人教A版师大附中2019-2020学年上学期高一年级期中考试数学试卷(含答案)

合集下载

2019~2020学年度学年度湖南师范大学附属中学高一第1学期期中数学试题及参考答案解析

2019~2020学年度学年度湖南师范大学附属中学高一第1学期期中数学试题及参考答案解析

2019~2020学年度湖南师范大学附属中学高一第一学期期中数学试题一、单选题1.已知集合{}*|21,A x x x N =-≤∈,则集合A 的真子集个数是( )A.3B.6C.7D.8【试题答案】C【试题解答】先确定集合A 中元素个数,进而可得出结果.因为{}{}{}**|21,3,1,2,3A x x x Nx x x N =-≤∈=≤∈=,共含有3个元素,因此其真子集个数为3217-=. 故选:C本题主要考查求集合真子集的个数,熟记求真子集个数的公式即可,属于基础题型. 2.如图所示,阴影部分表示的集合是( )A.B∩[∁U (A ∪C)]B.(A ∪B)∪(B ∪C)C.(A ∪C)∩(∁U B)D.[∁U (A∩C )]∪B【试题答案】A【试题解答】由韦恩图可以看出,阴影部分中的元素满足“不是A 的元素或C 的元素,且是B 的元素”,由韦恩图与集合之间的关系易得答案.由已知中阴影部分所表示的集合元素满足不是A 的元素或C 的元素,且是B 的元素 即不是A 并C 的元素,且是B 的元素,即是A 并C 的补集的元素,且是B 的元素, 故阴影部分所表示的集合是B∩[∁U (A ∪C)], 故选:A.本题考查的知识点是集合的交集,并集,补集及其运算,属于基础题.3.函数()22xf x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A.()1,3 B.()1,2C.()0,3D.()0,2【试题答案】C【试题解答】由题意得()()f 1f 20<,解不等式可得实数a 的取值范围.由条件可知()()()()f 1f 2?22a 41a 0=<----,即a(a -3)<0, 解得0<a<3. 故选C.本题考查利函数零点存在性定理的应用,解题的关键是根据函数在给定的区间两端点处的函数值异号得到不等式,考查应用能力和计算能力,属于容易题. 4.函数1()ln(1)f x x =+( )A.[3,3]-B.(1,0)(0,3]-UC.[3,0)(0,3]-UD.(1,3]-【试题答案】B【试题解答】求函数y 的定义域,首先分母不等于0,再根据对数函数和根号有意义的条件进行求解.1()ln(1)f x x =++,要使函数有意义,x 应满足2101190x x x +>⎧⎪+≠⎨⎪-≥⎩解得10x -<<或03x <≤,故函数的定义域为:(1,0)(0,3]-U , 故选:B.此题主要考查函数的定义域及其求法,注意二次根号有意义的条件及分母不能为0. 5.下列幂函数中,既是奇函数,又在区间(),0-∞上为减函数的是( ) A.12y x = B.13y x = C.23y x = D.13y x -=【试题答案】D【试题解答】根据奇函数的概念,以及幂函数的单调性,逐项判断,即可得出结果.A 选项,函数12y x =的定义域为()0,∞+,因此不是奇函数,排除A ;B 选项,函数13y x =的定义域为R ,且1133()-=-x x ,因此13y x =是奇函数;又103>,根据幂函数的单调性,所以函数13y x =在()0,∞+上单调递增,又其为奇函数,所以13y x =在(),0-∞上也单调递增;排除B ;C 选项,函数23y x =的定义域为R ,且2233()x x =-,所以函数23y x =是偶函数,排除C ; D 选项,函数13y x -=的定义域为()(),00,-∞⋃+∞,1133()---=-x x ,所以函数13y x -=是奇函数,又103-<,根据幂函数单调性,所以13y x -=在()0,∞+是减函数,根据奇函数的性质可得13y x -=在(),0-∞也是减函数;D 正确; 故选:D本题主要考查判断函数奇偶性与单调性,熟记函数奇偶性的概念,以及幂函数的单调性即可,属于常考题型.6.已知()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩是R 上的单调递减函数,则实数a 的取值范围是( )A.(),2-∞B.13,8⎛⎤-∞ ⎥⎝⎦C.()2,+∞D.13,28⎡⎫⎪⎢⎣⎭【试题答案】B【试题解答】根据函数恒减,得到()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩,求解即可得出结果.因为()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩是R 上的单调递减函数,所以()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩,即2138a a <⎧⎪⎨≤⎪⎩,所以138a ≤. 