2017届高三数学第一轮复习专题训练之极值点偏移问题 含答案 精品

合集下载

极值点偏移的典型例题(含答案)

极值点偏移的典型例题(含答案)

极值点偏移的问题(含答案)21212()ln ,(1()1121()()3(),,f x x ax a f x x x a a f m f mf x x x x x e =-==⋅1.已知为常数)()若函数在处的切线与轴平行,求的值;()当时,试比较与的大小;()有两个零点证明:>21212()ln (),,.f x x ax f x x x x x e =-⋅变式:已知函数,a 为常数。

(1)讨论的单调性;(2)若有两个零点,试证明:>2012120()+sin,(0,1);2()()()()(),2.xf x x ax x f x a a f x f x f x f x x x x π=+∈=+2.已知(1)若在定义域内单调递增,求的取值范围;(2)当=-2时,记取得极小值为若求证>()2121212121()ln -,()2(1=()()()(1)()1,,0,2f x x ax x a R f f xg x f x ax g x a x x f x f x x x x x =+∈-++=+≥3.已知(1)若)0,求函数的最大值;(2)令=-,求函数的单调区间;(3)若=-2,正实数满足()证明:212122(1)1(1)1,,x x x x x e -+>>4.设a>0,函数f(x)=lnx-ax,g(x)=lnx-证明:当时,g(x)>0恒成立;(2)若函数f(x)无零点,求实数a 的取值范围;(3)若函数f(x)有两个相异零点x 求证:x1212312()2ln ,1()2(),8f x x a a x a R f x f x x x x x a x x a =--∈<⋅<5.已知常数。

()求的单调区间;()有两个零点,且;(i)指出的取值范围,并说明理由;(ii)求证:6.设函数()e ()x f x ax a a =-+∈R ,其图象与x 轴交于1(0)A x ,,2(0)B x ,两点,且12x x <.(1)求a 的取值范围;(2)证明:0f '<(()f x '为函数()f x 的导函数);。

专题20 极值点偏移问题(解析版)

专题20 极值点偏移问题(解析版)

