相互排斥的,但路 易斯这种设想很快就为化学界所接受,并导致原子间 电子自旋相反假设的提出.

高中化学竞赛,强基计划,分子轨道理论

高中化学竞赛,强基计划,分子轨道理论

分子轨道理论按照价键理论,O 2分子的路易斯结构式是,O 2分子中没有成单电子,但对O 2分子的磁性研究表明,O 2分子有两个自旋向相同的成单电子。

另外,经光谱实验证明,H 2+、O 2+、NO 、NO 2等奇数电子的离子或分子能够稳定存在。

这些事实,价键理论都无法加以解释。

1932年,美国化学家马利肯(R.S.Mulliken)及德国物理学家洪特(F.Hund)提出了分子轨道理论(molecular orbital theory ,简称MO 法)。

分子轨道理论从分子的整体性来讨论分子的结构,认为原子形成分子后,电子不再属于个别的原子轨道,而是属于整个分子的分子轨道,它能很好地说明价键理论无法解释的实验事实,从另一个方面揭示了共价分子形成的本质。

1.分子轨道理论的基本要点 (1)分子轨道理论认为,分子中的电子不再从属于某个特定的原子而是在整个分子空间范围内运动。

因此,分子中的电子运动状态应该用相应的波函数(ψ,简称分子轨道)来描述。

每个分子轨道也具有相应的能量(E),由此可得到分子轨道能级图。

(2)分子轨道是由分子中原子的原子轨道线性组合(1inear combination of atomic orbitals)而成的。

n 个原子轨道线性组合,可以形成n 个分子轨道。

其中,n /2个分子轨道的能量高于原子轨道,称为反键分子轨道(antibonding orbital),n /2个分子轨道的能量低于原子轨道,称为成键分子轨道 (bonding orbital)。

(3)原子轨道要有效组合成为分子轨道,必须遵循三个原则,即能量近似原则、轨道最大重叠原则和对称性匹配原则。

(4)分子中的电子将遵循泡利不相容原理、能量最低原理和洪特规则,依次填入分子轨道之中。

2.原子轨道有效组合形成分子轨道的三个原则(1)能量近似原则:原子轨道必须能量接近,才能有效线性组合成为分子轨道。

对于同核的双原子分子,如O 2,它们对应的原子轨道能量相同,故1s 轨道与1s 轨道,2p 轨道与2p 轨道可以分别线性组合形成分子轨道,而1s 轨道与2p 轨道之间很难发生组合。

高中化学奥林匹克竞赛辅导讲座 第5讲 分子结构-典型例题与知能训练

高中化学奥林匹克竞赛辅导讲座 第5讲 分子结构-典型例题与知能训练

高中化学奥林匹克竞赛辅导讲座 第5讲 分子结构【典型例题】例1、写出POCl 3的路易斯结构式。

分析:应当明确在POCl 3里,P 是中心原子。

一般而言,配位的氧和氯应当满足八偶律。

氧是二价元素,因此,氧原子和磷原子之间的键是双键,氯是1价元素,因此,氯原子和磷原子之间的键是单键。

然而使配位原子满足八偶律,即画出它们的孤对电子。

解:例2、给出POCl 3的立体构型。

分析:应用VSEPR 模型,先明确中心原子是磷,然后计算中心原子的孤对电子数:n = 5 - 2 -3 × 1 = 0所以,POCl 3属于AX 4E 0 = AY 4型。

AY 4型的理性模型是正四面体。

由于氧和磷的键是双键,氯和磷的键是单键,所以∠POCl >109°28’,而∠ClPCl <109°28’。

解:POCl 3,呈三维的四面体构型,而且,∠POCl >109°28’,而∠ClPCl <109°28’。

例3、给出POCl 3的中心原子的杂化类型。

分析:先根据VSEPR 模型确定,POCl 3属于AY 4型(注意:不能只考虑磷原子周围有四个配位原子,杂化类型的确定必须把中心原子的孤对电子考虑在内。

本题恰好AX n + m = AY n (m = 0),如果不写解题经过,可能不会发现未考虑孤对电子的错误。

)AY 4的VSEPR 模型是正四面体。

因此,POCl 3属于三维的不正的四面体构型。

解:POCl 3是四配位的分子,中心原子上没有孤对电子,所以磷原子取sp 3杂化类型,但由于配位原子有两种,是不等性杂化(∠POCl >109°28’, 而∠ClPCl <109°28’ )。