故选:B本题主要考查由分段函数的单调性求参数,解决此类问题的关键在于注意每一部分的单调性,以及结点位置的取值情况即可,属于常考题型.7.函数()2e e x xf x x--=的图像大致为 ( ) A. B.C. D.【试题答案】B【试题解答】分析:通过研究函数奇偶性以及单调性,确定函数图像.20,()()()x xe e xf x f x f x x --≠-==-∴Q 为奇函数,舍去A, 1(1)0f e e -=->∴Q 舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x---+---++=='∴>'>Q , 所以舍去C ;因此选B.:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.8.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则函数(1)f x +的反函数的图象可能是( )A. B. C.D.【试题答案】D【试题解答】试题分析:函数1()2xf x ⎛⎫= ⎪⎝⎭的图像恒过(0,1)点,函数(1)f x +的图像恒过(-1,1),则其反函数的图像恒过(1,-1)而选项A 恒过(0,0),选项B 恒过(2,0),选项C 恒过(1,0),故排除;所以正确选项为D1、函数图像的平移;2、反函数的性质.9.函数()f x 是定义在R 上的奇函数,且()10f -=,若对于任意()12,,0x x ∈-∞,且12x x ≠时,都有()()1122120x f x x f x x x -<-成立,则不等式()0f x <的解集为( )A.()(),11,-∞+∞UB.()()1,00,1-UC.()(),10,1-∞-⋃D.()()1,01,-⋃+∞【试题答案】C【试题解答】先令()()F x xf x =,根据函数()f x 是定义在R 上的奇函数,结合函数奇偶性的定义,判断()F x 是偶函数;根据题意,再判断()F x 在(),0-∞上是单调递减,在()0,∞+上是单调递增,由()10f -=,得到()()110-==F F ;根据函数单调性,分类讨论,即可求出结果;令()()F x xf x =,因为函数()f x 是定义在R 上的奇函数,所以()()f x f x =--,则()()()()F x xf x xf x F x -=--==,所以()F x 是偶函数,因为任意()12,,0x x ∈-∞,且12x x ≠时,都有()()1122120x f x x f x x x -<-成立,所以()F x 在(),0-∞上是单调递减,在()0,∞+上是单调递增, 又因为()10f -=,所以()()()1101F f F -=--==. 当1x <-时,()()10F x F >-=,因为0x <,∴()0f x <;因为当10x -<<时,()()10F x F <-=,因为0x <,所以()0f x >; 当01x <<时,()()10F x F <=,因为0x >,所以()0f x <; 当1x >时,()()10F x F >=,因为0x >,所以()0f x >. 所以不等式()0f x <的解集为()(),10,1-∞-⋃. 故选:C本题主要考查由函数单调性与奇偶性解不等式,熟记函数单调性与奇偶性的概念即可,属于常考题型.10.已知函数()11f x x =--,若关于x 的方程()()20f x af x +=有n 个不同的实根,则n 的值不可能为( ) A.3B.4C.5D.6【试题答案】A【试题解答】先作出函数()11f x x =--的图像,根据()()20fx af x +=得()0f x =或()f x a =-,原方程根的个数,转化为函数()f x 与x 轴以及直线y a =-交点个数;结合函数图像,即可得出结果.因为函数()2,22,1211,01,0x x x x f x x x x x x -≥⎧⎪-≤<⎪=--=⎨≤<⎪⎪-<⎩, 作出()f x 的图像如下: 由()()20fx af x +=得:()0f x =或()f x a =-,所以方程()()20f x af x +=的解的个数,即为函数()f x 与x 轴以及直线y a =-交点个数,由图像可得:()f x 与x 轴有2个交点,①当0a -<,即0a >时,函数()f x 与直线y a =-无交点,故原方程共2个解; ②当0a -=,即0a =时,原方程可化为()0f x =,故原方程共2个解;③当01a <-<,即10a -<<时,函数()f x 与直线y a =-有4个交点,故原方程共6个解;④当1a -=,即1a =-时,函数()f x 与直线y a =-有3个交点,故原方程共5个解; ⑤当1a ->,即1a <-时,函数()f x 与直线y a =-有2个交点,故原方程共4个解; 综上,原方程解的个数可能为2,4,5,6. 