专题20极值点偏移问题1.极值点偏移的含义若单峰函数f (x )的极值点为x 0,则极值点的偏移问题的图示及函数值的大小关系如下表所示.极值点x 0函数值的大小关系图示极值点不偏移x 0=x 1+x 22f (x 1)=f (2x 0-x 2)极值点偏移左移x 0<x 1+x 22峰口向上:f (x 1)<f (2x 0-x 2)峰口向下:f (x 1)>f (2x 0-x 2)右移x 0>x 1+x 22峰口向上:f (x 1)>f (2x 0-x 2)峰口向下:f (x 1)<f (2x 0-x 2)2.函数极值点偏移问题的题型及解法极值点偏移问题的题设一般有以下四种形式:(1)若函数f (x )在定义域上存在两个零点x 1,x 2(x 1≠x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(2)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),求证:x 1+x 2>2x 0(x 0为函数f (x )的极值点);(3)若函数f (x )存在两个零点x 1,x 2(x 1≠x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0;(4)若在函数f (x )的定义域上存在x 1,x 2(x 1≠x 2)满足f (x 1)=f (x 2),令x 0=x 1+x 22,求证:f ′(x 0)>0.3.极值点偏移问题的一般解法3.1对称化构造法主要用来解决与两个极值点之和,积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点0x .(2)构造函数,即对结论1202x x x +>型,构造函数0()()(2)F x f x f x x =--或00()()()F x f x x f x x =+--;(3)对结论2120x x x ⋅>型,构造函数20()()()x F x f x f x=-,通过研究()F x 的单调性获得不等式.(4)判断单调性,即利用导数讨论()F x 的单调性.(5)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(6)转化,即利用函数f (x )的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.3.2.差值代换法(韦达定理代换令1212,x x t x x t =±=.)差值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之差作为变量,从而实现消参、减元的目的.设法用差值(一般用t 表示)表示两个极值点,即12t x x =-,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.3.比值代换法比值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点的比值作为变量,从而实现消参、减元的目的.设法用比值(一般用t 表示)表示两个极值点,即12x t x =,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.3.4.对数均值不等式法两个正数a 和b (),(, )ln ln ().a ba b L a b a ba ab -⎧≠⎪=-⎨⎪=⎩(, )2a bL a b +≤≤(此式记为对数平均不等式)取等条件:当且仅当a b =时,等号成立.3.5指数不等式法在对数均值不等式中,设m a e =,nb e =,则()(,)()m nme e m n E a b m n e m n ⎧-≠⎪=-⎨⎪=⎩,根据对数均值不等式有如下关系:2(,)2m nm ne e eE a b ++≤≤专项突破练1.已知函数()1ln f x x a x=++.(1)求函数()f x 的单调区间;(2)当()()()1212f x f x x x =≠时,证明:122x x +>.【解析】(1)∵()1ln f x x a x=++,∴()22111x f x x x x -'=-=,令()0f x '=,得x =1,当01x <<时,()0f x '<,()f x 单调递减;当1x >时,()0f x '>,()f x 单调递增,故函数()f x 的减区间为()0,1,增区间为()1,+∞;(2)由(1)知,不妨设1201x x <<<,构造函数()()()2g x f x f x =--,01x <<,故()()()()()()2222241112022x x x g x f x f x x x x x ----'''=+-=+=<--,故()g x 在()0,1上单调递减,()()10g x g >=,∵()10,1x ∈,∴()()()11120g x f x f x =-->,又∵()()12f x f x =,∴()()2120f x f x -->,即()()212f x f x >-,∵1201x x <<<,∴2x ,()121,x -∈+∞,又∵()f x 在()1,+∞上单调递增,∴212x x >-,即122x x +>,得证.2.已知函数()()e ln xf x x a =+.(1)若()f x 是增函数,求实数a 的取值范围;(2)若()f x 有两个极值点1x ,2x ,证明:122x x +>.【解析】(1)函数的定义域为()0,∞+,()1e ln x f x x a x ⎛⎫'=++ ⎪⎝⎭,若()f x 是增函数,即()0f x '≥对任意0x >恒成立,故1ln 0x a x++≥恒成立,设()1ln g x x a x=++,则()22111x g x x x x -'=-=,所以当01x <<时,()0g x '<,()g x 单调递减,当1x >时,()0g x '>,()g x 单调递增,所以当1x =时,()()min 11g x g a ==+,由10a +≥得1a ≥-,所以a 的取值范围是[)1,-+∞.(2)不妨设120x x <<,因为1x ,2x 是()f x 的两个极值点,所以()11111e ln 0x f x x a x ⎛⎫'=++= ⎪⎝⎭,即111ln 0x a x ++=,同理221ln 0x a x ++=,故1x ,2x 是函数()1ln g x x a x=++的两个零点,即()()120g x g x ==,由(1)知,()()min 110g x g a ==+<,故应有(),1a ∞∈--,且1201x x <<<,要证明122x x +>,只需证212x x >-,只需证()()()()211122g x g x g x g x --=--()()111111111111ln ln 2ln ln 2022x a x a x x x x x x ⎡⎤=++--++=+--+>⎢⎥--⎣⎦,设()()11ln ln 22h x x x x x =+--+-,(]0,1x ∈,则()()()()()22222224111111102222x x x h x x x x x x x x x ---'=----=-≤----,所以()h x 在()0,1上单调递减,因为()10,1x ∈,所以()()110h x h >=,即()()2120g x g x -->,()()212g x g x >-,又21>x ,121x ->,及()g x 在()1,+∞上单调递增,所以212x x >-成立,即122x x +>成立.3.已知函数()()11e xf x x -=+.(1)求()f x 的极大值;(2)设m 、n 是两个不相等的正数,且()()11e 1e 4e n m m n m n +-+++=,证明:2m n +<.【解析】(1)因为()()111e 1e x x f x x x --+==+的定义域为R ,()1e x xf x -'=-,当0x <时,()0f x '>,此时函数()f x 单调递增,当0x >时,()0f x '<,此时函数()f x 单调递减,所以,函数()f x 的极大值为()0e f =.(2)证明:因为()()11e 1e 4e n m m n m n +-+++=,则11114e e em n m n --+++=,即()()4f m f n +=,由(1)知,函数()f x 在(),1-∞上单调递增,在()1,+∞上单调递减,因为m 、n 是两个不相等的正数,且满足()()4f m f n +=,不妨设01m n <<<,构造函数()()()2g x f x f x =+-,则()()()1122ee x xxx g x f x f x ---'''=--=--,令()()h x g x '=,则()()()()111111e 1e e ex x x x xh x x x -----'=---=--.当01x <<时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,当1x >时,101x x ->>-,则()0h x '<,此时函数()h x 单调递减,又因为函数()h x 在()0,∞+上连续,故函数()h x 在()0,∞+上单调递减,当01x <<时,()()10h x h >=,即()0g x '>,故函数()g x 在()0,1上为增函数,故()()()()()()214f m f m g m g f m f n -+=<==+,所以,()()2f n f m >-,21m -> 且1n >,函数()f x 在()1,+∞上为减函数,故2n m <-,则2m n +<.4.已知函数()1ln xf x ax+=(1)讨论f (x )的单调性;(2)若()()2112e e xxx x =,且121200x x x x >>≠,,,证明:>【解析】(1)()()2ln 0xf x x ax -'=>当0a >时,()01x ∈,,()0f x '>,所以()f x 单调递增;()1x ∈+∞,,()0f x '<,所以()f x 单调递减;当0a <时,()01x ∈,,()0f x '<,所以()f x 单调递减;()1x ∈+∞,,()0f x '>,所以()f x 单调递增;(2)证明:()()2112x x x x =e e ,∴()()2112ln ln x x x x =e e ,()()1212ln ln x x x x =e e 即当1a =时,()()12f x f x =由(1)可知,此时1x =是()f x 的极大值点,因此不妨令1201x x <<<>22122x x +>①当22x ≥时,22122x x +>成立;②当212x <<时先证122x x +>此时()2201x -∈,要证122x x +>,即证:122x x >-,即()()122f x f x >-,即()()222f x f x >-即:()()2220f x f x -->①令()()()()()()1ln 21ln 21,22x x g x f x f x x x x+-+=--=-∈-,∴()()()()()222222ln 2ln 2ln 2ln ln 02x x x x x x g x x x x x x ---'=-->--=->-∴()g x 在区间()12,上单调递增∴()()10x g g >=,∴①式得证.∴122x x +>∵21112x x +>,22212x x +>∴221212222x x x x ++>+∴()221212222x x x x +>+->>5.已知函数()22ln x f x x a=-(a ∈R 且0a ≠).(1)2a =,求函数()f x 在()()22f ,处的切线方程.(2)讨论函数()f x 的单调性;(3)若函数()f x 有两个零点12x x 、()12x x <,且2e a =,证明:122e x x +>.【解析】(1)当2a =时,()22ln 2x f x x =-,所以()222ln 2f =-.()2f x x x '=-,所以()22212f '=-=.所以函数()f x 在()()22f ,处的切线方程为()22ln 22y x --=-,即2ln 2y x =-.(2)()f x 的定义域为(0,+∞),22()x f x a x'=-.当a <0时,()0f x '<恒成立,所以()f x 在(0,+∞)上单调递减;当a >0时,(222()x f x x x a x ax'=-=.在(上,()0f x '<,所以()f x 单调递减;在)+∞上,()0f x '>,所以()f x 单调递增.(3)当2e a =,()222ln ex f x x =-.由(2)知,()f x 在()0,e 上单调递减,在()e,∞+上单调递增.由题意可得:()12(0,e),e,x x ∈∈+∞.由(2e)22ln 20f =->及2()0f x =得:()2e,2e x ∈.欲证x 1+x 2>2e ,只要x 1>2e-x 2,注意到f (x )在(0,e)上单调递减,且f (x 1)=0,只要证明f (2e-x 2)>0即可.由22222()2ln 0ex f x x =-=得22222e ln x x =.所以22222(2e )(2e )2ln(2e )e x f x x --=--2222224e 4e 2ln(2e )e x x x -+=--()2222224e 4e 2e ln 2ln 2e e x x x -+=--2222442ln 2ln(2e ),(e,2e),ex x x x =-+--∈令4()42ln 2ln(2e ),(e,2e)etg t t t t =-+--∈则24224(e )()0e 2e e (2e )t g t t t t t -'=-++=--,则g (t )在(e ,2e)上是递增的,∴g (t )>g (e)=0即f (2e-x 2)>0.综上x 1+x 2>2e.6.已知函数()ln f x x x =-(1)求证:当1x >时,()21ln 1x x x ->+;(2)当方程()f x m =有两个不等实数根12,x x 时,求证:121x x m +>+【解析】(1)令()()()21ln 11x g x x x x -=->+,因为()()()()222114011x g x x x x x -'=-=>++,所以()g x 在()1,+∞上单调递增,所以()()10g x g >=,即当1x >时,()21ln 1x x x ->+.(2)证明:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.由(1)知,当1x >时,()21ln 1x x x ->+;当01x <<时,()21ln 1x x x -<+.方程()f x m =可化为ln x m x -=.所以()222221ln 1x x m x x --=>+,整理得()222120x m x m -++->.①同理由()111121ln 1x x m x x --=<+,整理得()211120x m x m -++-+>.②由①②,得()()()211210x x x x m -+-+>⎡⎤⎣⎦.又因为21x x >所以121x x m +>+.法二:由()ln f x x x =-,得()11f x x'=-,易知()f x 在()0,1单调递减,在()1,+∞单调递增,所以()min 1f x =.因为方程()f x m =有两个不等实根,所以1m >.不妨设1201x x <<<.要证121x x m +>+,只要证1211ln 1x x x x +>-+,只要证:21ln 11x x >-+>.因为()f x 在()1,+∞上单调递增,只要证:()()()1211ln f x f x f x =>-.令()()()(1ln 01h x f x f x x =--<<,只要证()0,1x ∀∈,()0h x >恒成立.因为()()()()1111ln 11ln 111ln 1ln x x x h x f x f x x x x x x x --⎛⎫⎛⎫=---=-+-=⎪ ⎪-⎭'⎝'-'⎝⎭,令()()ln 101F x x x x x =--<<,则()ln 0F x x '=->,故()F x 在()0,1上单调递增,()()10F x F <=,所以()0h x '<,所以()h x 在()0,1上单调递减,所以()()10h x h >=,故原结论得证.7.已知函数()()22ln 21f x a x x a x a =-+-+.(1)若1a =,证明:()22f x x x <-;(2)若()f x 有两个不同的零点12,x x ,求a 的取值范围,并证明:122x x a +>.【解析】(1)当1a =时,()22ln 1f x x x =-+,定义域为()0,∞+令()()()222ln 21g x f x x x x x =--=-+,则()22g x x'=-当01x <<时,()0g x '>;当1x <时,()0g x '<;所以函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,故()()max 110g x g ==-<,所以()0g x <,得()22f x x x <-;(2)因为()f x 有两个不同的零点12,x x ,则()f x 在定义域内不单调;由()()()()212221x a x af x x a x x--+'=-+-=当0a ≤时,()0f x '<在()0,∞+恒成立,则()f x 在()0,∞+上单调递减,不符合题意;当0a >时,在()0,a 上有()0f x '>,在(),a +∞上有()0f x '<,所以()f x 在()0,a 上单调递增,在(),a +∞上单调递减.不妨设120x a x <<<令()()()2F x f x f a x =--则()()()()()()222F x f x f a x a x f x f a x ''''''=---=+-()()()()()2422221222122a x a ax a a x a x a x x a x -=-+-+--+-=--当()0,x a ∈时,()0F x '>,则()F 在()0,a 上单调递增所以()()()()20F x F a f a f a a <=--=故()()2f x f a x <-,因为120x a x <<<所以()()12f x f a x <-1,又()()2f x f x =1,122a a x a <-<则()()212f x f a x <-,又()f x 在(),a +∞上单调递减,所以212x a x >-,则122x x a +>.8.已知函数()21ln 2f x x x x x =+-.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()00f x '=(()f x '为()f x 的导函数),方程()f x m =有两个不等实根1x 、2x ,求证:1202x x x +>.【解析】(1)因为()21ln 2f x x x x x =+-,则()ln f x x x '=+,所以,()112f =-,()11f '=,所以,曲线()y f x =在点()()1,1f 处的切线方程为112y x +=-,即32y x =-.(2)证明:因为()ln f x x x '=+,()00f x '=,所以00ln 0x x +=.因为()f x '为增函数,所以()f x 在()00,x 上单调递减,在()0,x +∞上单调递增.由方程()f x m =有两个不等实根1x 、2x ,则可设102x x x <<,欲证1202x x x +>,即证20102x x x x >->,即证()()2012f x f x x >-,而()()21f x f x =,即()()10120f x f x x -->,即()()()()2211110*********ln 2ln 222022x x x x x x x x x x x x +------+->,设()()()()()22000011ln 2ln 22222g x x x x x x x x x x x x x =+------+-,其中00x x <<,则()()00ln ln 22g x x x x x =+-+',设()()()000ln ln 220h x x x x x x x =<+<+-,则()()()000211022x x x x x x x x h x -=-=>--',所以,函数()g x '在()00,x 上单调递增,所以()()0002ln 20g x g x x x '<='+=,所以()g x 在()00,x 上单调递减,所以()()00g x g x >=,即()()2012f x f x x >-,故1202x x x +>得证.9.已知函数2()1e (1),1,1x f x k x x k R x ⎛⎫=--->-∈ ⎪+⎝⎭.(1)若0k =,证明:(1,0)x ∈-时,()1f x <-;(2)若函数()f x 恰有三个零点123,,x x x ,证明:1231x x x ++>.【解析】(1)0k =时,函数1()e ,(1,0)1xx f x x x -=∈-+,则221()e 0(1)x x f x x +='>+,()f x 在(1,0)-上单调递增,所以1()e (0)11xx f x f x -=<=-+.(2)e ()(1)1x f x x k x ⎛⎫=--⎪+⎝⎭,显然1x =为函数的一个零点,设为3x ;设函数e ()1xF x k x =-+,2e ()(1)x x F x x '=+当(1,0)x ∈-时,()0F x '<,当,()0x ∈+∞时,()0F x '>,故()F x 在(1,0)-上单调递减,在(0,)+∞上单调递增.由已知,()F x 必有两个零点12,x x ,且1210x x -<<<,下证:120x x +>.设函数()()(),(1,0)h x F x F x x =--∈-,则e e ()11x xh x x x -=++-,2e 11()e e (1)11x x x x x x h x x x x -++⎛⎫⎛⎫=+- ⎪⎪+--⎝⎭⎝⎭',由于(1,0)x ∈-,则2e 1e 0(1)1x x x x x x -+⎛⎫-< ⎪+-⎝⎭,由(1)有1e 01xx x ++>-,故()0h x '<,即函数()h x 在(1,0)-上单调递减,所以()(0)0h x h >=,即有()()()211F x F x F x =>-,由于12,(0,)x x -∈+∞,且在(0,)+∞上单调递增,所以21x x >-,所以120x x +>.10.已知函数()()()1ln 3f x x x a x =++-.(1)若函数()f x 为增函数,求实数a 的取值范围;(2)若函数()f x 有两个极值点1x 、()212x x x <.求证:()()12122f x f x x x +++>-.【解析】(1)因为()()()1ln 3f x x x a x =++-,该函数的定义域为()0,∞+,()1ln 2f x x a x'=++-,若函数()f x 为增函数,则()0f x '≥恒成立.令()1ln 2g x x a x =++-,()22111x g x x x x-'=-=,令()0g x '=得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减;当()1,x ∈+∞时,()0g x '>,()g x 单调递增,故()()11g x g a ≥=-,所以,10a -≥,因此1a ≥.(2)因为函数()f x 有两个极值点1x 、()212x x x <,即方程()0g x =有两个不等的实根1x 、()212x x x <,因为()g x 在()0,1上递减,在()1,+∞上递增,所以,1201x x <<<,即1x 、2x 是1ln 20x a x++-=的两个根,所以11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩,则()()111222ln 21ln 21x x a x x x a x ⎧+-=-⎪⎨+-=-⎪⎩,所以,()()()()121211221212ln ln ln ln 2f x f x x x x x x x x x a x x +++=++++-+12ln ln 2x x =+-,即证12ln ln 0x x +>,即证121x x >.由11221ln 201ln 20x a x x a x ⎧++-=⎪⎪⎨⎪++-=⎪⎩两式作差得122111ln x x x x =-,令()120,1x t x =∈,则11ln t x t -=,21ln t x t t-=,即只需证111ln ln t t t t t--⋅>,即证ln 0t >.令()ln t t ϕ=-()0,1t ∈,则()210t ϕ-'=,故()t ϕ在区间()0,1上单调递减,当()0,1t ∈时,()()10t ϕϕ>=,命题得证.11.已知函数()ln f x x x =-.(1)求函数()f x 的单调区间;(2)若函数()y f x =的图象与()y m m R =∈的图象交于()11,A x y ,()22,B x y 两点,证明:12242ln 2x x +>-.【解析】(1)()f x 的定义域为(0,)+∞令11()10xf x x x -'=-=>,解得01x <<令11()10x f x x x-'=-=<,解得1x >所以()f x 的单调增区间为(0,1),减区间为(1,)+∞(2)由(1)不妨设1201x x <<<由题知11ln x x m -=,22ln x x m -=两式相减整理可得:12121ln x x x x -=所以要证明12242ln 2x x +>-成立,只需证明1211222(42ln 2l )n x x x x x x +->-因为12ln 0x x <,所以只需证明212112(42ln 2ln )2x x x x x x <-+-令12,01x t t x =<<,则只需证明1(42ln l 21n 2)t t t -<-+,即证(1)ln (1)02(42ln 2)t t t +--<-令2()(1)ln (1)2(4ln 2)g t t t t -=-+-2ln 22l 12ln (2)1()22n 2ln t t t g t t t t++'--=++=记()2ln (2)12ln 2h x t t t +-=+则()2ln 2h x t '=易知,当102t <<时,()0h x '<,当112t <<时,()0h x '>所以当12t =时,min 11()()022n 2ln l h x h ==+=所以当01t <<时,()0g t '≥,函数()g t 单调递增故()(1)0g t g <=,即(1)ln (1)02(42ln 2)t t t +--<-所以,原不等式12242ln 2x x +>-成立.12.