例4、BF 3分子有没有p –p 大π键?分析:先根据VSEPR 模型确定BF 3分子是立体构型。

然后根据立体构型确定BF 3分子的B 原子的杂化轨道类型。

再画出BF 3分子里的所有轨道的图形,确定有没有平行的p 轨道。

价键理论和分子轨道理论

价键理论和分子轨道理论
●原子轨道为什么需要杂化? ●如何求得杂化轨道的对称轴间的夹角?
1. 基本要点
● 成键时能级相近的价电子轨道相混杂,形成新的 价电子轨道——杂化轨道
● 杂化前后轨道数目不变 ● 杂化后轨道伸展方向,形状和能量发生改变
变了 总之,杂化后的轨道
●轨道成分变了
●轨道的能量变了
结果当然是更有利于成键!
●轨道的形状变了
● 在 BCl3 和 NCl3 分子中,中心原子的氧化数和配体 数都相同,为什么两者的空间分子结构却不同?
● 在 sp2 和 sp 杂化轨道中,是否也存在不等性杂化? 各举一例! 例如 SO2 和 CO
s-p-d 杂化轨道
s-p-d hybrid orbital
sp3d
sp3d2
假设
理论
Pauling
曲线的最低点相应于吸引力等于 排斥力的状态, 该状态下两核间的平 衡距离 R0 叫做核间距(符号为 d ),与 核间距 d 对应的势能(Ed)则是由气态 正、负离子形成离子键过程中放出的 能量。
H2分子的形成
显然,图形反映了两个中性原子间通过共用电子对相 连形成分子,是基于电子定域于两原子之间,形成了一 个密度相对大的电子云(负电性),这就是价键理论的 基础。因此,共价键的形成条件为:
中心原子价电子数>8
S : (Ne) 3s2 3p4 3d0
Cl
Number of valence electrons = 6 + (4 x 7) = 34
Cl
Cl P
Cl Cl
FF S
P : (Ne) 3s2 3p3 3d0
Number of valence electrons = 5 + (5 x 7) = 40

第三版无机化学教材课后习题答案

第三版无机化学教材课后习题答案

第二章1..某气体在293K与9.97×104Pa时占有体积1.910-1dm3其质量为0.132g,试求这种气体的相对分子质量,它可能是何种气体?解2.一敝口烧瓶在280K时所盛的气体,需加热到什么温度时,才能使其三分之一逸出? 解3.温度下,将1.013105Pa的N2 2dm3和0.5065Pa的O23 dm3放入6 dm3的真空容器中,求O2和N2的分压及混合气体的总压。

解4.容器中有4.4 g CO2,14 g N2,12.8g O2,总压为2.026105Pa,求各组分的分压。

解5.在300K,1.013105Pa时,加热一敝口细颈瓶到500K,然后封闭其细颈口,并冷却至原来的温度,求这时瓶内的压强。

解6.在273K和1.013×105Pa下,将1.0 dm3洁净干燥的空气缓慢通过H3C—O—CH3液体,在此过程中,液体损失0.0335 g,求此种液体273K时的饱和蒸汽压。

解7.有一混合气体,总压为150Pa,其中N2和H2的体积分数为0.25和0.75,求H2和N2的分压。

解8.在291K和总压为1.013×105Pa时,2.70 dm3含饱和水蒸汽的空气,通过CaCl2干燥管,完全吸水后,干燥空气为3.21 g,求291K时水的饱和蒸汽压。

解9.有一高压气瓶,容积为30 dm3,能承受2.6×107Pa,问在293K时可装入多少千克O2而不致发生危险?解10.在273K时,将同一初压的4.0 dm3 N2和1.0dm3 O2压缩到一个容积为2 dm3的真空容器中,混合气体的总压为3.26×105 Pa,试求(1)两种气体的初压;(2)混合气体中各组分气体的分压;(3)各气体的物质的量。

解用作图外推法(p对ρ/p)得到的数据求一氯甲烷的相对分子质量。

解0.00.20.40.60.8 1.0 1.22.02.22.4ρ/P(g·dm-3·1-5pa-1)P (105pa)可得出一氯甲烷的相对分子质量是50.49512.(1)用理想气体状态方程式证明阿佛加德罗定律; (2)用表示摩尔分数,证明x i =总V iν (3)证明2μ=MkT3 证明:(1)PV=nRT当p 和T 一定时,气体的V 和n 成正比 可以表示为V ∞n(2)在压强一定的条件下,V 总=V 1+V 2+V 3+----- 根据分体积的定义,应有关系式 P 总V i =nRT混合气体的状态方程可写成P 总V 总=nRT总V Vi= n ni 又n ni =x i 所以 x i = 总V i ν(3)BAμμ=A B M M又pV=31N 0m(2μ)2 2μ=m pV 0N 3=MRT3 所以2μ=MkT313.已知乙醚的蒸汽热为25900J ·mol -1,它在293K 的饱和蒸汽压为7.58×104Pa ,试求在308K 时的饱和蒸汽压。