故选A本题主要考查方程根的个数的判定,灵活运用转化与化归的思想,根据数形结合的方法即可求解,属于常考题型.11.已知定义域为D 的函数()f x ,若对任意x D ∈,存在正数M ,都有()f x M ≤成立,则称函数()f x 是定义域D 上的有界函数.已知下列几个函数:①()25243f x x x =-+;②()21f x x =-()34x f x x+=-;④()13xf x =-.其中有界函数的个数是( ) A.1B.2C.3D.4【试题答案】B【试题解答】根据函数的性质,分别求出函数值域,结合题中条件,逐项判断,即可得出结果.①()22552432(1)1==-+-+f x x x x ,因为22(1)11-+≥x , 所以()2552(1)1=≤-+f x x ,又()2502(1)1=>-+f x x , 所以()(]0,5∈f x ;因此()5f x ≤,满足题意;①正确;②()f x =所以()1=f x ,满足题意;②正确; ③()374711444++-===-+≠----x x f x x x x,即()()(),11,∈-∞-⋃+∞f x , 因此()1f x ≥,不满足题意;③错;④因为30x >,所以()131=-<xf x ,不满足题意,④错;故选:B本题主要考查函数的值域,熟记求函数值域的方法即可,属于常考题型.二、填空题12.化简2011log 5310.06428-+⎛⎫+-+ ⎪⎝⎭的结果为________. 【试题答案】272【试题解答】根据对数运算,以及指数幂运算法则,直接计算,即可得出结果.()2201131log 5log 103315270.06420.41211822⎛⎫-⨯-+ ⎪⎝⎭⎛⎫+-+=++=+=⎪⎝⎭. 故答案为:272本题主要考查指数幂与对数的化简求值,熟记运算法则即可,属于基础题型. 13.已知函数()()120,1x x af x a a a ++-=>≠为偶函数,则a =________.【试题答案】12【试题解答】根据题意,先确定函数定义域,再由函数为偶函数,得()()22f f -=,求出12a =,代入原函数检验,即可得出结果.由题意,函数()()120,1x x af x aa a ++-=>≠的定义域为R ,因为函数()f x 为偶函数,所以()()22f f -=,即21222122-++--++-=a a a a , 即122322++=+-a a ,即1=-a a ,解得:12a =, 所以当12a =时,()1112++-⎛⎫= ⎪⎝⎭x x f x ,定义域是R ;且()()11111122-++--++-⎛⎫⎛⎫-=== ⎪ ⎪⎝⎭⎝⎭x x x x f x f x , 因此满足()f x 为偶函数;即12a =满足题意; 故答案为:12本题主要考查由函数奇偶性求参数,熟记函数奇偶性的概念即可,属于常考题型. 14.设2535a ⎛⎫= ⎪⎝⎭,3525b ⎛⎫= ⎪⎝⎭,2525c ⎛⎫= ⎪⎝⎭,则用“<”连接a ,b ,c 为________.【试题答案】a c b >>【试题解答】先令()25x f x ⎛⎫= ⎪⎝⎭,根据指数函数单调性,得到()25xf x ⎛⎫= ⎪⎝⎭为减函数,推出c b >,再比较a ,c ,由20533122a c ⎛⎫⎛⎫=>= ⎪ ⎪⎝⎭⎝⎭,即可得出结果.令()25x f x ⎛⎫= ⎪⎝⎭,∵2015<<,∴()25xf x ⎛⎫= ⎪⎝⎭为减函数, 又2355<,所以23552255⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即c b >;又20533122a c ⎛⎫⎛⎫=>= ⎪ ⎪⎝⎭⎝⎭,所以a c >,综上,可得a c b >>; 故答案为:a c b >>本题主要考查比较指数幂的大小,熟记指数函数单调性即可,属于常考题型.15.设a ,b ,c 为实数,()()()2f x x a x bx c =+++,()()()211g x ax cx bx =+++,记集合(){}|0,S x f x x R ==∈,(){}|0,T x g x x R ==∈,若S ,T 分别为集合S ,T 的元素个数,则下列结论可能成立的是________.①1S =,0T =;②1S =,1T =;③2S =,2T =;④2S =,3T =. 