已知函数()()3ln 010f x ax x a a =+≠.(1)讨论()f x 的单调性.(2)若函数()f x 有两个零点12x x ,,且12x x <,证明:12310x x +>.【解析】(1)函数()f x 的定义域为()0,∞+,()()ln ln 1f x a x a a x '=+=+.①当0a >时,令()0f x '<,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递减;令()0f x '>,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.②当0a <时,令()0f x '<,得1x e >,则()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减;令()0f x '>,得10x e <<,则()f x 在10,e ⎛⎫⎪⎝⎭上单调递增.综上所述,当0a >时,()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增;当0a <时,()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减,在10,e ⎛⎫ ⎪⎝⎭上单调递增.(2)证明:因为12x x ,为()f x 的两个零点,所以113ln 010x x +=,223ln 010x x +=,两式相减,可得121233ln ln 01010x x x x -+-=,即1122123ln 10x x x x x x -=⋅,121212310ln x x x x x x -=⋅,因此,121121310ln x x x x x -=⋅,212121310ln x x x x x -=⋅.令12x t x =,则121113513310ln 10ln 10ln t t t x x t t t---+=⋅+⋅=⋅,令()()1ln 01h t t t t t =--<<,则()22211110t t h t t t t -+'=+-=>,所以函数()h t 在()0,1上单调递增,所以()()10h t h <=,即1ln 0t t t--<.因为01t <<,所以11ln t t t->,故12310x x +>得证.13.已知函数()ln f x x x ax a =-+.(1)若1≥x 时,()0f x ≥,求a 的取值范围;(2)当1a =时,方程()f x b =有两个不相等的实数根12,x x ,证明:121x x <.【解析】(1)∵1≥x ,()0f x ≥,∴ln 0a x a x -+≥,设()ln (1)ag x x a x x =-+≥,()221a x a g x x x x-'=-=,当1a >时,令()0g x '=得x a =,当1x a <≤时,()0g x '<,()g x 单调递减;当x a >时,()0g x '>,()g x 单调递增,∴()(1)0g a g <=,与已知矛盾.当1a ≤时,()0g x '≥,∴()g x 在[1,)+∞上单调递增,∴()(1)0g x g ≥=,满足条件;综上,a 取值范围是(,1]-∞.(2)证明:当1a =时,()ln f x x '=,当1x >,'()0f x >,当01x <<,'()0f x <,则()f x 在区间(1,)+∞上单调递增,在区间()0,1上单调递减,不妨设12x x <,则1201x x <<<,要证121x x <,只需证2111x x <<,∵()f x 在区间(1,)+∞上单调递增,∴只需证121()(f x f x <,∵12()()f x f x =,∴只需证111()()f x f x <.设1()()()(01)F x f x f x x =-<<,则22211()ln ln ln 0,x F x x x x x x -'=-=>,∴()F x 在区间()0,1上单调递增,∴()(1)0F x F <=,∴1()()0f x f x-<,即111()()f x f x <成立,∴121x x <.14.设函数()()e xf x x a =+,已知直线21y x =+是曲线()y f x =的一条切线.(1)求a 的值,并讨论函数()f x 的单调性;(2)若()()12f x f x =,其中12x x <,证明:124x x ⋅>.【答案】(1)1a =;()f x 在(),2-∞-上单调递减,在()2,-+∞上单调递增【解析】(1)设直线21y x =+与曲线()y f x =相切于点()()00,x f x ,()()1e x f x x a '=++ ,()()0001e 2x f x x a '∴=++=;又()()0000e 21x f x x a x =+=+,002e 21xx ∴-=+,即00e 210x x +-=;设()e 21x g x x =+-,则()e 20xg x '=+>,()g x ∴在R 上单调递增,又()00g =,()g x ∴有唯一零点0x =,00x ∴=,12a ∴+=,解得:1a =;()()1e x f x x ∴=+,()()2e x f x x '=+,则当(),2x ∞∈--时,()0f x '<;当()2,x ∈-+∞时,()0f x '>;()f x ∴在(),2-∞-上单调递减,在()2,-+∞上单调递增.(2)由(1)知:()()2min 2e 0f x f -=-=-<;当1x <-时,()0f x <;当1x >-时,()0f x >,1221x x ∴<-<<-;要证124x x ⋅>,只需证1242x x <<-;()f x 在(),2-∞-上单调递减,∴只需证()124f x f x ⎛⎫> ⎪⎝⎭,又()()12f x f x =,则只需证()224f x f x ⎛⎫> ⎪⎝⎭对任意()22,1x ∈--恒成立;设()()()421h x f x f x x ⎛⎫=--<<- ⎪⎝⎭,()()()()444333822e 2e e e 8xx xxxx x h x x x x x -⎛⎫++'∴=++=+ ⎪⎝⎭;设()()43e821x xp x x x -=+-<<-,则()2437e024x xp x x x -⎡⎤⎛⎫'=⋅++<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,()p x ∴在()2,1--上单调递减,()()2880p x p ∴<-=-+=,又当21x -<<-时,()432e 0xx x +<,()0h x '∴>,()h x ∴在()2,1--上单调递增,()()()()2220h x h f f ∴>-=---=,即()4f x f x ⎛⎫> ⎪⎝⎭在()2,1x ∈--时恒成立,又()22,1x ∈--,()224f x f x ⎛⎫∴> ⎪⎝⎭,原不等式得证.15.已知函数()()32ln f x x x a a R x=++-∈有两个不同的零点12,x x .(1)求实数a 的取值范围;(2)求证:121x x >.【解析】(1)定义域为()()22232230,,1x x f x x x x ∞+-+=-+=',()(),0,10x f x '∈<,所以()f x 在()0,1x ∈上单调递减.()()1,,0x f x '∈+∞>,所以()f x 在()1,x ∈+∞上单调递增,所以()f x 在1x =处取得极小值,也是最小值,又()min ()14f x f a ==-,所以先保证必要条件()10f <成立,即4a >满足题意.当4a >时,易知,()()()33222ln 22ln 2022f a a a a a a a a=++-=++>;()111132ln 2ln 0;f a a a a a a aa a ⎛⎫=+--=+->> ⎪⎝⎭由以上可知,当4a >时,()()32ln f x x x a a R x=++-∈有两个不同的零点.(2)由题意,假设1201x x <<<,要证明121x x >,只需证明121x x >.只需证()121f x f x ⎛⎫< ⎪⎝⎭,又()()12f x f x =.即只需证()221f x f x ⎛⎫< ⎪⎝⎭,构造函数()()1,(1)g x f x f x x ⎛⎫=-> ⎪⎝⎭.()224ln g x x xx =-+()222(1)x g x x --∴=',所以()g x 在()1,+∞单调递减.()()()2210,1,1g x g x g =>∴< ,即()221f x f x ⎛⎫<⎪⎝⎭成立,即()121f x f x ⎛⎫< ⎪⎝⎭所以原命题成立.16.已知a 是实数,函数()ln f x a x x =-.(1)讨论()f x 的单调性;(2)若()f x 有两个相异的零点12,x x 且120x x >>,求证:212e x x ⋅>.【解析】(1)()f x 的定义域为()0,∞+,()1a a x f x x x-'=-=,当0a ≤时,()0f x '<恒成立,故()f x 在()0,∞+上单调递减;当0a >时,令()0f x '>得:()0,x a ∈,令()0f x '<得:(),x a ∈+∞,故()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;综上:当0a ≤时,()f x 在()0,∞+上单调递减;当0a >时,()f x 在()0,x a ∈上单调递增,在(),x a ∈+∞上单调递减;(2)由(1)可知,要想()f x 有两个相异的零点12,x x ,则0a >,不妨设120x x >>,因为()()120f x f x ==,所以1122ln 0,ln 0a x x a x x -=-=,所以()1212ln ln x x a x x -=-,要证212e x x ⋅>,即证12ln ln 2x x +>,等价于122x x a a +>,而1212ln ln 1x x a x x -=-,所以等价于证明121212ln ln 2x x x x x x ->-+,即()1212122ln x x x x x x ->+,令12x t x =,则1t >,于是等价于证明()21ln 1t t t ->+成立,设()()21ln 1t g t t t -=-+,1t >()()()()222114011t g t t t t t -'=-=>++,所以()g t 在()1,+∞上单调递增,故()()10g t g >=,即()21ln 1t t t ->+成立,所以212e x x ⋅>,结论得证.17.已知函数()1e xf x ax -=-,(1)讨论函数()f x 的单调性;(2)若函数()f x 在()0,2上有两个不相等的零点12,x x ,求证:121x x a>.【解析】(1)()1e xf x a -='-,x ∈R .①当0a ≤时,()0f x '>恒成立,()f x 单调递增;②当0a >时,由()0f x '>得,()1ln ,x a ∈++∞,()f x 单调递增,由()0f x '<得,(),1ln x a ∈-∞+,()f x 单调递减.综上:当0a ≤时,()f x 单调递增;当0a >时,()f x 在()1ln ,x a ∈++∞上单调递增,在(),1ln x a ∈-∞+上单调递减.(2)∵()f x 在()0,2上有两个不相等的零点1x ,2x ,不妨设12x x <,∴1e x a x -=在()0,2上有两个不相等的实根,令()1e x g x x -=,()0,2x ∈,∴()()12e 1x x g x x --'=,由()0g x '<得,()0,1x ∈,()g x 单调递减,由()0g x '>得,()1,2x ∈,()g x 单调递增,()11g =,()e 22g =,0x →,()g x ∞→+,∴e 1,2a ⎛⎫∈ ⎪⎝⎭要证121x x a>,即证121ax x >,又∵()()12g x g x a ==,只要证211e1x x ->,即证211e x x ->,∵121x x <<,即证()()211e xg x g -<即证()()212e x g x g -<,即证12221e 112e e ex x x x ----<,即证212e ln 10x x -+->令()1eln 1xh x x -=+-,()1,2x ∈,∴()11e x h x x-'=-+,令()e e x x x ϕ=-,()1,2x ∈,则()e e x x ϕ'=-,当()1,2x ∈时,()e e>0x x ϕ'=-恒成立,所以()e e xx x ϕ=-在()1,2x ∈上单调递增,又()()10x ϕϕ>=,∴e e x x >,∴11e x x-<,∴()0h x '>∴()h x 在()1,2上递增,∴()()10h x h >>,∴1e ln 10x x -+->,∴121x x a>.18.已知函数21()ln 2f x x x x x =+-的导函数为()'f x .(1)判断()f x 的单调性;(2)若关于x 的方程()f x m '=有两个实数根1x ,212()x x x <,求证:2122x x <.【解析】(1)()1(1ln )(0)f x x x x x x '=+-+=>,令()ln g x x x =-,由11()1(0)x g x x x x'-=-=>,可得()g x 在(0,1)上单调递减,(1,)+∞上单调递增,所以()()(1)10f x g x g '==>,所以()f x 在(0,)+∞上单调递增;(2)依题意,1122ln ln x x mx x m-=⎧⎨-=⎩,相减得2121ln x x x x -=-,令21(1)x t t x =>,则有1ln 1t x t =-,2ln 1t t x t =-,欲证2122x x <成立,只需证222ln (ln )21(1)t t t t t ⋅<--成立,即证3322(1)(ln )t t t -<成立,即证13232(1)ln t t t-<成立,令13(1)t x x =>,只需证13212()3ln 0x x x-->成立,令1321()2()3ln (1)F x x x x x=-->,即证1x >时,()0F x >成立11323333232(2)3()2(1x x F x x x x+-'=+-=,令1323()2(2)3(1)h x x x x =+->,则11233()2(3)63(22)(1)x x x x x g x '=-=->,可得()h x 在23(1,2)内递减,在23(2,)+∞内递增,所以23()(2)0h x h = ,所以()0F x ',所以()F x 在(1,)+∞上单调递增,所以()(1)0F x F >=成立,故原不等式成立.19.已知函数()ln f x x =.(1)设函数()()ln tg x x t x=-∈R ,且()()g x f x ≤恒成立,求实数t 的取值范围;(2)求证:()12e e x f x x>-;(3)设函数()()1y f x ax a R x=--∈的两个零点1x 、2x ,求证:2122e x x >.【解析】(1)由()()g x f x ≤可得ln ln tx x x-≤,可得2ln t x x ≤,令()2ln h x x x =,其中0x >,则()()21ln h x x '=+,当10ex <<时,()0h x '<,此时函数()h x 单调递减,当1ex >时,()0h x '>,此时函数()h x 单调递增,所以,()min 12e e h x h ⎛⎫==- ⎪⎝⎭,所以,2e t ≤-;(2)要证()12e e x f x x >-,即证2ln e ex x x x >-,由(1)可知,1ln ex x ≥-,当且仅当1e x =时,等号成立,令()2e exx m x =-,其中0x >,则()1e x x m x -'=,当01x <<时,()0m x '>,此时函数()m x 单调递增,当1x >时,()0m x '<,此时函数()m x 单调递减,所以,()()max 11em x m ==-,因为1ln ex x ≥-和()1e m x ≤-取等的条件不同,故2ln e e x x x x >-,即()12e e x f x x >-;(3)由题知1111ln x ax x -=①,2221ln x ax x -=②,①+②得()()12121212ln x x x x a x x x x +-=+③,②-①得()22121112ln xx x a x x x x x ⎛⎫-+=- ⎪⎝⎭④.③÷④得()()1212212122112ln ln x x x x x x x x x x x x ++-=-,不妨设120x x <<,记211x t x =>.令()()()21ln 11t F t t t t -=->+,则()()()()222114011t F t t t t t -'=-=>++,所以()F t 在()1,+∞上单调递增,所以()()10F t F >=,则()21ln 1t t t ->+,即()2121122lnx x x x x x ->+,所以()()1212212122112ln ln 2x x x x x x x x x x x x ++-=>-.因为()()()()1212121212122ln ln ln x x x x x x x x x x +-<==所以2,即1>.令()2ln x x x ϕ=-,()2120x x xϕ'=+>,则()x ϕ在()0,∞+上单调递增.又)1lnln 2112e =+<,所以)1ln >-)ϕϕ>,所以2122x xe >.20.已知函数1()e xx f x -=.(1)求()f x 的单调区间与极值.(2)设m ,n 为两个不相等的正数,且ln ln m n n m m n -=-,证明:4e mn >.【解析】(1)()f x 的定义域为R ,()2e rxf x -'=.当(,2)x ∈-∞时,()0f x '>;当(2,)x ∈+∞时,()0.f x '<所以()f x 的单调递增区间为(,2)-∞,单调递减区间为(2,)+∞.故()f x 在2x =处取得极大值,且极大值为21e ,无极小值.(2)证明:易知m ,0n >,ln ln (ln 1)m n n m m n m n -=-⇔-()ln n ln ln 1ln 1ln 1ln 1ln 1e emn m n m n m n m ----=-⇔=⇔=即()ln (ln )f f m n =,ln ln m n ≠.不妨设1ln x m =,2ln x n =,12x x <.(1)可知2(2,)x ∈+∞,()()120f x f x =>,1(1,2)x ∈当23x ≥时,124x x +>,4e mn >,当223x <<时,2142x <-<,()()()()22224222222441e 31414x xx x x x e x x f x f x e e e ----------=-=设4()(1)e (3)e x x h x x x -=---,(2,3)x ∈,则()()()()()442e2e 2e e xx x x h x x x x --=---=--',因为(2,3)x ∈,4x x -<,所以()0h x '>,()h x 在区间(2,3)上单调递增,422()(21)e (32)e 0h x ->---=,所以()()()()2212440f x f x f x f x --=-->,()()124x f f x >-又因为1x ,24(1,2)x -∈,所以124x x >-,即124x x +>,故4e mm >.21.已知函数()()2ln f x e x x =-,其中 2.71828e =⋅⋅⋅为自然对数的底数.(1)讨论函数()f x 的单调性;(2)若()12,0,1x x ∈,且()21121212ln 2ln ln x x x ex x x x -=-,证明:1211221e e x x <+<+.【解析】(1)2(1)'()ln e x xf x =-+,2e y x =是减函数,1ln y x =+是增函数,所以'()f x 在()0,∞+单调递减,∵()'0f e =,∴()0,x e ∈时,()'()'0f x f e >=,()f x 单调递增;(),x e ∈+∞时,()'()'0f x f e <=,()f x 单调递减.(2)由题意得,121212ln ln 2ln 2ln x x e x e x x x -=-,即1212112ln 2ln e x e x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,112211112ln 2ln e e x x x x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,设111a x =,221a x =,则由()12,0,1x x ∈得,()12,1,a a ∈+∞,且()()12f a f a =.不妨设12a a <,则即证12221e a a e <+<+,由()20f e =及()f x 的单调性知,1212a e a e <<<<.令()()()2F x f x f e x =--,1x e <<,则[]24'()'()'(2)2ln (2)(2)e F xf x f e x x e x x e x =+-=----,∵()22x e x e -≤,∴2224'()2ln 0eF x e e>--=,()()0F x F e <=,∴()()2f x f e x <-,取1x a =,则()()112f a f e a <-,又()()12f a f a =,则()()212f a f e a <-,又12e a e ->,2a e >,且()f x 在(),e +∞单调递减,∴212a e a >-,122a a e +>.下证:1221a a e +<+.(i )当21a e <+时,由1a e <得,1221a a e +<+;(ii )当212e a e +≤<时,令()()(21)G x f x f e x =-+-,12e x e +<<,则22'()'()'(21)1ln 1ln(21)21e e G x f x f e x x e x x e x=++-=--+--+-+-222(21)2ln (21)(21)e e x e x x e x+⎡⎤=---++⎣⎦-++,记2(21)t x e x =-++,12e x e +≤<,则2(21)'()2ln e e G x t t+=--,又2(21)t x e x =-++在[)1,2e e +为减函数,∴()22,1t e e ∈+,2(21)2e e t +-在()22,1e e +单调递减,ln t 在()22,1e e +单调递增,∴2(21)2ln e e t t+--单调递减,从而,'()G x 在[)1,2e e +单调递增,又2(21)'(2)2ln 2(212)21ln 22(212)e e G e e e e e e e e e +=--+-=--+-,ln 1≤-x x ,∴()'20G e >,又2(21)'(1)2ln(1)(211)(1)(211)e e G e e e e e e e ++=--++--++--1ln(1)01e e e -=-+<+,从而,由零点存在定理得,存在唯一0(1,2)x e e ∈+,使得()0'0G x =,当[)01,x e x ∈+时,()0'()'0()G x G x G x <=⇒单调递减;当()0,2x x e ∈时,()0'()'0()G x G x G x >=⇒单调递增.所以,{}()max (1),(2)G x G e G e ≤+,又(1)(1)(211)(1)()(1)ln(1)G e f e f e e f e f e e e e +=+-+--=+-=-+-,ln 11ln ln(1)x x e x e x e e e+≤⇒≤⇒+≤,所以,11(1)(1)0e G e e e e e+-+<-⋅-=<,显然,()()()22212000G e f e f e e =-+-=-=,所以,()0<G x ,即()()210f x f e x -+-<,取[)21,2x a e e =∈+,则()()2221f a f e a <+-,又()()12f a f a =,则()()1221f a f e a <+-,结合()221211e a e e e +-<+-+=,1a e <,以及()f x 在()0,e 单调递增,得到1221a e a <+-,从而1221a a e +<+.22.已知函数()e ln xf x x a x a =--,其中0a >.(1)若2e a =,求()f x 的极值:(2)令函数()()g x f x ax a =-+,若存在1x ,2x 使得()()12g x g x =,证明:1212e e 2x xx x a +>.【解析】(1)当2e a =时()e 2eln 2e xf x x x =-,()0,x ∈+∞,所以()()()1e 2e2e 1e xxx x f x x x x+-'=+-=,当()0,1x ∈时,202x x <+<,1e e x <<,所以()0f x '<,当()1,x ∈+∞时,22x x +>,e e x >,所以()0f x '>,所以()f x 在()0,1上单调递减,在()1,+∞上单调递增,所以()f x 的极小值为()1e f =-,无极大值.(2)证明:()()()e ln e ln e x x xg x a x ax x f x ax x a x a ==-=+---,令e x t x =,则上述函数变形为()ln h a t t t =-,对于()e x t x x =,()0,x ∈+∞,则()()1e 0xt x x '=+>,即()e x t x x =在()0,∞+上单调递增,。