化学键理论

化学键理论

化学键理论简介化学键是指将两个或多个原子结合在一起的力,是构成分子和化合物的基本单位。

化学键理论旨在解释化学键形成的原因以及化学键的类型和性质。

本文将介绍几个常见的化学键理论。

1. 价键理论价键理论也称为路易斯理论,是由美国化学家吉尔伯特·路易斯于1916年提出的。

根据这个理论,化学键形成是由于原子之间的电子共享或电子转移。

在化学键中,原子通过共享或转移电子以实现稳定状态。

共价键的形成是通过电子共享形成的,而离子键的形成是通过电子转移形成的。

2. 电子云理论电子云理论也称为量子力学理论,是由奥地利物理学家艾尔温·薛定谔等人在20世纪初提出的。

根据这个理论,电子不能被简单地看作是粒子,而是存在于原子周围的一种云状结构,称为电子云。

在化学键中,电子云之间的重叠是化学键的形成基础。

共价键形成是由于两个原子的电子云的重叠,而离子键形成是由于正负电荷之间的吸引力。

3. 分子轨道理论分子轨道理论是由德国化学家恩斯特·赫尔曼·福克和罗伯特·桥·休伊特于20世纪初提出的。

根据这个理论,分子中的电子不再局限于原子轨道,而是存在于整个分子的分子轨道中。

分子轨道可以是成键轨道(高能级)或反键轨道(低能级)。

共价键的形成是通过成键轨道的重叠,而离子键的形成是通过成键轨道和反键轨道之间的重叠。

4. 杂化轨道理论杂化轨道理论是由美国化学家林纳斯·鲍林在20世纪初提出的。

根据这个理论,原子轨道在形成化学键时会重新组合成一组新的杂化轨道。

杂化轨道具有介于原子轨道之间的性质,可以更好地解释一些分子的形状和键角。

杂化轨道的形成是为了最大限度地重叠,以实现更强的化学键。

5. 价电子对斥力理论价电子对斥力理论也称为VSEPR理论,是由英国化学家罗纳德·吉尔斯彭尼克在1940年代提出的。

根据这个理论,化学键的形成是为了最小化价电子对之间的斥力。

分子的几何形状取决于周围的原子和非键电子对的排列方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

论述价键理论和分子轨道理论说明O2
-CAL-FENGHAI.-(YICAI)-Company One1
1.论述价键理论和分子轨道理论说明O2、N2分子的结构和稳定性的基本思路,两种理论的优点及不足之处。

答:价键理论(简称VB法)认为两个原子相互靠近形成分子时,原子的价层电子轨道发生最大程度的重叠,使体系的能量降低,价层轨道中自旋相反的成单电子相互靠近配对,从而稳定成键。

共价键按原子轨道重叠方式不同,可分为σ键和π键(1分),N2分子中,两个N原子各以一个含有单电子的p轨道以头碰头的方式重叠形成σ键,另外两对含有单电子的p轨道以肩并肩的方式重叠形成π键,所以N2分子中两个氮原子是两个π键和一个σ键连接,非常稳定。

O2分子中,两个O原子各以一个含有单电子的p轨道以头碰头的方式重叠形成σ键,另外一对含有单电子的p轨道以肩并肩的方式重叠形成π键,所以O2分子中两个氧原子原子是一个π键和一个σ键连接,没有N2稳定。

分子轨道理论(简称MO法)着重于分子的整体性,把分子作为一个整体来处理,比较全面地反映了分子内部电子的各种运动状态。

描述分子中电子运动状态的函数称为分子轨道。

分子轨道有原子轨道先行组合而来。

电子属于整个分子,电子在分子轨道填充,能量最低的状态即分子的结构。

O2的分子轨道:
(σ1s)2 (σ*1s)2 (σ2s)2 (σ*2s)2 (σ2p x)2 (π2p y)2 (π2p z)2 (π*2p y)1 (π*2p z)1
N2的分子轨道:
(σ1s)2 (σ*1s)2 (σ2s)2 (σ*2s)2 (σ2p x)2 (π2p y)2 (π2p z)2
N2分子的键级为3,O2分子的键级为2。

所以N2分子比氧气分子要稳定。

价键理论解决结构问题比较直观,计算比较简单,但其只考虑原子价层轨道对成键的影响,不够全面,比如O2分子的磁性用价键理论就难以解释;分子轨道理论能较好地解释分子成键的情况、键的强弱和分子的磁性,但计算难度及工作量太大。

2。

相关文档
最新文档