【试题答案】①②③【试题解答】①根据0T =,得到方程()()()2110=+++=g x ax cx bx 无实根,推出0a =,240b c -<或0a b c ===;再由此判断()0f x =根的个数,即可判断①;②取2040a b c ≠⎧⎨-<⎩,分别判断()0f x =,()0g x =根的个数,即可判断②;③取20040a cbc ≠⎧⎪≠⎨⎪-=⎩分别判断()0f x =,()0g x =根的个数,即可判断③;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,由此求()0f x =根的个数,即可判断④.①当0T =时,方程()()()2110=+++=g x ax cx bx 无实根,所以0a =,240b c -<或0a b c ===;当0a b c ===时,()3f x x =,由()0f x =得0x =,此时1S =;当0a =,240b c -<时,()()2=++f x x x bx c ,由()0f x =得0x =,此时1S =;故①成立; ②当2040a b c ≠⎧⎨-<⎩时,由()()()20=+++=f x x a x bx c 得x a =-,即1S =;由()()()2110=+++=g x ax cx bx 得1x a=-;即1T =;存在②成立;③当20040a cbc ≠⎧⎪≠⎨⎪-=⎩时,由()()()20=+++=f x x a x bx c 得x a =-或2b x =-;由()()()2110=+++=g x ax cx bx 得 1x a =-或2=-x b;只需2b a ≠,即可满足2S =,2T =;故存在③成立;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,设0x 为()0g x =的一个根,则00x ≠,且200001111f a b c x x x x ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()03010g x x ==,故01x 为方程()0f x =的根.此时()0f x =有三个根,即3T =时,必有3S =,故不可能是2S =,3T =;④错;故答案为:①②③本题主要考查方程根的个数与集合的综合,会判断方程根的个数即可,属于常考题型.三、解答题16.下列命题中错误的个数为( ) ①()11221x f x =+-的图像关于()0,0对称; ②()31f x x x =++的图像关于()0,1对称; ③()211f x x =-的图像关于直线0x =对称. A.1B.2C.3D.0【试题答案】D【试题解答】根据函数奇偶性的定义,先判断()11221x f x =+-为奇函数,即可得出①正确;令3()=+g x x x ,先判断其为奇函数,再由()31()1=++=+f x x x g x ,即可得出②正确;根据偶函数的定义,直接判断()211f x x =-为偶函数,即可得出③正确;从而可确定结果.①因为()11221x f x =+-,由210x -≠得,定义域为()(),00,-∞⋃+∞, 所以()1112221212--=+=+--xx xf x , 因此()111212()1022121221-+-=+++=+=---x xx xx f x f x , 所以()()f x f x -=-;即函数()11221x f x =+-是奇函数,关于()0,0对称;①正确; ②令3()=+g x x x ,定义域为R ,又3()()-=--=-g x x x g x ,所以函数3()=+g x x x 是奇函数,关于()0,0对称,又()31()1=++=+f x x x g x ,所以其图像关于点()0,1对称;②正确;③因为()211f x x =-,由210x -≠得定义域为:()()(),11,11,-∞-⋃-⋃+∞, 所以()()211-==-f x f x x ,因此函数()211f x x =-为偶函数,其图像关于直线0x =对称;③正确. 故选:D本题主要考查根据函数奇偶性判断函数的对称问题,熟记函数奇偶性的概念即可,属于常考题型.17.已知集合A x y ⎧⎫==⎨⎩,{}1|3x B y y -==. (Ⅰ)求A B I ;(Ⅱ)若{}|40M x mx =+<且()A B M ⊆I ,求实数m 的取值范围. 【试题答案】(Ⅰ)()1,A B =+∞I (Ⅱ)4m ≤-【试题解答】(Ⅰ)先化简集合A B 、,再求交集,即可得出结果;(Ⅱ)先由()A B M ⊆I ,得()1,+∞⊆M ,列出不等式求解,即可得出结果.(Ⅰ)由A x y ⎧⎫==⎨⎩,{}1|3x B y y -==, 得()1,A =+∞,()0,B =+∞, 所以()1,A B =+∞I ;(Ⅱ)由()A B M ⊆I ,得()1,+∞⊆M ,所以041m m<⎧⎪⎨-≤⎪⎩,解得4m ≤-.本题主要考查求集合的交集,以及由集合的包含关系求参数,熟记交集的概念,以及集合的包含关系即可,属于常考题型.18.