高中数学极值点偏移问题(解析版)

高中数学极值点偏移问题(解析版)

极值点偏移问题【典型例题】例1.已知函数f (x )=ln x -ax ,a 是常数且a ∈R .(1)若曲线y =f (x )在x =1处的切线经过点(-1,0),求a 的值;(2)若0<a <1e(e 是自然对数的底数),试证明:①函数f (x )有两个零点,②函数f (x )的两个零点x 1,x 2满足x 1+x 2>2e .【解析】(1)解:切线的斜率k =f (1)=1-af (1)=-a ,k =f (1)-01-(-1)=-a2,即1-a =-a2,解得a =2;(2)证明:①由f (x )=1x -a =0,得x =1a,当0<x <1a 时,f (x )>0;当x >1a 时,f (x )<0,∴f (x )在x =1a 处取得最大值f 1a=-ln a -1,f (1)=-a <0,∵0<a <1e ,∴f 1a =-ln a -1>0,f (x )在区间1,1a有零点,∵f (x )在区间0,1a 单调递增,∴f (x )在区间0,1a有唯一零点.由幂函数与对数函数单调性比较及f (x )的单调性知,f (x )在区间1a,+∞ 有唯一零点,从而函数f (x )有两个零点.②不妨设0<x 1<1a <x 2,作函数F (x )=f (x )-f 2a -x ,0<x <2a,则F 1a =0,F (x )=f (x )+f 2a -x =2(1-ax )2x (2-ax )≥0.∴F (x 1)<F 1a=0,即f (x 1)-f 2a -x 1 <0,f 2a-x 1 >f (x 1),又f (x 1)=f (x 2),∴f 2a-x 1 >f (x 2).∵0<x 1<1a<x 2,∴2a -x 1,x 2∈1a,+∞ ,∵f (x )在区间1a,+∞ 单调递减,∴2a -x 1<x 2,x 1+x 2>2a.又0<a <1e ,1a >e ,∴x 1+x 2>2e .例2.已知函数f (x )=ln x -ax (a ∈R ).(1)若曲线y =f (x )与直线x -y -1-ln2=0相切,求实数a 的值;(2)若函数y =f (x )有两个零点x 1,x 2,证明1ln x 1+1ln x 2>2.【解析】解:(1)由f (x )=ln x -ax ,得f (x )=1x-a ,设切点横坐标为x 0,依题意得1x 0-a =1x 0-1-ln2=ln x 0-ax 0,解得x 0=12a =1,即实数a 的值为1.(2)不妨设0<x 1<x 2,由ln x 1-ax 1=0ln x 2-ax 2=0,得ln x 2-ln x 1=a (x 2-x 1),即1a =x 2-x 1ln x 2-ln x 1,所以1ln x 2+1ln x 1-2=1ax 1+1ax 2-2=x 2-x 1ln x 2-ln x 11x 1+1x 2-2=x 2x 1-x 1x 2-2ln x2x 1ln x 2x 1,令t =x 2x 1>1,则ln x 2x 1>0,x 2x 1-x 1x 2-2ln x 2x 1=t -1t-2ln t ,设g (t )=t -1t -2ln t ,则g(t )=t 2-2t +1t 2>0,即函数g (t )在(1,+∞)上递减,所以g (t )>g (1)=0,从而x 2x 1-x 1x 2-2ln x2x 1ln x 2x 1>0,即1ln x 2+1ln x 1>2.例3.已知函数f (x )=x -e 2 (a -ln x )且f (e )=e4(其中e 为自然对数的底数).(Ⅰ)求函数f (x )的解析式;(Ⅱ)判断f (x )的单调性;(Ⅲ)若f (x )=k 有两个不相等实根x 1,x 2,证明:x 1+x 2>2e .【解析】解:(Ⅰ)f (e )=e 2a -12 =e 4,解得a =1,所以函数解析式为f (x )=x -e2(1-ln x );(Ⅱ)函数f (x )的定义域为(0,+∞),f (x )=1-ln x +x -e 2-1x =e2x-ln x ,设g(x)=e2x-ln x,g (x)=-e2x2-1x,在(0,+∞)上,g(x)<0恒成立,所以g(x)在(0,+∞)上单调递减,即f (x)在(0,+∞)上单调递减,又f (e)=0,则在(0,e)上f (x)>0,在(e,+∞)上f (x)<0.所以函数f(x)在(0,e)上单调递增,在(e,+∞)上单调递减;(Ⅲ)证明:构造函数F(x)=F(x)-f(2e-x),x∈(0,e),F (x)=f (x)+f (2e-x)=e2x-ln x+e2⋅12e-x-ln(2e-x)=ex(2e-x)-ln[x(2e-x)],设t=x(2e-x),当x∈(0,e)时,t∈(0,e),设h(t)=et-ln t,且h (t)=-et2-1t<0,可知h(t)在(0,e)上单调递减,且h(e)=0,所以h(t)>0在t∈(0,e)上恒成立,即F (x)>0在x∈(0,e)上恒成立,所以y=F(x)在(0,e)上单调递增,不妨设x1<x2,由(Ⅱ)知x1<e<x2F(x1)=f(x1)-f(2e-x1)<F(e)=f(e)-f(2e-e) =0,即f(x1)<f(2e-x1),因为f(x1)=f(x2),所以f(x2)<f(2e-x1),由(Ⅱ)知f(x)在(e,+∞)上单调递减,得x2>2e-x1,所以x1+x2>2e.例4.已知函数f(x)=e2x-a(x-1).(1)讨论函数f(x)的单调性;(2)若a>0,设f′(x)为f(x)的导函数,若函数f(x)有两个不同的零点x1,x2,求证:f′x1+x22<0.【解析】(1)解:f′(x)=2e2x-a,当a≤0时,f′(x)>0,函数f(x)在R上单调递增;当a>0时,令f′(x)>0,得x>12ln a2,令f′(x)<0,得x<12ln a2,所以f(x)在-∞,12ln a2上单调递减,在12ln a2,+∞上单调递增.(2)证明:由题意得e2x1-a(x1-1)=0e2x2-a(x2-1)=0,两式相减得a=e2x2-e2x1x2-x1,不妨设x1<x2,由f′(x)=2e2x-a,得f′x1+x22=2e x1+x2-e2x2-e2x1x2-x1=e x1+x2x2-x1[2(x2-x1)+e x1-x2-e x2-x1],令t=x2-x1,h(t)=2t-e t+e-t,因为当t>0时,h′(t)=2-e t-e-t=2-(e t+e-t)<0,所以h(t)在(0,+∞)上单调递减,所以当t>0时,h(t)<h(0)=0,又e x1+x2x2-x1>0,故f′x1+x22<0.例5.已知函数f(x)=12x2-(a+1)x+2(a-1)ln x,g(x)=-32x2+x+(4-2a)ln x.(1)若a>1,讨论函数f(x)的单调性;(2)是否存在实数a,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立,若存在,求出a的范围,若不存在,请说明理由;(3)记h(x)=f(x)+g(x),如果x1,x2是函数h(x)的两个零点,且x1<x2<4x1,h′(x)是h(x)的导函数,证明:h2x1+x23>0.【解析】解:(1)f(x)的定义域为(0,+∞),f (x)=x-(a+1)+2(a-1)1x =x2-(a+1)x+2(a-1)x=(x-2)[x-(a-1)]x,①若a-1=2,则a=3,f (x)=(x-2)2x>0,f(x)在(0,+∞)上单调递增;②若a-1<2,则a<3,而a>1,∴1<a<3,当x∈(a-1,2)时,f′(x)<0;当x∈(0,a-1)及(2,+∞)时f′(x)>0,所以f(x)在(a-1,2)上单调递减,在(0,a-1)及(2,+∞)单调递增;③若a-1>2,则a>3,同理可得f(x)在(2,a-1)上单调递减,在(0,2)及(a-1,+∞)单调递增.(2)假设存在a,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立,不妨设0<x1<x2,只要f(x2)-f(x1)x2-x1+a>0,即f(x2)+ax2>f(x1)+ax1,令g(x)=f(x)+ax,只要g(x)在(0,+∞)上为增函数,g(x)=12x2-x+2(a-1)ln xg (x)=x-1+2(a-1)x=x2-x+2(a-1)x=x-122+2a-94x,只要g′(x)≥0在(0,+∞)恒成立,只要2a-94≥0,a≥98,故存在a∈98,+∞时,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立.(3)证明:由题意知,h(x)=12x2-(a+1)x+2(a-1)ln x+-32x2+x+(4-2a)ln x=2ln x-x2-ax,h(x1)=2ln x1-x21-ax1=0,h(x2)=2ln x2-x22-ax2=0两式相减,整理得2ln x2x1+(x1-x2)(x1+x2)=a(x2-x1),所以a=2ln x2x1x2-x1-(x2+x1),又因为h (x)=2x-2x-a,所以h2x1+x23=62x1+x2-23(2x1+x2)-a=-2x2-x1lnx2x1-3x2x1-32+x2x1-13(x1-x2),令t=x2x1∈(1,4),φ(t)=ln t-3t-3t+2,则φ(t)=(t-1)(t-4)t(t+2)2<0,所以φ(t)在(1,4)上单调递减,故φ(t)<φ(1)=0,又-2x2-x1<0,-13(x1-x2)>0,所以h2x1+x23>0.例6.设函数f(x)=x2-a ln x,g(x)=(a-2)x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数F(x)=f(x)-g(x)有两个零点x1,x2.(ⅰ)求满足条件的最小正整数a的值;(ⅱ)求证:F′x1+x22>0.【解析】解:(Ⅰ)f (x)=2x-ax=2x2-ax(x>0).⋯(1分)当a≤0时,f (x)>0在(0,+∞)上恒成立,所以函数f(x)单调递增区间为(0,+∞),此时f(x)无单调减区间.⋯(2分)当a>0时,由f (x)>0,得x>2a2,f(x)<0,得0<x<2a2,所以函数f(x)的单调增区间为2a2,+∞,单调减区间为0,2a2.⋯(3分)(Ⅱ)(i)F (x)=2x-(a-2)-ax =2x2-(a-2)x-ax=(2x-a)(x+1)x(x>0).因为函数F(x)有两个零点,所以a>0,此时函数f(x)在a2,+∞单调递增,在0,a 2单调递减.⋯(4分)所以F(x)的最小值Fa2<0,即-a2+4a-4a ln a2<0.⋯(5分)因为a>0,所以a+4ln a2-4>0.令h(a)=a+4ln a2-4,显然h(a)在(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln 32-1=ln8116-1>0,所以存在a0∈(2,3),h(a0)=0.⋯(6分)当a>a0时,h(a)>0;当0<a<a0时,h(a)<0,所以满足条件的最小正整数a=3.⋯(7分)又当a=3时,F(3)=3(2-ln3)>0,F(1)=0,所以a=3时,f(x)有两个零点.综上所述,满足条件的最小正整数a的值为3.⋯(8分)(ii)证明:不妨设0<x1<x2,于是x21-(a-2)x1-a ln x1=x22-(a-2)x2-a ln x2,即x21-(a-2)x1-a ln x1-x22+(a-2)x2+a ln x2=0,x21+2x1-x22-2x2=ax1+a ln x1-ax2-a ln x2=a(x1 +ln x1-x2-ln x2).所以a=x21+2x1-x22-2x2x1+ln x1-x2-ln x2.⋯(10分)因为Fa2=0,当x∈0,a2时,F (x)<0,当x∈a2,+∞时,F (x)>0,故只要证x1+x22>a2即可,即证明x1+x2>x21+2x1-x22-2x2x1+ln x1-x2-ln x2,⋯(11分)即证x21-x22+(x1+x2)(ln x1-ln x2)<x21+2x1-x22-2x2,也就是证ln x1x2<2x1-2x2x1+x2.⋯(12分)设t=x1x2(0<t<1).令m(t)=ln t-2t-2t+1,则m(t)=1t-4(t+1)2=(t-1)2t(t+1)2.因为t>0,所以m (t)≥0,⋯(13分)当且仅当t=1时,m (t)=0,所以m(t)在(0,+∞)上是增函数.又m(1)=0,所以当m∈(0,1),m(t)<0总成立,所以原题得证.⋯(14分)例7.设函数f(x)=x2-a ln x-(a-2)x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)有两个零点x1,x2(1)求满足条件的最小正整数a的值;(2)求证:fx1+x22>0.【解析】解:(Ⅰ)f′(x)=2x-(a-2)-ax=(2x-a)(x+1)x,(x>0).当a≤0时,f′(x)>0在(0,+∞)上恒成立,所以函数f(x)单调递增区间为(0,+∞),此时f(x)无单调减区间;当a>0时,由f′(x)>0,得x>a2,f′(x)<0,得0<x<a2,所以函数f(x)的单调增区间为a2,+∞,单调减区间为0,a2;(Ⅱ)(1)由(Ⅰ)可知函数f(x)有两个零点,所以a>0,f(x)的最小值f a2<0,即-a2+4a-4a ln a2<0,∵a>0,∴a-4+4ln a2>0,令h(a)=a-4+4ln a2,显然h(a)在(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln 32-1>0∴存在a0∈(2,3),h(a0)=0,当a>a0时,h(a)>0;当0<a<a0时,h(a)<0,所以满足条件的最小正整数a=3.又当a=3时,f(3)=3(2-ln3)>0,f32=341-4ln32<0,f(1)=0,所以a=3时,f(x)有两个零点.综上所述,满足条件的最小正整数a的值为3.(2)证明:不妨设0<x1<x2,于是x21-(a-2)x1-a ln x1=x22-(a-2)x2-a ln x2,∴a=x21+2x1-x22-2x2x1+ln x1-x2-ln x2.,因为f′a2=0,当x∈0,a2时,f′(x)<0;当x∈a2,+∞时,f′(x)>0.故只要证x1+x22>a2即可,即证明x1+x2>x21+2x1-x22-2x2x1+ln x1-x2-ln x2.,即证x21-x22+(x1+x2)(ln x1-ln x2)<x21+2x1-x22-2x2.也就是证ln x1x2<2x1-2x2x1+x2.设x1x2=t∈(0,1).令m(t)=ln t-2t-2t+1,则m′(t)=1t-4(t+1)2=(t-1)2t(t+1)2.∵t>0,所以m (t)≥0,当且仅当t=1时,m (t)=0,所以m(t)在(0,+∞)上是增函数.又m(1)=0,所以当m∈(0,1),m(t)<0总成立,所以原题得证.例8.已知函数f(x)=e x-12ax2(a∈R),其中e为自然对数的底数,e=2.71828⋯.f(x0)是函数f(x)的极大值或极小值,则称x0为函数f(x)的极值点,极大值点与极小值点统称为极值点.(1)函数f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)判断函数f(x)的极值点的个数,并说明理由;(3)当函数f(x)有两个不相等的极值点x1和x2时,证明:x1x2<ln a.【解析】解:(1)f′(x)=e x-ax≥0在(0,+∞)上恒成立,即a≤e xx在(0,+∞)上恒成立,令g(x)=e xx,x∈(0,+∞),g′(x)=e x⋅x-e xx2=e x(x-1)x2,在(0,1)上,g′(x)<0,g(x)单调递减,在(1,+∞)上,g′(x)>0,g(x)单调递增,所以g(x)≥g(1)=e,所以a≤e.所以a的取值范围为(-∞,e].(2)f′(x)=e x-ax,令g(x)=e x-ax,则g′(x)=e x-a,①当a<0时,g′(x)=e x-a>0,f′(x)=e x-ax在(-∞,+∞)上单调递增,又f′(0)=1>0,f′1a=e1a-1<0,于是f′(x)=e x-ax在(-∞,+∞)上有一个零点x1,x(-∞,x1)x1(x1,+∞) f′(x)-0+f(x)↓极小值↑于是函数f(x)的有1个极值点,②当a=0时,f(x)=e x单调递增,于是函数f(x)没有极值点,③当0<a≤e时,由g′(x)=e x-a=0,得x=ln a,x(-∞,ln a)ln a(ln a,+∞) g′(x)-0+f′(x)↓a(1-ln a)↑f′(x)≥0,当且仅当x=ln a时,取“=”号,所以函数f(x)在(-∞,+∞)上单调递增,所以函数f(x)没有极值点.④当a>e时,x(-∞,ln a)ln a(ln a,+∞) g′(x)-0+f′(x)↓a(1-ln a)↑f′(ln a)=a(1-ln a)<0,f′(0)=1>0,又因为a>ln a,所以f′(a)=e a-a2>a2-a2=0,于是,函数f′(x)在(-∞,ln a)和(ln a,+∞)上各有一个零点,分别为x2,x3,x(-∞,x2)x2(x2,x3)x3(x3,+∞) f′(x)+0-0+f(x)↑极大值↓极小值↑于是f(x)有2个极值点,综上,当a<0时,函数f(x)有1个极值点,当0≤a≤e时,函数f(x)没有极值点,当a>e时,函数f(x)有2个极值点.(3)证明:当函数f(x)有两个不等的极值点x1和x2时,由(2)知a>e且1<x1<ln a<x2,f′(x1)=f′(x2)=0,令F(x)=f′(x)-f′(2ln a-x),F′(x)=(e x-a)2 e x,由F′(x)=0,得x=ln a,x(-∞,ln a)ln a(ln a,+∞) F′(x)+0+F(x)↑非极值点↑F(x1)<F(ln a)=0,即f′(x1)<f′(2ln a-x1),即f′(x2)<f′(2ln a-x1),因为x2>ln a,2ln a-x1>ln a,f′(x)在(ln a,+∞)上单调递增,所以x2<2ln a-x1,即x1+x2<2ln a,又x1+x2>2x1x2,所以x1x2<ln a.例9.已知函数f(x)=ln x-1x,g(x)=ax+b.(1)若函数h(x)=f(x)-g(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)若直线g(x)=ax+b是函数f(x)=ln x-1x图象的切线,求a+b的最小值;(3)当b=0时,若f(x)与g(x)的图象有两个交点A(x1,y1),B(x2,y2),求证:x1x2>2e2.(取e为2.8,取ln2为0.7,取2为1.4)【解析】(1)解:h(x)=f(x)-g(x)=ln x-1x-ax-b,则h (x)=1x+1x2-a,∵h(x)=f(x)-g(x)在(0,+∞)上单调递增,∴对∀x>0,都有h (x)=1x +1x2-a≥0,即对∀x >0,都有a ≤1x +1x2,∵1x +1x2>0,∴a ≤0,故实数a 的取值范围是(-∞,0];(2)解:设切点x 0,ln x 0-1x 0 ,则切线方程为y -ln x 0-1x 0=1x 0+1x 20(x -x 0),即y =1x 0+1x 20x -1x 0+1x 20 x 0+ln x 0-1x 0,亦即y =1x 0+1x 20x +ln x 0-2x 0-1,令1x 0=t >0,由题意得a =1x 0+1x 20=t +t 2,b =ln x 0-2x 0-1=-ln t -2t -1,令a +b =φ(t )=-ln t +t 2-t -1,则φ (t )=-1t +2t -1=(2t +1)(t -1)t,当t ∈(0,1)时,φ (t )<0,φ(t )在(0,1)上单调递减;当t ∈(1,+∞)时,φ (t )>0,φ(t )在(1,+∞)上单调递增,∴a +b =φ(t )≥φ(1)=-1,故a +b 的最小值为-1;(3)证明:由题意知ln x 1-1x 1=ax 1,ln x 2-1x 2=ax 2,两式相加得ln x 1x 2-x 1+x 2x 1x 2=a (x 1+x 2),两式相减得lnx 2x 1-x 1-x 2x 1x 2=a (x 2-x 1),即ln x2x 1x 2-x 1+1x 1x 2=a ,∴ln x 1x 2-x 1+x 2x 1x 2=ln x2x 1x 2-x 1+1x 1x 2 (x 1+x 2),即ln x 1x 2-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1,不妨令0<x 1<x 2,记t =x 2x 1>1,令F (t )=ln t -2(t -1)t +1(t >1),则F ′(t )=(t -1)2t (t +1)2>0,∴F (t )=ln t -2(t -1)t +1在(1,+∞)上单调递增,则F (t )=ln t -2(t -1)t +1>F (1)=0,∴ln t >2(t -1)t +1,则ln x 2x 1>2(x 2-x 1)x 1+x 2,∴ln x 1x 2-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1>2,又ln x 1x 2-2(x 1+x 2)x 1x 2<ln x 1x 2-4x 1x 2x 1x 2=ln x 1x 2-4x 1x 2=2ln x 1x 2-4x 1x 2,∴2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1,令G(x)=ln x-2x,则x>0时,G(x)=1x+2x2>0,∴G(x)在(0,+∞)上单调递增,又ln2e-22e=12ln2+1-2e≈0.85<1,∴G(x1x2)=ln x1x2-2x1x2>1>ln2e-22e,则x1x2>2e,即x1x2>2e2.【同步练习】1.已知函数f(x)=ln x+2x-ax2,a∈R.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)设g(x)=f(x)+(a-4)x,试讨论函数g(x)的单调性;(Ⅲ)当a=-2时,若存在正实数x1,x2满足f(x1)+f(x2)+3x1x2=x1+x2,求证:x1+x2>12.【解析】解:(Ⅰ)因为f(x)=ln x+2x-ax2,所以f′(x)=1x+2-2ax,因为f(x)在x=1处取得极值,所以f′(1)=1+2-2a=0,解得:a=3 2.验证:当a=32时,f′(x)=1x+2-3x=-(3x+1)(x-1)x(x>0),易得f(x)在x=1处取得极大值.(Ⅱ)因为g(x)=f(x)+(a-4)x=ln x-ax2+(a-2)x,所以g′(x)=-(ax+1)(2x-1)x(x>0),①若a≥0,则当x∈0,1 2时,g′(x)>0,所以函数g(x)在0,1 2上单调递增;当x∈12,+∞时,g′(x)<0,∴函数g(x)在12,+∞上单调递减.②若a<0,g′(x)=-a x+1a(2x-1)x(x>0),当a<-2时,易得函数g(x)在0,-1 a和12,+∞上单调递增,在-1a,12上单调递减;当a=-2时,g′(x)≥0恒成立,所以函数g(x)在(0,+∞)上单调递增;当-2<a<0时,易得函数g(x)在0,1 2和-1a,+∞上单调递增,在12,-1a上单调递减.(Ⅲ)证明:当a=-2时,f(x)=ln x+2x+2x2,因为f(x1)+f(x2)+3x1x2=x1+x2,所以ln x1+2x1+2x21+ln x2+2x2+2x22+3x1x2=x1+x2,即ln x1x2+2(x21+x22)+(x1+x2)+3x1x2=0,所以2(x1+x2)2+(x1+x2)=x1x2-ln x1x2,令t=x1x2,φ(t)=t-ln t(t>0),则φ′(t)=t-1t(t>0),当t∈(0,1)时,φ′(t)<0,所以函数φ(t)=t-ln t(t>0)在(0,1)上单调递减;当t∈(1,+∞)时,φ′(t)>0,所以函数φ(t)=t-ln t(t>0)在(1,+∞)上单调递增.所以函数φ(t)在t=1时,取得最小值,最小值为1.所以2(x1+x2)2+(x1+x2)≥1,即2(x1+x2)2+(x1+x2)-1≥0,所以x1+x2≥12或x1+x2≤-1,因为x1,x2为正实数,所以当x1+x2=12时,x1x2=1,此时不存在x1,x2满足条件,所以x1+x2>1 2.2.已知函数f(x)=ln x+x-ax2,a∈R.(1)若f(x)在x=1处取得极值,求a的值;(2)设g(x)=f(x)+(a-3)x,试讨论函数g(x)的单调性;(3)当a=-2时,若存在正实数x1,x2满足f(x1)+f(x2)+3x1x2=0,求证:x1+x2>12.【解析】(1)解:因为f(x)=ln x+x-ax2,所以f′(x)=1x+1-2ax,因为f(x)在x=1处取得极值,所以f′(1)=1+1-2a=0,解得:a=1.验证:当a=1时,f′(x)=1x+1-2x=-(x-1)(2x+1)x(x>0),易得f(x)在x=1处取得极大值.(2)解:因为g(x)=f(x)+(a-3)x=ln x-ax2+(a-2)x,所以g′(x)=-(ax+1)(2x-1)x(x>0),①若a≥0,则当x∈0,1 2时,g′(x)>0,所以函数g(x)在0,1 2上单调递增;当x∈12,+∞时,g′(x)<0,∴函数g(x)在12,+∞上单调递减.②若a<0,g′(x)=-a x+1a(2x-1)x(x>0),当a<-2时,易得函数g(x)在0,-1 a和12,+∞上单调递增,在-1a,12上单调递减;当a=-2时,g′(x)≥0恒成立,所以函数g(x)在(0,+∞)上单调递增;当-2<a<0时,易得函数g(x)在0,1 2和-1a,+∞上单调递增,在12,-1a上单调递减.(3)证明:当a=-2时,f(x)=ln x+x+2x2,因为f(x1)+f(x2)+3x1x2=0,所以ln x1+x1+2x12+ln x2+x2+2x22+3x1x2=0,即ln x1x2+2(x12+x22)+(x1+x2)+3x1x2=0,所以2(x1+x2)2+(x1+x2)=x1x2-ln x1x2,令t=x1x2,φ(t)=t-ln t(t>0),则φ′(t)=t-1t(t>0),当t∈(0,1)时,φ′(t)<0,所以函数φ(t)=t-ln t(t>0)在(0,1)上单调递减;当t∈(1,+∞)时,φ′(t)>0,所以函数φ(t)=t-ln t(t>0)在(1,+∞)上单调递增.所以函数φ(t)在t=1时,取得最小值,最小值为1.所以2(x1+x2)2+(x1+x2)≥1,即2(x1+x2)2+(x1+x2)-1≥0,所以x1+x2≥12或x1+x2≤-1,因为x1,x2为正实数,所以x1+x2≤-1,因为当x1+x2=12时,x1x2=1,不满足t∈(1,+∞),所以x1+x2>1 2.3.已知函数f(x)=x(1-ln x).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a +1b<e.【解析】(1)解:由函数的解析式可得f (x)=1-ln x-1=-ln x,∴x∈(0,1),f′(x)>0,f(x)单调递增,x∈(1,+∞),f′(x)<0,f(x)单调递减,则f(x)在(0,1)单调递增,在(1,+∞)单调递减.(2)证明:由b ln a-a ln b=a-b,得-1a ln1a+1bln1b=1b-1a,即1a1-ln1a=1b1-ln1b,由(1)f(x)在(0,1)单调递增,在(1,+∞)单调递减,所以f(x)max=f(1)=1,且f(e)=0,令x1=1a,x2=1b,则x1,x2为f(x)=k的两根,其中k∈(0,1).不妨令x1∈(0,1),x2∈(1,e),则2-x1>1,先证2<x1+x2,即证x2>2-x1,即证f(x2)=f(x1)<f(2-x1),令h(x)=f(x)-f(2-x),则h′(x)=f′(x)+f′(2-x)=-ln x-ln(2-x)=-ln[x(2-x)]在(0,1)单调递减,所以h′(x)>h′(1)=0,故函数h(x)在(0,1)单调递增,∴h(x1)<h(1)=0.∴f(x1)<f(2-x1),∴2<x1+x2,得证.同理,要证x1+x2<e,(法一)即证1<x2<e-x1,根据(1)中f(x)单调性,即证f(x2)=f(x1)>f(e-x1),令φ(x)=f(x)-f(e-x),x∈(0,1),则φ (x)=-ln[x(e-x)],令φ′(x0)=0,x∈(0,x0),φ (x)>0,φ(x)单调递增,x∈(x0,1),φ (x)<0,φ(x)单调递减,又0<x<e时,f(x)>0,且f(e)=0,故limx→0+φ(x)=0,φ(1)=f(1)-f(e-1)>0,∴φ(x)>0恒成立,x1+x2<e得证,(法二)f(x1)=f(x2),x1(1-ln x1)=x2(1-ln x2),又x1∈(0,1),故1-ln x1>1,x1(1-ln x1)>x1,故x1+x2<x1(1-ln x1)+x2=x2(1-ln x2)+x2,x2∈(1,e),令g(x)=x(1-ln x)+x,g′(x)=1-ln x,x∈(1,e),在(1,e)上,g′(x)>0,g(x)单调递增,所以g(x)<g(e)=e,即x2(1-ln x2)+x2<e,所以x1+x2<e,得证,则2<1a+1b<e.4.已知函数f(x)=ln x-x.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a,b为两个不相等的正数,ln a-ln b=a-b,证明:ab<1.【解析】解:(I)f′(x)=1x-1=1-xx,x>0,当0<x<1时,f′(x)>0,函数f(x)单调递增,当x>1时,f′(x)<0,函数f(x)单调递减,故函数在(0,1)上单调递增,在(1,+∞)上单调递减,(II)证明:由ln a-ln b=a-b,得ln a-a=ln b-b,令x1=a,x2=b,则x1,x2是f(x)=x的两根,不妨令x1∈(0,1),x2∈(1,+∞),则0<x1<1,0<1x2<1,要证ab<1,即证x1<1x2,即f(x1)=f(x2)<f1x2,令h(x)=f(x)-f1x=2ln x+1x-x,则h′(x)=2x-1x2-1=-(x-1)2x2<0,所以h(x)在(1,+∞)单调递减,h(x)<h(1)=0,所以f(x1)=f(x2)<f1x2 ,所以ab<1,5.已知函数f(x)=xe-x(x∈R).(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x) >g(x);(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明:x1+x2>2.【解析】解:(Ⅰ)解:f′(x)=(1-x)e-x令f′(x)=0,解得x=1当x变化时,f′(x),f(x)的变化情况如下表x(-∞,1)1(1,+∞)f′(x)+0-f(x)增极大值减所以f(x)在(-∞,1)内是增函数,在(1,+∞)内是减函数.函数f(x)在x=1处取得极大值f(1)且f(1)=1 e.(Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)e x-2令F(x)=f(x)-g(x),即F(x)=xe-x+(x-2)e x-2于是F (x)=(x-1)(e2x-2-1)e-x当x>1时,2x-2>0,从而e2x-2-1>0,又e-x>0,所以F′(x)>0,从而函数F(x)在[1,+∞)是增函数.又F(1)=e-1-e-1=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).(Ⅲ)证明:(1)若(x1-1)(x2-1)=0,由(I)及f(x1)=f(x2),则x1=x2=1.与x1≠x2矛盾.(2)若(x1-1)(x2-1)>0,由(I)及f(x1)=f(x2),得x1=x2.与x1≠x2矛盾.根据(1)(2)得(x1-1)(x2-1)<0,不妨设x1<1,x2>1.由(Ⅱ)可知,f(x2)>g(x2),则g(x2)=f(2-x2),所以f(x2)>f(2-x2),从而f(x1)>f(2-x2).因为x2>1,所以2-x2<1,又由(Ⅰ)可知函数f(x)在区间(-∞,1)内是增函数,所以x1>2-x2,即x1+x2>2.6.已知函数f(x)=x-e a+x(a∈R).(1)若a=1,求函数f(x)在x=0处的切线方程;(2)若f(x)有两个零点x1,x2,求实数a的取值范围,并证明:x1+x2>2.【解析】解:(1)f(x)=x-e1+x的导数为f′(x)=1-e1+x,则函数f(x)在x=0处的切线斜率为1-e,又切点为(0,-e),则切线的方程为y=(1-e)x-e,即(e-1)x+y+e=0;(2)设函数g(x)=x-ln x+a,与函数f(x)具有相同的零点,g (x)=x-1x,知函数g(x)在(0,1)上递减,(1,+∞)上递增,当x→0,g(x)→+∞;可证当x∈(0,+∞)时,ln x<x-1,即-ln x=ln 1x≤1x-1,即此时g(x)=x-ln x+a<x+1x+a-1,当x→+∞时,g(x)→+∞,f(x)有两个零点,只需g(1)<0,即a<-1;证明:方法一:设函数F(x)=g(x)-g(2-x),(1<x<2)则F(x)=2x-2-ln x+ln(2-x),且F (x)=2(x-1)2x(x-2)<0对x∈(1,2)恒成立即当x∈(1,2)时,F(x)单调递减,此时,F(x)<F(1)=0,即当x∈(1,2)时,g(x)<g(2-x),由已知0<x1<1<x2,则1-x1∈(1,2),则有g(2-x1)<g(2-2+x1)=g(x1)=g(x2)由于函数g(x)在(1,+∞)上递增,即2-x1<x2,即x1+x2>2.方法二:故x2-x1=ln x2-ln x1=ln x2 x1.设x2x1=t,则t>1,且x2=tx1x2-x1=ln t,解得x1=ln tt-1,x2=t ln tt-1.x1+x2=(t+1)ln tt-1,要证:x1+x2=(t+1)ln tt-1>2,即证明(t+1)ln t>2(t-1),即证明(t+1)ln t-2t+2>0,设g(t)=(t+1)ln t-2t+2(t>1),g (t)=ln t+1t-1,令h(t)=g (t),(t>1),则h (t)=t-1t2>0,∴h(t)在(1,+∞)上单调增,g (t)=h(t)>h(1)=0,∴g(t)在(1,+∞)上单调增,则g(t)>g(1)=0.即t>1时,(t+1)ln t-2t+2>0成立,7.已知函数f(x)=axe x-(a-1)(x+1)2(其中a∈R,e为自然对数的底数,e=2.718128⋯).(1)若f(x)仅有一个极值点,求a的取值范围;(2)证明:当0<a<12时,f(x)有两个零点x1,x2,且-3<x1+x2<-2.【解析】(1)解:f (x)=ae x+axe x-2(a-1)(x+1)=(x+1)(ae x-2a+2),由f (x)=0得到x=-1或ae x-2a+2=0(*)由于f(x)仅有一个极值点,关于x的方程(*)必无解,①当a=0时,(*)无解,符合题意,②当a≠0时,由(*)得e x=2a-2a,故由2a-2a≤0得0<a≤1,由于这两种情况都有,当x<-1时,f (x)<0,于是f(x)为减函数,当x>-1时,f (x)>0,于是f(x)为增函数,∴仅x=-1为f(x)的极值点,综上可得a的取值范围是[0,1];(2)证明:由(1)当0<a<12时,x=-1为f(x)的极小值点,又∵f(-2)=-2ae2-(a-1)=-2e2-1a+1>0对于0<a<12恒成立,f(-1)=-ae <0对于0<a<12恒成立,f(0)=-(a-1)>0对于0<a<12恒成立,∴当-2<x<-1时,f(x)有一个零点x1,当-1<x<0时,f(x)有另一个零点x2,即-2<x1<-1,-1<x2<0,且f(x1)=ax1e x1-(a-1)(x1+1)2=0,f(x2)=ax2e x2-(a-1)(x2+1)2=0,(#)所以-3<x1+x2<-1,下面再证明x1+x2<-2,即证x1<-2-x2,由-1<x2<0得-2<-2-x2<-1,由于x<-1,f(x)为减函数,于是只需证明f(x1)>f(-2-x2),也就是证明f(-2-x2)<0,f(-2-x2)=a(-2-x2)e-2-x2-(a-1)(-x2-1)2=a(-2-x2)e-2-x2 -(a-1)(x2+1)2,借助(#)代换可得f(-2-x2)=a(-2-x2)e-2-x2-ax2e x2=a[(-2-x2)e-2-x2-x2e x2],令g(x)=(-2-x)e-2-x-xe x(-1<x<0),则g (x)=(x+1)(e-2-x-e x),∵h(x)=e-2-x-e x为(-1,0)的减函数,且h(-1)=0,∴g (x)=(x+1)(e-2-x-e x)<0在(-1,0)恒成立,于是g(x)为(-1,0)的减函数,即g(x)<g(-1)=0,∴f(-2-x2)<0,这就证明了x1+x2<-2,综上所述,-3<x1+x2<-2.8.已知函数f(x)=e x-ax(a为常数),f′(x)是f(x)的导函数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当x>0时,求证:f(ln a+x)>f(ln a-x);(Ⅲ)已知f(x)有两个零点x1,x2(x1<x2),求证:f/x1+x22<0.【解析】证明:(Ⅰ)∵f′(x)=e x-a.当a≤0时,则f′(x)=e x-a>0,即f(x)在R上是增函数,当a>0时,由f′(x)=e x-a=0,得x0=ln a.当x∈(-∞,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.即f(x)在(-∞,ln a)上是减函数,在(ln a,+∞)上是增函数,(Ⅱ)证明:设g(x)=f(ln a+x)-f(ln a-x)(x>0)=[e ln a+x-a(ln a+x)]-[e ln a-x-a(ln a-x)]= a(e x-e-x-2x),∴g′(x)=a(e x+e x-2)≥2a e x∙e-x-2a=0,当且仅当x=0时等号成立,但x>0,∴g′(x)>0,即g(x)在(0,+∞)上是增函数,所以g(x)>g(0)=0∴不等式f(x0+x)>f(x0-x)恒成立.(Ⅲ)由(I)知,当a≤0时,函数y=f(x)的图象与x轴至多有一个交点,故a>0,从而f(x)的最小为f(ln a),且f(ln a)<0.设A(x1,0),B(x2,0),0<x1<x2,则0<x1<ln a<x2.由(II)得f(2ln a-x1)=f(ln a+ln a-x1)>f(x1)=0.∵2ln a-x1=ln a+(ln a-x1)>ln a,x2>ln a,且f(x)在(ln a,+∞)上是增函数又f(2ln a-x1)>0=f(x2),∴2ln a-x1>x2.于是x1+x22<ln a,∵f(x)在(-∞,ln a)上减函数,∴fx1+x22<0.9.设函数f(x)=e x-ax+a,a∈R,其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求a的取值范围;(2)证明:f (x1x2)<0.【解析】解:(1)∵f(x)=e x-ax+a,∴f (x)=e x-a,若a≤0,则f (x)>0,则函数f(x)是单调增函数,这与题设矛盾.∴a>0,令f (x)=0,则x=ln a,当f (x)<0时,x<ln a,f(x)是单调减函数,当f (x)>0时,x>ln a,f(x)是单调增函数,于是当x=ln a时,f(x)取得极小值,∵函数f(x)=e x-ax+a(a∈R)的图象与x轴交于两点A(x1,0),B(x2,0)(x1<x2),∴f(ln a)=a(2-ln a)<0,即a>e2,此时,存在1<ln a,f(1)=e>0,存在3ln a>ln a,f(3ln a)=a3-3a ln a+a>a3-3a2+a>0,又由f(x)在(-∞,ln a)及(ln a,+∞)上的单调性及曲线在R上不间断,可知a>e2为所求取值范围.(2)∵e x1-ax1+a=0 e x2-ax2+a=0 ,∴两式相减得a=e x2-e x1x2-x1,记x2-x12=s(s>0),则f′x1+x22=e x1+x22-e x2-e x1x2-x1=ex1+x222s[2s-(e s-e-s)],设g(s)=2s-(e s-e-s),则g (s)=2-(e s+e-s)<0,∴g(s)是单调减函数,则有g(s)<g(0)=0,而e x1+x222s>0,∴f′x1+x22<0.又f (x)=e x-a是单调增函数,且x1+x22>x1x2,∴f′(x1x2)<0.10.设函数f(x)=e x-ax+a(a∈R)其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求f(x)的单调区间和极值点;(2)证明:f′(x1x2)<0(f′(x)是f(x)的导函数);(3)证明:x1x2<x1+x2.【解析】解:(1)设函数f(x)=e x-ax+a(a∈R)其图象与x轴交于A(x1,0),B(x2,0)两点,所以函数f(x)不单调,∵f (x)=e x-a=0有实数解,所以a>0,解得x=ln a,因为x<ln a,f (x)<0,f(x)单调递减,x>ln a时,f (x)>0,f(x)单调递增,且ln a是极小值点;f(ln a)极小值=e ln a-a ln a+a=2a2-ln a,由题意得,f(ln a)<0,所以a>e2,所以函数f(x)的单调递增区间(-∞,ln a),单调递减区间(ln a,+∞),极小值点是ln a,无极大值点,且a>e2.(2)证明:∵e x1-ax1+a=0 e x2-ax2+a=0 ,两式相减可得,a=e x2-e x1x2-x1,令s=ex2-x12(s>0),则fx1+x22=e x1+x22-e x2-e x1x2-x1,=e x1+x222s[2s-(e s-e-s)],令g(s)=2s-(e s-e-s),则g′(s)=2-(e s+e-s)<0,所以g(s)单调递减,g(s)<g(0)=0,而e x1+x222s>0,∴fx1+x22<0,又x1+x22>x1x2,∴f′(x1x2)<0;(3)证明:由e x1-ax1+a=0e x2-ax2+a=0,可得e x2-x1=x2-1x1-1,∴e(x2-1)-(x1-1)=x2-1 x1-1,令m=x1-1,n=x2-1,则0<m<1<n,∴e n-m=nm,设t=nm,则t>1,n=mt,∴e(t-1)m=t,∴m=ln tt-1,n=t ln tt-1,∴mn=t(ln t)2 (t-1)2,要证明:x1x2<x1+x2,等价于证明:(x1-1)(x2-1)<1,即证mn<1,即证t(ln t)2(t-1)2<1,即证ln tt-1<1t,即证ln t<t-1t ,令g(t)=2ln t-t+1t,(t>1),g′(t)=2t -1-1t2=-(t-1)2t2<0,∴g(t)在(1,+∞)上单调递减,∵t>1,故g(t)<0,∴2ln t-t+1t<0,∴ln t<t-1t,从而有:x1x2<x1+x2.11.已知函数f(x)=x2ln x+ax(a∈R)在x=1处的切线与直线x-y+2=0平行.(1)求实数a的值,并求f(x)的极值;(2)若方程f(x)=m有两个不相等的实根x1,x2,求证:x21+x22>2e.【解析】解:(1)函数f(x)的定义域为(0,+∞),f (x)=2x ln x+x-ax2,由题意知f′(1)=1-a=1,∴a=0.∴f′(x)=2x ln x+x=x(2ln x+1),令f′(x)=0,则x=e e,当x∈0,e e时,f′(x)<0;x∈e e,+∞时,f′(x)>0.∴f(x)的极小值为f ee=-12e,证明:(2)由(1)知f(x)=x2ln x,由f(x1)=f(x2)=m,得x12ln x1=x22ln x2,即2x12ln x1=2x22ln x2,所以x12ln x12=x22ln x22.∵x1≠x2,不妨设x1<x2,令t1=x12,t2=x22,h(t)=t ln t(t>0),则原题转化为h(t)=2m有两个实数根t1,t2(t1<t2),又h′(t)=1+ln t,令h′(t)>0,得t>e-1;令h′(t)<0,得t<e-1,∴h(t)在(0,e-1)上单调递减,在(e-1,+∞)上单调递增,又t→0+时,h(t)→0,h(1)=0,h(e-1)=-e-1,由h(t)图象可知,-e-1<2m<0,0<t1<e-1<t2<1.设g(t)=h(t)-h2e-t=t ln t-2e-tln2e-t,t∈0,1e,则g (t)=(ln t+1)--ln2e-t-1=2+ln t2e-t.当0<t<1e时,t2e-t=-t-1e2+1e2<1e2,则g′(t)<0∴g(t)在0,1 e上单调递减.又∵g1e=h1e -h2e-1e=0∴t∈0,1e时,g(t)>0,得到g(t1)=h(t1)-h2e-t1>0,即h(t1)>h2e-t1,又∵h(t1)=h(t2),∴h(t2)>h2e -t1,又0<t1<1e,则2e-t1>1e,且1>t2>1e,h(t)在1e,+∞上单调递增,∴t2>2e -t1,即t1+t2>2e,即x12+x22>2e.。