设()f x 是定义在R 上的奇函数,且当0x >时,()2f x x =.(Ⅰ)求函数()f x 的解析式;(Ⅱ)若对任意的[],2x a a ∈+,不等式()()2f x a f x +≥恒成立,求实数a 的取值范围.【试题答案】(Ⅰ)()22,0,0x x f x x x ⎧≥=⎨-<⎩(Ⅱ))+∞ 【试题解答】(Ⅰ)先由函数奇偶性得()00f =;再设0x <,则0x ->,根据已知函数解析式,结合奇函数的性质,即可求出结果; (Ⅱ)先由题意,将不等式化为())f x a f +≥,再由函数单调性,得到x a +≥,推出)1a x ≥,求出)max1⎡⎤⎣⎦x ,即可得出结果.(Ⅰ)由题意知,()00f =.设0x <,则0x ->,故()()22f x x x -=-=, 又因为()f x 是奇函数,故()()2f x f x x =--=-,所以()22,0,0x x f x x x ⎧≥=⎨-<⎩. (Ⅱ)由)222x =,不等式()()2f x a f x +≥,等价于())f x a f+≥,因为()22,0,0x x f x x x ⎧≥=⎨-<⎩,所以其在R 上是增函数,∴x a +≥,即)1a x ≥,∵[],2x a a ∈+,∴当2x a =+时,)())max121x a ⎡⎤=+⎣⎦,得a ≥故实数a的取值范围是)+∞.本题主要考查由函数奇偶性求函数解析式,由不等式恒成立求参数范围,熟记函数奇偶性与单调性的概念即可,属于常考题型. 19.设()121log 1axf x x -=-为奇函数,a 为常数. (Ⅰ)求a 的值;(Ⅱ)证明:确定()f x 在区间()1,+∞内的单调性;(Ⅲ)设[]3,4A =,()1|2xB x f x m ⎧⎫⎪⎪⎛⎫=>+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,且A B ⊆,求实数m 的取值范围.【试题答案】(Ⅰ)1a =-(Ⅱ)证明见解析 (Ⅲ)9,8⎛⎫-∞-⎪⎝⎭【试题解答】(Ⅰ)根据函数为奇函数,得到112211log log 11+-=----ax axx x ,推出()()()()1111ax ax x x +-=-+-,从而可求出结果;(Ⅱ)先由(Ⅰ)得()112212log log 111x f x x x +⎛⎫==+ ⎪--⎝⎭(1x >或1x <-),记()211u x x =+-,定义法证明()u x 在()1,+∞上的单调性,再由复合函数单调性的判定方法,即可证明结论成立;(Ⅲ)先设()1211log 12xx g x x +⎛⎫=- ⎪-⎝⎭,根据(Ⅱ)的结果,以及指数函数单调性,判定()g x 在[]3,4上为增函数.再由题意,得到()g x m >对[]3,4x ∈恒成立,只需()min m g x <,即可得出结果.(Ⅰ)∵()121log 1axf x x -=-为奇函数,所以()()f x f x -=-, ∴111222111log log log 111ax ax x x x ax +--=-=----.∴1111ax x x ax+-=---,即()()()()1111ax ax x x +-=-+-恒成立, ∴1a =-.(Ⅱ)由(Ⅰ)可知()112212log log 111x f x x x +⎛⎫==+ ⎪--⎝⎭(1x >或1x <-). 记()211u x x =+-, 任取121x x <<,则()()()()()211212122221111--=-=----x x u x u x x x x x , 因为121x x <<,所以110x ->,210x ->,210x x ->, 因此()()()()()2112122011--=>--x x u x u x x x ,即()()12u x u x >,所以()u x 在()1,+∞上为减函数, 又函数12log y x =是减函数,∴()121log 1x f x x +=-在()1,+∞上为增函数. (Ⅲ)设()1211log 12xx g x x +⎛⎫=- ⎪-⎝⎭.由于()121log 1x f x x +=-在()1,+∞上为增函数且12xy ⎛⎫= ⎪⎝⎭是R 上的减函数, 所以()g x 在[]3,4上为增函数.∵A B ⊆,[]3,4A =,所以()g x m >对[]3,4x ∈恒成立, ∴()()min 938m g x g <==-. 故m 的取值范围是9,8⎛⎫-∞- ⎪⎝⎭.本题主要考查由函数奇偶性求参数,根据单调性的定义判断复合函数单调性,由集合的包含关系求参数,熟记奇偶性与单调性的概念,以及集合间的基本关系即可,属于常考题型. 20.设二次函数()()2,,f x ax bx c a b c R =++∈满足下列条件:①当x ∈R 时,()f x 的最小值为0,且图像关于直线1x =-对称;②当()0,5x ∈时,()211x f x x ≤≤-+恒成立.