极值点偏移(自主整理) 答案

极值点偏移(自主整理) 答案

f (1)
1 ,如图 e
要证 x1 x2 2 ,即证 x2 2 x1 ,不妨设 x1 x2 ,则 0 x1 1 x2
x2 2 x1 1,又 f (x) 在 1, 上递减,则只需证
f (x2 ) f (2 x1)
又 f (x2 ) f (x1) ,则等价证 f (x1) f (2 x1) ,证明如下:
等价,例 1 的四种方法全都可以用;
思路 2:也可以利用参数 a 这个媒介去构造出新的函数.解答如下:
因为函数
f
(x)
有两个零点
x1,
x2
,所以
xx21
ae x1 ae x2
(1) (2)
,由 (1)
(2)
得:
x1
x2
a(e x1
e x2
)

要证明 x1 x2
2 ,只要证明 a(ex1
ex2 ) 2 ,由 (1) (2) 得: x1 x2
e2

解法二 变换函数能妙解
极值点偏移专题
第 3 页 共 16 页
证法 2:欲证 x1x2 e2 ,需证 ln x1 ln x2 2 .若 f x 有两个极值点 x1 ,x2 ,即函数 f x 有两个零点.又 f x ln x mx ,所以, x1 , x2 是方程 f x 0 的两个不同实根.显然 m 0 ,否则,函数 f x 为
设 g(x) f (x) f (2 x),x 0,1 则 g(x) f (x) f (2 x)
g
(
x)
1 ex
x
1 e2x2
,又 x 0,1,则 g(x) 0 ,则 g(x)在0,1递增
g(x) g(1) 0 ,则 g(x) 0 得证,则 x1 x2 2

极值点偏移的问题(含答案)

极值点偏移的问题(含答案)

极值点偏移的问题(含答案)1.已知 $f(x)=\ln x-ax$,其中 $a$ 为常数。

1)若函数 $f(x)$ 在 $x=1$ 处的切线与 $x$ 轴平行,求$a$ 的值;2)当 $a=1$ 时,比较 $f(m)$ 和 $f(1)$ 的大小;3)$f(x)$ 有两个零点 $x_1$ 和 $x_2$,证明:$x_1\cdotx_2>e^2$。

变式:已知函数 $f(x)=\ln x-ax^2$,其中 $a$ 为常数。

1) 讨论 $f(x)$ 的单调性;2) 若有两个零点 $x_1$ 和 $x_2$,试证明:$x_1\cdotx_2>e$。

2.已知 $f(x)=x^2+ax+\sin (\pi x)$,$x\in(0,1)$。

1)若 $f(1)=0$,求函数 $f(x)$ 的最大值;2)令 $g(x)=f(x)-(ax-1)$,求函数 $g(x)$ 的单调区间;3)若 $a=-2$,正实数 $x_1$ 和 $x_2$ 满足$f(x_1)+f(x_2)+x_1x_2=0$,证明:$x_1+x_2\geq \frac{5}{2}$。

3.已知 $f(x)=\ln x-ax^2+x$,其中 $a\in R$。

1)若 $f(1)=0$,求函数 $f(x)$ 的最大值;2)令 $g(x)=f(x)-(ax-1)$,求函数 $g(x)$ 的单调区间;3)若 $a=-2$,正实数 $x_1$ 和 $x_2$ 满足$f(x_1)+f(x_2)+x_1x_2=0$,证明:$x_1+x_2\geq \frac{5}{2}$。

4.设 $a>0$,函数 $f(x)=\ln x-ax$,$g(x)=\ln x-\frac{2(x-1)}{x+1}$。

1)证明:当 $x>1$ 时,$g(x)>0$ 恒成立;2)若函数 $f(x)$ 无零点,求实数 $a$ 的取值范围;3)若函数$f(x)$ 有两个相异零点$x_1$ 和$x_2$,求证:$x_1\cdot x_2>e^2$。

高中数学专题 微专题13 极值点偏移问题

高中数学专题 微专题13 极值点偏移问题

由 f′(x)=1-1x+ln x-2x+a=0 得
a=2x+1x-ln x-1,
所以直线 y=a 与函数 g(x)=2x+1x-ln x-1 的图象有两个交点,

g(x)

2x

1 x

பைடு நூலகம்
ln
x-1

g′(x)

2

1 x2

1 x

2x2-x-1 x2

2x+1x-1
x2
,x∈(0,+∞),
当x∈(0,1)时,g′(x)<0,g(x)单调递减, 当x∈(1,+∞)时,g′(x)>0,g(x)单调递增,因此g(x)min=g(1)=2, 当x→0时,g(x)→+∞, 当x→+∞时,g(x)→+∞, 作出y=g(x)的大致图象,如图所示. 所以若有两个交点,只需a>2,即a的取值范围为 (2,+∞).
(2)设x1,x2是函数f(x)的两个极值点,证明:x1+x2>2.
因为x1,x2是函数f(x)的两个极值点, 所以f′(x1)=f′(x2)=0,由(1)可知g(x1)=g(x2)=a,不妨设0<x1<1<x2, 要证明x1+x2>2,只需证明x2>2-x1, 显然2-x1>1, 由(1)可知,当x∈(1,+∞)时,g(x)单调递增,所以只需证明g(x2)>g(2 -x1), 而g(x1)=g(x2)=a, 所以证明g(x1)>g(2-x1)即可, 即证明函数h(x)=g(x)-g(2-x)>0在x∈(0,1)时恒成立,
123
(2)若f′(x0)=0(f′(x)为f(x)的导函数),方程f(x)=m有两个不相等的实数 根x1,x2,求证:x1+x2>2x0.

【高三】极值点偏移专题03: 极值点偏移第一招---不含参数的极值点偏移问题

专题03 极值点偏移第一招---不含参数的极值点偏移问题函数的极值点偏移问题,其实是导数应用问题,呈现的形式往往非常简洁,涉及函数的双零点,是一个多元数学问题,不管待证的是两个变量的不等式,还是导函数的值的不等式,解题的策略都是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.例1、(10天津理)已知函数f(x)=xe x(x∈R),若x1≠x2,且f(x1)=f(x2),证明:x1+x2>2.例2、(13湖南文)已知函数f(x)=1x2+1(1-x)ex,证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.例3、已知函数f(x)=x2+x+ln x,正实数x1,x2满足f(x1)+f(x2)+x1x2=0.证明:x1+x2≥5-12.例4、已知函数f(x)=-x+ln x.⑴.求函数f(x)的单调区间;⑵.若方程f(x)=m(m<-2)有两个相异实根x1,x2,且x1<x2,证明:x1x22<2.【详细解答】例.(10天津理)已知函数f (x )=xe x (x ∈R),若x 1≠x 2,且f (x 1)=f (x 2),证明:x 1+x 2>2.【解一】(判定定理) f ′(x )=1e x (1-x ),易得,f (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,当x →-∞时,f (x ) →-∞,f (0)=0,当x →+∞时,f (x ) →0,函数f (x )在x =1处取得极大值f (1)=1e ,如图所示,由f (x 1)=f (x 2),x 1≠x 2,不妨设x 1<x 2,则必有0<x 1<1<x 2,构造函数F (x )=f (1+x )-f (1-x ),x ∈(0,1],则F ′(x )=x e-x -1(e 2x -1)>0,故F (x )在(0,1]上单调递增,F (x ) >F (0)=0,即f (1+x )>f (1-x )对x ∈(0,1]恒成立.由0<x 1<1<x 2,则1-x 1∈(0,1],故f [1+(1-x 1)]=f (2-x 1)>f [1-(1-x 1)]=f (x 1)=f (x 2),即f (2-x 1)>f (x 2),又2-x 1,x 2∈(1,+∞),且f (x )在(1,+∞)上单调递减,故2-x 1<x 2,即证x 1+x 2>2. 【解二】欲证x 1+x 2>2,即证x 2>2-x 1,由法一知,0<x 1<1<x 2,2-x 1,x 2∈(1,+∞),又f (x ) 在(1,+∞)上单调递减,故只需证f (x 2)<f (2-x 1),又f (x 1)=f (x 2),也即证f (x 1)<f (2-x 1),故构造函数H (x )=f (x )-f (2-x ),x ∈(0,1),则等价于证明H (x )<0对任意x ∈(0,1)恒成立,由H ′(x )=1e x (x -1)(e 2x -2-1)>0,则H (x )在(0,1)上单调递增,故H (x )<H (1)=0,即已证明H (x )<0对任意x ∈(0,1)恒成立,故原不等式x 1+x 2>2亦成立. 【解三】由f (x 1)=f (x 2)得,x 1e-x 1=x 2e-x 2,化简得,e x 2-x 1=x 2x 1①,不妨设x 2>x 1,由法一知,0<x 1<1<x 2.令t =x 2-x 1,则t >0,x 2=t +x 1,代入①式得,e t =1x 1(t +x 1),反解出x 1=t (e t -1)-1,则x 1+x 2=2x 1+t =t +2t (e t -1)-1,故要证x 1+x 2>2,即证t +2t (e t -1)-1>2,又e t -1>0,等价于证明:2t +(t -2)(e t -1)>0②,构造函数G (t )=2t +(t -2)(e t -1)>0(t >0),则G ′(t )=1+(t -1)e t ,G ′′(t )=t e t >0,故G ′(t )在(0,+∞)上单调递增,G ′(t )>G ′(0)=0,从而G (t )也在(0,+∞)上单调递增,G (t )>G (0)=0,即证②成立,亦即可原不等式x 1+x 2>2亦成立.【解四】由解三中①式,两边同时取以e 为底的对数得,x 2-x 1=ln x 2x 1=ln x 2-ln x 1,即ln x 2x 1x 2-x 1=1,从而x 1+x 2=(x 1+x 2) ln x 2x1x 2-x 1=2121x x x x +-ln x 2x 1=212111x x x x +-ln x 2x 1,令t =x 2x 1(t >1),则欲证x 1+x 2>2,等价于证明-1-t 1+t ln t >2③,构造M (t )=-1-t 1+t ln t =(1+21t -1)ln t (t >1),则M ′(t )=1t (t 2-1-2t ln t )(t -1)-2,又令φ(t )=t 2-1-2t ln t (t >1),则φ′(t )=2(t -1-ln t ),由于t-1>ln t 对∀t ∈(1,+∞)恒成立,故φ′(t )>0,φ(t )在(1,+∞)上单调递增,故φ(t )>φ(1)=0,从而M ′(t )>0,故M (t )在(1,+∞)上单调递增,由洛比塔法则知:'111(1)ln [(1)ln ]lim ()lim lim 1(1)x x x t t t t M t t t →→→++=='--=1lim x →(t +1t +ln t )=2,即证M (t )>2,即证③式成立,也即原不等式x 1+x 2>2成立.【点评】以上四种方法均是为了实现将双变元的不等式转化为单变元不等式,方法一、二利用构造新的函数来达到消元的目的,方法三、四则是利用构造新的变元,将两个旧的变元都换成新变元来表示,从而达到消元的目的.例.(13湖南文)已知函数f (x )=1x 2+1(1-x )e x ,证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0.【解析】易知,f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减.当x <1时,由于e x >0,1x 2+1 (1-x )>0,故f (x )>0;同理,当x >1时,f (x )<0.当f (x 1)=f (x 2)(x 1≠x 2)时,不妨设x 1<x 2,由函数的单调性知,x 1∈(-∞,0),x 2∈(0,1).下面证明:∀x ∈(0,1),f (x )<f (-x ),即证1x 2+1(1-x )e x <1x 2+1(1+x )1e x ,此不等式等价于e x (1-x )-1e x (1+x )<0,令F (x )=e x (1-x )-1e x (1+x ),x ∈(0,1),则F ′(x )=-x ex (e 2x -1),当x ∈(0,1),F ′(x )<0,F (x )单调递减,从而F (x )<F (0)=0,即e x (1-x )-1e x (1+x )<0,故∀x∈(0,1),f (x )<f (-x ),而x 2∈(0,1),故f (x 2)<f (-x 2),又f (x 1)=f (x 2),从而f (x 1)<f (-x 2),又x 1,-x 2∈(-∞,0),且f (x )在(-∞,0)上单调递增,故x 1<-x 2,即x 1+x 2<0.招式演练:★已知函数f (x )=x 2+x +ln x ,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0.证明:x 1+x 2≥5-12. 【解析】由f (x 1)+f (x 2)+x 1x 2=0得,x 21+x 1+ln x 1+x 22+x 2+ln x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2)=x 1x 2-ln(x 1x 2),令t =x 1x 2,构造函数φ(t )=t -ln t ,得φ′(t )=1t (t -1),可知φ(t )在(0,1)上单调递减,在(1,+∞)上单调递增,故φ(t )≥φ(1)=1,也即(x 1+x 2)2+(x 1+x 2)≥1,解得:x 1+x 2≥5-12.★已知函数f (x )=-x +ln x .⑴.求函数f (x )的单调区间;⑵.若方程f (x )=m (m <-2)有两个相异实根x 1,x 2,且x 1<x 2,证明:x 1x 22<2. 【解析】⑴.f (x )=-x +ln x 的定义域为(0,+∞),f ′(x )=1-x x ,令f ′(x )=0得,x =1,当x∈(0,1),f ′(x )>0,f (x )在(0,1)上单调递增,当x ∈(1,+∞),f ′(x )<0,f (x )在(1,+∞)上单调递减;⑵.由⑴可设f (x )=m 的两个相异实根分别为x 1,x 2满足-m -x +ln x =0,且0<x 1<1,x 2>1,-m -x 1+ln x 1=-m -x 2+ln x 2=0,由题意知,-x 2+ln x 2=m <-2<-2+ln2,又由⑴知,f (x )=-x +ln x 在(1,+∞)递减,故x 2>2,故0<x 1,2•1x 22<1,令g (x )=-m -x +ln x ,g (x 1)-g (2•1x 22)=-x 2+2•1x 22-ln2+3ln x 2,令h (t )=-t +2•1t 2-ln2+3ln t (t >2),则h ′(t )=-t -3 (t +1)(t -2)2,当t >2时,h ′(t )<0,h (t )在(2,+∞)上单调递减,故h (t )<h (2)=-32+2ln2,故当x2>2时,g(x1)-g(2•1x22)<0,即g(x1)<g(2•1x22),因0<x1,2•1x22<1,g(x)在(0,1)上单调递增,故x1<2•1x22,即x1x22<2.综上所述,x1x22<2.。

最新届高三第一轮复习专题训练之极值点偏移问题

2017届高三第一轮复习专题训练之极值点偏移问题什么是极值点偏移 我们知道二次函数f(x)的顶点就是极值点0x ,若f(x)=c 的两根的中点为221x x +,则刚好有221x x +=0x ,即极值点在两根的正中间,也就是极值点没有偏移;而函数x e x x g =)(的极值点0x =1刚好在两根的中点221xx +的左边,我们称之为极值点左偏.例1. 已知函数()x f x e x =-,其中 2.71828e =为自然对数的底数.证明:当12x x ≠,且12()()f x f x =时,120x x +<.解:()x f x e x =-的定义域为(,)-∞+∞,'()1x f x e =-,由'()10x f x e =-=,解得0x =.当x 变化时,',变化情况如下表:∵12x x ≠,且12()()f x f x =,则120x x <<(不妨设12x x <).设函数1()()()()2,0x x x x F x f x f x e x e x e x x e -=--=--+=--<.∴'1()2xxF x e e=+-.∵当0x <时,01x e <<,∴12x x e e+>.∴当0x <时,'()0F x >.∴函数()F x 在(,0)-∞上单调递增.∴()(0)0F x F <=,即当0x <时,()()f x f x <-.∵10x <,∴11()()f x f x <-.又12()()f x f x =,∴21()()f x f x <-.∵()f x 在(0,)+∞上单调递增,20x <,且10x <-,又21()()f x f x <-, ∴21x x <-.∴120x x +<反思:本题中极值点0a =,120x x +<即122.x x a +<有如下判断极值点偏移的定理:例2.解:运用判定定理判定极值点偏移的方法为:口诀为:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随。

备战高考数学一轮复习讲义备选微专题 极值点偏移问题

极值点偏移问题极值点偏移的定义:对于函数y =f (x )在区间(a ,b )内只有一个极值点x 0,方程f (x )的解分别为x 1,x 2,且a <x 1<x 2<b .(1) 若x 1+x 22≠x 0,则称函数y =f (x )在区间(x 1,x 2)上极值点x 0偏移;(2) 若x 1+x 22>x 0,则函数y =f (x )在区间(x 1,x 2)上极值点x 0左偏,简称极值点x 0左偏;(3) 若x 1+x 22<x 0,则函数y =f (x )在区间(x 1,x 2)上极值点x 0右偏,简称极值点x 0右偏.对称化构造法解决极值点偏移问题例1 设函数f (x )=2ln x -x 2+1,若在f (x )的定义域内存在两实数x 1,x 2满足x 1<x 2且f (x 1)=f (x 2),求证:x 1+x 2>2.【解答】 f ′(x )=2x -2x =2-2x 2x =2(1-x 2)x ,当x ∈(0,1)时,f ′(x )>0;当x∈(1,+∞)时,f ′(x )<0.所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以由x 1<x 2且f (x 1)=f (x 2),知0<x 1<1<x 2.令F (x )=f (x )-f (2-x ),x ∈(0,1),则F ′(x )=2(1-x 2)x -2[1-(2-x )2]2-x ·(2-x )′=4(x -1)2x (2-x )>0,所以F (x )在(0,1)上单调递增,所以F (x )<F (1)=0,即f (x )<f (2-x ),所以f (x 1)<f (2-x 1).又f (x 1)=f (x 2),所以f (x 2)<f (2-x 1).因为x 1∈(0,1),所以2-x 1∈(1,2),又x 2>1且f (x )在(1,+∞)上单调递减,所以x 2>2-x 1,即x 1+x 2>2.变式 已知函数f (x )=x ln x -x +1,若方程f (x )=b 有两个不相等的实数根x 1,x 2,求证:x 1x 2<1.【解答】 f ′(x )=ln x ,当x >1时,f ′(x )>0,当0<x <1时,f ′(x )<0,所以f (x )在区间(1,+∞)上单调递增,在区间(0,1)上单调递减.不妨设x 1<x 2,则0<x 1<1<x 2,要证x 1x 2<1,只需证1<x 2<1x 1.因为f (x )在区间(1,+∞)上单调递增,所以只需证f (x 2)<f ⎝ ⎛⎭⎪⎫1x 1.因为f (x 1)=f (x 2),所以只需证f (x 1)<f ⎝ ⎛⎭⎪⎫1x 1.设F (x )=f (x )-f ⎝ ⎛⎭⎪⎫1x (0<x <1),则F ′(x )=ln x -1x 2ln x =x 2-1x 2ln x >0,所以F (x )在区间(0,1)上单调递增,所以F (x )<F (1)=0,所以f (x )-f ⎝ ⎛⎭⎪⎫1x <0,即f (x 1)<f ⎝ ⎛⎭⎪⎫1x 1成立,所以x 1x 2<1. 比值代换法解决极值点偏移问题例2 已知函数f (x )=ax ln x +310a (a ≠0).(1) 讨论f (x )的单调性;【解答】 函数f (x )的定义域为(0,+∞),f ′(x )=a ln x +a =a (ln x +1).①当a >0时,令f ′(x )<0,得0<x <1e ,则f (x )在⎝⎛⎭⎪⎫0,1e 上单调递减;令f ′(x )>0,得x >1e ,则f (x )在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增.②当a <0时,令f ′(x )<0,得x >1e ,则f (x )在⎝ ⎛⎭⎪⎫1e ,+∞上单调递减;令f ′(x )>0,得0<x <1e ,则f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递增.综上所述,当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增;当a <0时,f (x )在⎝ ⎛⎭⎪⎫1e ,+∞上单调递减,在⎝ ⎛⎭⎪⎫0,1e 上单调递增. (2) 若函数f (x )有两个零点 x 1,x 2,且x 1<x 2,求证:x 1+x 2>310.【解答】 因为x 1,x 2为f (x )的两个零点,所以ln x 1+310x 1=0,ln x 2+310x 2=0,两式相减,可得ln x 1-ln x 2+310x 1-310x 2=0,即ln x 1x 2=310·x 1-x 2x 1x 2,即x 1x 2=310·x 1-x 2ln x 1x 2,因此x 1=310·x 1x 2-1ln x 1x 2,x 2=310·1-x 2x 1ln x 1x 2.令t =x 1x 2,则x 1+x 2=310·t -1ln t +310·1-1t ln t =310·t -1t ln t .令h (t )=t -1t -ln t (0<t <1),则h ′(t )=1+1t 2-1t =t 2-t +1t 2>0,所以函数h (t )在(0,1)上单调递增,所以h (t )<h (1)=0,即t -1t -ln t <0.因为0<t <1,所以t -1tln t >1,故x 1+x 2>310得证.变式 已知a 是实数,函数f (x )=a ln x -x .(1) 讨论f (x )的单调性;【解答】 f (x )的定义域为(0,+∞),f ′(x )=a x -1=a -x x ,当a ≤0时,f ′(x )<0恒成立,故f (x )在(0,+∞)上单调递减;当a >0时,令f ′(x )>0,得x ∈(0,a ),令f ′(x )<0,得x ∈(a ,+∞),故f (x )在(0,a )上单调递增,在(a ,+∞)上单调递减.综上,当a ≤0时,f (x )在(0,+∞)上单调递减;当a >0时,f (x ) 在(0,a )上单调递增,在(a ,+∞)上单调递减.(2) 若f (x )有两个相异的零点x 1,x 2且x 1>x 2>0,求证:x 1·x 2>e 2.【解答】 由(1)可知,要想f (x )有两个相异的零点x 1,x 2,则a >0.因为f (x 1)=f (x 2)=0,所以a ln x 1-x 1=0,a ln x 2-x 2=0,x 1-x 2=a (ln x 1-ln x 2).要证x 1·x 2>e 2,即证ln x 1+ln x 2>2,等价于x 1a +x 2a >2,而1a =ln x 1-ln x 2x 1-x 2,所以等价于证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2.令t =x 1x 2,则t >1,于是等价于证明ln t >2(t -1)t +1成立.设g (t )=ln t -2(t -1)t +1,t >1,g ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以g (t )在(1,+∞)上单调递增,故g (t )>g (1)=0,即ln t >2(t -1)t +1成立,所以x 1·x 2>e 2,结论得证.极值点偏移问题的一般解法:1. 对称化构造法:主要用来解决与两个极值点之和(积)相关的不等式的证明问题.其解题要点如下:(1) 定函数(极值点为x 0),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点x 0.(2) 构造函数,即对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x )或F (x )=f (x 0+x )-f (x 0-x )⎝ ⎛⎭⎪⎫对结论x 1·x 2>x 20型,构造函数F (x )=f (x )-f ⎝ ⎛⎭⎪⎫x 20x ;通过研究F (x )的单调性获得不等式.(3) 判断单调性,即利用导数讨论F (x )的单调性.(4) 比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5) 转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x与2x0-x之间的关系,进而得到所证或所求.2. 比值代换法:比值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点的比值作为变量,从而实现消参、减元的目的.设法用比值(一般用t)表示两个极值点,即t=x1x2,化为单变量的函数不等式,则将所求解问题转化为关于t的函数问题,进而求解.。

2017年高考数学第一轮复习测试题含答案.doc

2017年高考数学第一轮复习测试题含答案现在高三学生已经着手开始2017年高考数学复习了,只有认真的进行数学复习才能在考试中轻松取得好成绩,为了帮助大家做好高考数学复习,下面为大家带来2017年高考数学第一轮复习测试题含答案这篇内容,希望高考生能够认真阅读。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

)1.(2011合肥质检)集合A={1,2,3},B={xR|x2-ax+1=0,aA},则AB=B 时a的值是()A.2B.2或3C.1或3D.1或2[答案] D[解析]由AB=B知BA,a=1时,B={x|x2-x+1=0}=A;a=2时,B={x|x2-2x+1=0}={1}A;a=3时,B={x|x2-3x+1=0}={3+52,3-52}?A,故选D.2.(文)(2011合肥质检)在复平面内,复数i3-i(i是虚数单位)对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限[答案] B[解析]z=i3-i=i?3+i?3-?-1?=-14+34i的对应点-14,34在第二象限.(理)(2011蚌埠二中质检)如果复数2-bi1+2i(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于()A.2B.23C.-23D.2[答案] C[解析]∵2-bi1+2i=?2-bi??1-2i?5=2-2b5+-b-45i的实部与虚部互为相反数,2-2b5+-b-45=0,b=-23,故选C.3.(文)(2011日照调研)若e1,e2是夹角为3的单位向量,且a=2e1+e2,b=-3e1+2e2,则ab等于()A.1B.-4C.-72D.72[答案] C[解析]e1e2=11cos3=12,ab=(2e1+e2)(-3e1+2e2)=-6e21+2e22+e1e2=-6+2+12=-72,故选C. (理)(2011河南豫州九校联考)若A、B是平面内的两个定点,点P为该平面内动点,且满足向量AB与AP夹角为锐角,|PB||AB|+PAAB=0,则点P的轨迹是()A.直线(除去与直线AB的交点)B.圆(除去与直线AB的交点)C.椭圆(除去与直线AB的交点)D.抛物线(除去与直线AB的交点) [答案] D[解析]以AB所在直线为x轴,线段AB中点为原点,建立平面直角坐标系,设A(-1,0),则B(1,0),设P(x,y),则PB=(1-x,-y),PA=(-1-x,-y),AB=(2,0),∵|PB||AB|+PAAB=0,2?1-x?2+?-y?2+2(-1-x)=0,化简得y2=4x,故选D.4.(2011黑龙江哈六中期末)为了了解甲,乙,丙三所学校高三数学模拟考试的情况,现采取分层抽样的方法从甲校的1260份,乙校的720份,丙校的900份模拟试卷中抽取试卷进行调研,如果从丙校抽取了50份,那么这次调研一共抽查的试卷份数为()A.150B.160C.200D.230[答案] B[解析]依据分层抽样的定义,抽样比为50900=118,故这次调研一共抽查试卷(1260+720+900)118=160份.5.(文)(2011福州市期末)设函数y=f(x)的定义域为实数集R,对于给定的正数k,定义函数fk(x)=f?x??f?x?k?k ?f?x?k?,给出函数f(x)=-x2+2,若对于任意的x(-,+),恒有fk(x)=f(x),则()A.k的最大值为2B.k的最小值为2C.k的最大值为1D.k的最小值为1[答案] B[解析]∵x(-,+)时,f(x)=-x2+22,且fk(x)=f(x)恒成立,且当f(x)k 时,fk(x)=k,故k的最小值为2.(理)(2011丰台区期末)用max{a,b}表示a,b两个数中的最大数,设f(x)=max{x2,x}(x14),那么由函数y=f(x)的图象、x轴、直线x=14和直线x=2所围成的封闭图形的面积是()A.3512B.5924C.578D.9112[答案] A[解析]如图,平面区域的面积为6.(2011北京丰台区期末)下面程序框图运行后,如果输出的函数值在区间[-2,12]内,则输入的实数x的取值范围是()A.(-,-1]B.[14,2]C.(-,0)[14,2]D.(-,-1][14,2][答案] D[解析]∵x0时,f(x)=2x(0,1),由02x12得,x-1;由-2log2x12x0得,14x2,故选D.7.(文)(2011潍坊一中期末)下列有关命题的说法错误的是()A.命题若x2-3x+2=0,则x=1的逆否命题为:若x1,则x2-3x+20B.x=1是x2-3x+2=0的充分不必要条件C.若pq为假命题,则p、q均为假命题D.对于命题p:xR使得x2+x+10,则綈p:xR,均有x2+x+10 [答案] C[解析]若pq为假命题,则p、q至少有一个为假命题,故C错误. (理)(2011巢湖质检)给出下列命题①设a,b为非零实数,则a②命题p:垂直于同一条直线的两直线平行,命题q:垂直于同一条直线的两平面平行,则命题pq为真命题;③命题xR,sinx1的否定为x0R,sinx01;④命题若x2且y3,则x+y5的逆否命题为若x+y5,则x2且y3,其中真命题的个数是()A.4个B.3个C.2个D.1个[答案] D[解析]①取a=-1,b=2满足a8.(文)(2011陕西宝鸡质检)若将函数y=cosx-3sinx的图象向左平移m(m0)个单位后,所得图象关于y轴对称,则实数m的最小值为() A.6 B.3C.23D.56[答案] C[解析]y=cosx-3sinx=2cosx+3左移m个单位得y=2cosx+m+3为偶函数,m+3=k,kZ.∵m0,m的最小值为23.(理)(2011咸阳模拟)将函数y=sin2x+4的图像向左平移4个单位,再向上平移2个单位,则所得图像的函数解析式是()A.y=2+sin2x+34B.y=2+sin2x-4C.y=2+sin2xD.y=2+cos2x[答案] A[解析]y=sin2x+4――――――――图象再向上平移4个单位用x+4代替xy=sin2x+4+4―――――――图象再向上平移2个单位用y-2代替y y-2=sin2x+4+4,即得y=sin2x+34+2,故选A.9.(2011陕西咸阳模拟)如图所示的程序框图,其输出结果是()A.341B.1364C.1365D.1366[答案] C[解析]程序运行过程依次为:a=1,a=41+1=5,a500满足a=45+1=21,a500仍满足a=421+1=85,a500满足a=485+1=341,a500满足a=4341+1=1365,a500不满足输出a的值1365后结束,故选C.[点评]要注意循环结束的条件和输出结果是什么.10.(文)(2011山东淄博一中期末)如图为一个几何体的三视图,左视图和主视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的全面积为()A.2723B.123C.24D.24+23[答案] D[解析]由三视图知,该几何体是底面边长为332=2,高为4的正三棱柱,故其全面积为3(24)+23422=24+23.(理)(2011山东日照调研)下图是某四棱锥的三视图,则该几何体的表面积等于()A.34+65B.6+65+43C.6+63+413D.17+65[答案] A[解析]由三视图知,该四棱锥底面是一个矩形,两边长分别为6和2,有一个侧面PAD与底面垂直,高为4,故其表面积S=62+1264+212242+32+12642+22=34+65.11.(2011陕西宝鸡质检)双曲线x2m-y2n=1(mn0)的离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则mn的值为()A.83B.38C.316D.163[答案] C[解析]抛物线焦点F(1,0)为双曲线一个焦点,m+n=1,又双曲线离心率为2,1+nm=4,解得m=14n=34,mn=316.12.(文)(2011广东高州市长坡中学期末)方程|x-2|=log2x的解的个数为()A.0B.1C.2D.3[答案] C[解析]在同一坐标系中作出函数y=|x-2|与y=log2x的图象可知两图象有两个交点,故选C.(理)(2011山东实验中学期末)具有性质:f1x=-f(x)的函数,我们称为满足倒负变换的函数,下列函数:①y=x-1x,②y=x+1x,③y=x,?0 A.①② B.②③C.①③D.只有①[答案] C[解析]①对于函数f(x)=x-1x,∵f1x=1x-x=-x-1x=-f(x),①是倒负变换的函数,排除B;②对于函数f(x)=x+1x有f1x=1x+x=f(x)不满足倒负变换,排除A;对于③,当0第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.(2011黑龙江哈六中期末)一个盒子里装有标号为1,2,3,4,5的5张标签,不放回地抽取2张标签,则2张标签上的数字为相邻整数的概率为________(用分数表示).[答案]25[解析](文)任取两张标签,所有可能取法有1,2;1,3;1,4;1,5;2,3;2,4;2,5;3,4;3,5;4,5;共10种,其中两数字相邻的有4种,所求概率p=410=25.(理)从5张标签中,任取2张,有C25=10种取法,两张标签上的数字为相邻整数的取法有4种,概率p=410=25.14.(2011浙江宁波八校联考)点(a,b)为第一象限内的点,且在圆(x+1)2+(y+1)2=8上,ab的最大值为________.[答案] 1[解析]由条件知a0,b0,(a+1)2+(b+1)2=8,a2+b2+2a+2b=6,2ab+4ab6,∵ab0,0[点评]作出图形可见,点(a,b)为⊙C在第一象限的一段弧,由对称性可知,当点(a,b)为直线y=x与⊙C的交点(1,1)时,ab取最大值1.15.(2011重庆南开中学期末)已知数列{an}的前n项和Sn满足Sn=2n-1,则当n2时,1a1+1a2++1an=________.[答案]2-12n-1[解析]a1=S1=1,n2时,an=Sn-Sn-1=2n-2n-1=2n-1,an=2n-1(nN*),1an=12n-1,1a1+1a2++1an=1-12n1-12=2-12n-1.16.(文)(2011北京学普教育中心)设函数f(x)的定义域为D,若存在非零实数l,使得对于任意xM(MD),有x+lD,且f(x+l)f(x),则称f(x)为M上的l高调函数.如果定义域为[-1,+)的函数f(x)=x2为[-1,+)上的m高调函数,那么实数m的取值范围是________.[答案][2,+)[解析]f(x)=x2(x-1)的图象如图所示,要使得f(-1+m)f(-1)=1,应有m2;故x-1时,恒有f(x+m)f(x),只须m2即可.(理)(2011四川资阳模拟)下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图①;将线段AB围成一个圆,使两端点A、B恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),在图形变化过程中,图①中线段AM的长度对应于图③中的弧ADM的长度,如图③.图③中直线AM与x轴交于点N(n,0),则m的象就是n,记作f(m)=n.给出下列命题:①f14=1;②f(x)是奇函数;③f(x)在定义域上单调递增,则所有真命题的序号是________.(填出所有真命题的序号)[答案]③[解析]由m的象是n的定义知,f140,故①假,随着m的增大,点N沿x轴向右平移,故n增大,③为真命题;由于m是线段AM的长度,故f(x)为非奇非偶函数,②假.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)(文)(2011淄博一中期末)已知a=(cosx-sinx,2sinx),b=(cosx+sinx,3cosx),若ab=1013,且x-4,6,求sin2x的值.[解析]∵ab=cos2x-sin2x+23sinxcosx=cos2x+3sin2x=2sin2x+6=1013,sin2x+6=513,∵x-4,6,2x+6-3,2,cos2x+6=1213,sin2x=sin2x+6-6=sin2x+6cos6-cos2x+6sin6=51332-121312=53-1226. (理)(2011四川广元诊断)在△ABC中,a、b、c分别为角A、B、C 的对边,向量m=(2a-c,b),n=(cosC,cosB),且m∥n.(1)求角B的大小;(2)若b=3,求a+c的最大值.[MVC:PAGE][解析](1)由题意知(2a-c)cosB=bcosC,(2a-c)a2+c2-b22ac=ba2+b2-c22ab,a2+c2-b2=ac,cosB=a2+c2-b22ac=12,B=3.(2)由(1)知a2+c2-b2=ac,b=3,a2+c2-ac=3,(a+c)2-3ac=3,(a+c)2-3a+c223,14(a+c)23,a+c23,即a+c的最大值为23.18.(本小题满分12分)(文)(2011重庆南开中学期末)设函数f(x)=-x2+2ax+m,g(x)=ax.(1)若函数f(x),g(x)在[1,2]上都是减函数,求实数a的取值范围;(2)当a=1时,设函数h(x)=f(x)g(x),若h(x)在(0,+)内的最大值为-4,求实数m的值.[解析](1)∵f(x),g(x)在[1,2]上都是减函数,a1a0,0实数a的取值范围是(0,1].(2)当a=1时,h(x)=f(x)g(x)=-x2+2x+mx=-x+mx+2;当m0时,显然h(x)在(0,+)上单调递减,h(x)无最大值;当m0时,h(x)=-x+mx+2=-x+?-m?x+2-2-m+2.当且仅当x=-m时,等号成立.h(x)max=-2-m+2,-2-m+2=-4m=-9.(理)(2011黑龙江哈六中期末)已知函数f(x)=lnx+2x,g(x)=a(x2+x).(1)若a=12,求F(x)=f(x)-g(x)的单调区间;(2)当a1时,求证:f(x)g(x).[解析](1)a=12,F(x)=lnx+2x-12(x2+x)(x0)F(x)=1x-x+32=2-2x2+3x2x=-?2x+1??x-2?2x,∵x0,当0F(x)的增区间为(0,2),减区间为(2,+).(2)令h(x)=f(x)-g(x)(x0)则由h(x)=f(x)-g(x)=1x+2-2ax-a=-?2x+1??ax-1?x=0,解得x=1a,∵h(x)在0,1a上增,在1a,+上减,当x=1a时,h(x)有最大值h1a=ln1a+2a-a1a2+1a=ln1a+1a-1,∵a1,ln1a0,1a-10,h(x)h1a0,所以f(x)g(x).19.(本小题满分12分)(文)(2011厦门期末)已知数列{an}是公差不为零的等差数列,a1=1,且a1,a2,a4成等比数列.(1)求通项an;(2)令bn=an+2an,求数列{bn}的前n项和Sn.[解析](1)设数列{an}的公关差为d,则d0,∵a1,a2,a4成等比数列,a22=a1a4,(a1+d)2=a1(a1+3d),整理得:a1=d,又a1=1,d=1,an=a1+(n-1)d=1+(n-1)1=n.即数列{an}的通项公式为an=n.(2)由(1)可得bn=an+2an=n+2n,Sn=b1+b2+b3++bn=(1+21)+(2+22)+(3+23)++(n+2n)=(1+2+3++n)+(21+22+23++2n)=n?n+1?2+2?1-2n?1-2=n?n+1?2+2(2n-1)=2n+1+12n2+12n-2.故数列{bn}的前n项和为Sn=2n+1+12n2+12n-2.(理)(2011河北冀州期末)设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列{Sn}是公差为d的等差数列.(1)求数列{an}的通项公式(用n,d表示);(2)设c为实数,对满足m+n=3k且mn的任意正整数m,n,k,不等式Sm+SncSk都成立,求c的最大值.[解析](1)由题意知:d0,Sn=S1+(n-1)d=a1+(n-1)d2a2=a1+a33a2=S33(S2-S1)=S3,3[(a1+d)2-a1]2=(a1+2d)2,化简得:a1-2a1d+d2=0,a1=d,a1=d2Sn=d+(n-1)d=nd,Sn=n2d2,当n2时,an=Sn-Sn-1=n2d2-(n-1)2d2=(2n-1)d2,适合n=1的情形. 故an=(2n-1)d2.(2)Sm+SncSkm2d2+n2d2ck2d2m2+n2ck2,c又m+n=3k且mn,2(m2+n2)(m+n)2=9k2m2+n2k292,故c92,即c的最大值为92.20.(本小题满分12分)(2011山西太原调研)已知椭圆方程为x2a2+y2b2=1(ab0),它的一个顶点为M(0,1),离心率e=63.(1)求椭圆的方程;(2)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为32,求△AOB的面积的最大值.[解析](1)依题意得b=1e=ca=a2-b2a=63解得a=3,b=1,椭圆的方程为x23+y2=1.(2)①当ABx轴时,|AB|=3,②当AB与x轴不垂直时,设直线AB的方程为y=kx+m,A(x1,y1),B(x2,y2),由已知|m|1+k2=32得,m2=34(k2+1),把y=kx+m代入椭圆方程整理得,(3k2+1)x2+6kmx+3m2-3=0,x1+x2=-6km3k2+1,x1x2=3?m2-1?3k2+1.当k0时,|AB|2=(1+k2)(x2-x1)2=(1+k2)36k2m2?3k2+1?2-12?m2-1?3k2+1=12?1+k2??3k2+1-m2??3k2+1?2=3?k2+1??9k2+1??3k2+1?2=3+12k29k4+6k2+1=3+129k2+1k2+63+1223+6=4.当且仅当9k2=1k2,即k=33时等号成立,此时|AB|=2.当k=0时,|AB|=3.综上所述:|AB|max=2,此时△AOB面积取最大值S=12|AB|max32=32.21.(本小题满分12分)(文)一个多面体的三视图及直观图如图所示,M、N分别是A1B、B1C1的中点.(1)求证:MN∥平面ACC1A1;(2)求证:MN平面A1BC.[证明]由题意,这个几何体是直三棱柱,且ACBC,AC=BC=CC1.(1)由直三棱柱的性质知,四边形ABB1A1为矩形,对角线交点M又∵N为B1C1的中点,△AB1C1中,MN∥AC1.又∵AC1平面ACC1A1,MN平面ACC1A1.MN∥平面ACC1A1.(2)∵直三棱柱ABC-A1B1C1中,平面ACC1A1平面ABC,交线为AC,又ACBC,BC平面ACC1A1,又∵AC1平面ACC1A1,BCAC1.在正方形ACC1A1中,AC1A1C.又BCA1C=C,AC1平面A1BC,∵MN∥AC1,MN平面A1BC.[点评]将几何体的三视图与线面平行垂直的位置关系判断融合在一起是立体几何新的命题方向.解答这类问题首先要通过其三视图确定几何体的形状和主要几何量,然后利用几何体的性质进行推理或计算.请再练习下题:已知四棱锥P-ABCD的三视图如图,E是侧棱PC上的动点.(1)求四棱锥P-ABCD的体积;(2)若点F在线段BD上,且DF=3BF,则当PEEC等于多少时,有EF∥平面PAB?并证明你的结论;(3)试证明P、A、B、C、D五个点在同一球面上.[解析](1)由四棱锥的三视图可知,四棱锥P-ABCD的底面是边长侧棱PC底面ABCD,且PC=2.VP-ABCD=13S正方形ABCDPC=23.(2)当PEEC=13时,有EF∥平面PAB.连结CF延长交AB于G,连结PG,在正方形ABCD中,DF=3BF. 由△BFG∽△DFC得,GFFC=BFDF=13.在△PCG中,PEEC=13=GFFC,EF∥PG.又PG平面PAB,EF平面PAB,EF∥平面PAB.(3)证明:取PA的中点O.在四棱锥P-ABCD中,侧棱PC平面ABCD,底面ABCD为正方形,可知△PCA、△PBA、△PDA均是直角三角形,又O为PA中点,OA=OP=OB=OC=OD.点P、A、B、C、D在以点O为球心的球面上.(理)(2011湖南长沙一中期末)如图,在矩形ABCD中,AB=5,BC=3,沿对角线BD把△ABD折起,使A移到A1点,过点A1作A1O平面BCD,垂足O恰好落在CD上.(1)求证:BCA1D;(2)求直线A1B与平面BCD所成角的正弦值.[解析](1)因为A1O平面BCD,BC平面BCD,BCA1O,因为BCCD,A1OCD=O,BC平面A1CD.因为A1D平面A1CD,BCA1D.(2)连结BO,则A1BO是直线A1B与平面BCD所成的角.因为A1DBC,A1DA1B,A1BBC=B,A1D平面A1BC,∵A1C平面A1BC,A1DA1C.在Rt△DA1C中,A1D=3,CD=5,A1C=4.根据S△A1CD=12A1DA1C=12A1OCD,得到A1O=125,在Rt△A1OB中,sinA1BO=A1OA1B=1255=1225.所以直线A1B与平面BCD所成角的正弦值为1225.选做题(22至24题选做一题)22.(本小题满分12分)几何证明选讲(2011北京学普教育中心联考)如图,A、B是两圆的交点,AC是小圆的直径,D和E分别是CA和CB的延长线与大圆的交点,已知AC=4,BE=10,且BC=AD,求DE的长.[解析]设CB=AD=x,则由割线定理得:CACD=CBCE,即4(4+x)=x(x+10)化简得x2+6x-16=0,解得x=2或x=-8(舍去)即CD=6,CE=12.因为CA为直径,所以CBA=90,即ABE=90,则由圆的内接四边形对角互补,得D=90,则CD2+DE2=CE2,62+DE2=122,DE=63.23.(本小题满分12分)极坐标与参数方程(2011辽宁省实验中学期末)已知直线l经过点P12,1,倾斜角=6,圆C的极坐标方程为=2cos-4.(1)写出直线l的参数方程,并把圆C的方程化为直角坐标方程;(2)设l与圆C相交于两点A、B,求点P到A、B两点的距离之积. [解析](1)直线l的参数方程为x=12+tcos6y=1+tsin6即x=12+32ty=1+12t(t为参数)由=2cos-4得=cos+sin,所以2=cos+sin,∵2=x2+y2,cos=x,sin=y,x-122+y-122=12.(2)把x=12+32ty=1+12t代入x-122+y-122=12得t2+12t-14=0,|PA||PB|=|t1t2|=14.故点P到点A、B两点的距离之积为14.24.(本小题满分12分)不等式选讲(2011大连市联考)已知函数f(x)=|x-2|,g(x)=-|x+3|+m.(1)解关于x的不等式f(x)+a-10(aR);(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围. [解析](1)不等式f(x)+a-10,即|x-2|+a-10,当a=1时,解集为x2,即(-,2)(2,+);当a1时,解集为全体实数R;当a1时,∵|x-2|1-a,x-21-a或x-2故解集为(-,a+1)(3-a,+).(2)f(x)的图象恒在函数g(x)图象的上方,即为|x-2|-|x+3|+m对任意实数x恒成立,即|x-2|+|x+3|m恒成立.又对任意实数x恒有|x-2|+|x+3||(x-2)-(x+3)|=5,于是得m5,即m的取值范围是(-,5).为大家带来了2017年高考数学第一轮复习测试题含答案,高考数学复习对大家来说很重要,希望大家能够下功夫复习好数学这一科目,从而在高考中取得好的数学成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017届高三第一轮复习专题训练之极值点偏移问题
什么是极值点偏移 我们知道二次函数f(x)的顶点就是极值点0x ,若f(x)=c 的两根的
中点为
221x x +,则刚好有2
2
1x x +=0x ,即极值点在两根的正中间,也就是极值点没有偏移;而函数x e x x g =)(的极值点0x =1刚好在两根的中点2
2
1x x +的左边,我们称之为极值点左偏
.
例1. 已知函数()x f x e x =-,其中 2.71828
e =为自然对数的底数.证明:
当12x x ≠,且12()()f x f x =时,120x x +<.
解:()x f x e x =-的定义域为(,)-∞+∞,'()1x f x e =-,由'()10x f x e =-=,
解得0x =.当x 变化时,'
()f x ,()f x 变化情况如下表:
∵12x x ≠,且12()()f x f x =,则120x x <<(不妨设12x x <).设函数
1()()()()2,0x x x x F x f x f x e x e x e x x e -=--=--+=-
-<.∴'1()2x
x
F x e e =+-.∵
当0x <时,01x e <<,∴1
2x x e e
+>.∴当0x <时,'()0F x >.∴函数()F x 在(,0)-∞上单调递增.
∴()(0)0F x F <=,即当0x <时,()()f x f x <-.∵10x <,∴11()()f x f x <-.又
12()()f x f x =,∴21()()f x f x <-.∵()f x 在(0,)+∞上单调递增,20x <,且10x <-,
又21()()f x f x <-, ∴21x x <-.∴120x x +<
反思:本题中极值点0a =,120x x +<即122.x x a +<有如下判断极值点偏移的定理:
例2

解:
运用判定定理判定极值点偏移的方法为:
口诀为:极值偏离对称轴,构造函数觅行踪;四个步骤环相
扣,两次单调紧跟随。

例3. 已知函数)()(R x xe x f x ∈=-.(1)求函数f(x)的单调区间和极值;(2)若
1x ≠2x ,且f(1x )=f(2x ),证明:1x +2x >2.
例4.已知函数2()ln f x x x
=+, 若1x ≠2x ,且f(1x )=f(2x ),证明:1x +2x >4.



例5.已知函数()()()
2
21x
f x x e a x =-+-有两个零点.设12,x x 是()f x 的两个零
点,证明:122x x +<.
解:不妨设12x x <由题意知()()120f x f x ==.要证不等式成立,只需证当
121x x <<时,原不等式成立即可.令()()()11F x f x f x =--+,则
()()'11x x F x x e e -+=-,当0x >时,()'0F x <. ()()00F x F ∴<=.即
()()11f x f x -<+.令11x x =-,

(
)()()()()()
(
)
2
1
1
1
1
11112f x f x f
x f x
f =
=--<+
-=-
,即
()()212f x f x <-.而()21,21,x x -∈+∞,且()f x 在()1+∞,上递增,故212x x <-,即122x x +<.。

相关文档
最新文档