(Ⅰ)求()f x 的解析式;(Ⅱ)若()f x 在区间[]1,m m -上恒有()214x f x -≤,求实数m 的取值范围. 【试题答案】(Ⅰ)()()2114f x x =+(Ⅱ)33,22⎡⎤-⎢⎥⎣⎦【试题解答】(Ⅰ)先在②中令1x =,得到()11f =,根据题意,设二次函数为()()()210f x a x a =+>,由()11f =,求出14a =,即可得出结果; (Ⅱ)先由(Ⅰ)得到()211424-=+x f x x ,由()214x f x -≤解得5322x -≤≤,再由题意,得到[]531,,22⎡⎤-⊆-⎢⎥⎣⎦m m ,进而可求出结果.(Ⅰ)在②中令1x =,有()111f ≤≤,故()11f =.当x ∈R 时,()f x 的最小值为0且二次函数关于直线1x =-对称, 故设此二次函数为()()()210f x a x a =+>.∵()11f =,∴14a =. ∴()()2114f x x =+. (Ⅱ)由(Ⅰ)可得:()()222111144424x x f x x x -=+-=+,因此,由()214x f x -≤即11124x +≤,得5322x -≤≤; ∵()f x 在区间[]1,m m -上恒有()214x f x -≤, 所以只需[]531,,22⎡⎤-⊆-⎢⎥⎣⎦m m ,∴51232m m ⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得3322m -≤≤,∴实数m 的取值范围为33,22⎡⎤-⎢⎥⎣⎦.本题主要考查求二次函数的解析式,以及由不等式恒成立求参数,熟记二次函数的性质,绝对值不等式的解法,以及集合的包含关系即可,属于常考题型.21.对于在区间[],p q 上有意义的两个函数()f x 和()g x ,如果对于任意的[],x p q ∈,都有()()1f x g x -≤,则称()f x 与()g x 在区间[],p q 上是“接近”的两个函数,否则称它们在[],p q 上是“非接近”的两个函数.现有两个函数()()log 3a f x x a =-,()1log ag x x a=-(0a >,且1a ≠),给定一个区间[]2,3a a ++.(Ⅰ)若()f x 与()g x 在区间[]2,3a a ++都有意义,求实数a 的取值范围; (Ⅱ)讨论()f x 与()g x 在区间[]2,3a a ++上是否是“接近”的两个函数. 【试题答案】(Ⅰ)01a <<.(Ⅱ)见解析【试题解答】(Ⅰ)先由题意,求使()f x 与()g x 有意义的x 的范围;根据()f x 与()g x 在[]2,3a a ++上有意义,得到23a a +>,从而可求出结果;(Ⅱ)先由题意,得到()()()()log 3a f x g x x a x a -=--⎡⎤⎣⎦,令()()1f x g x -≤, 得到()()1log 31a x a x a -≤--≤⎡⎤⎣⎦,根据(Ⅰ)中范围,得到[]2,3a a ++在直线2x a =的右侧,设()()()log 3a h x x a x a =--⎡⎤⎣⎦,判断其在[]2,3a a ++上为减函数,求出最大值与最小值,列出不等式求解,即可得出结果.(Ⅰ)要使()f x 与()g x 有意义,则有3010x a x a->⎧⎪⎨>⎪-⎩,又0a >且1a ≠,所以3x a >;要使()f x 与()g x 在[]2,3a a ++上有意义,则3x a >对[]2,3x a a ∈++恒成立, 所以23a a +>,又因为0a >,故01a <<;(Ⅱ)由题意,()()()()log 3a f x g x x a x a -=--⎡⎤⎣⎦, 令()()1f x g x -≤,得()()1log 31a x a x a -≤--≤⎡⎤⎣⎦.(*)因为01a <<,所以[]2,3a a ++在直线2x a =的右侧. 设()()()log 3a h x x a x a =--⎡⎤⎣⎦,则()()()log 3a h x x a x a =--⎡⎤⎣⎦在[]2,3a a ++上为减函数.所以()()()min 3log 96a h x h a a =+=-,()()()max 2log 44a h x h a a =+=-.于是()()log 441log 96101a a a a a ⎧-≤⎪-≥-⎨⎪<<⎩,∴9012a <≤.所以当a ⎛∈ ⎝⎦时,()f x 与()g x 是接近的;当957,1a ⎛⎫-∈ ⎪ ⎪⎝⎭时是非接近的.本题主要考查由函数有意义求参数的范围,以及由绝对值不等式恒成立求参数范围,熟记具体函数定义域的求法,绝对值不等式的解法,会根据函数单调性求函数值域即可,属于常考题型.22.如图,某油田计划在铁路线CD 一侧建造两家炼油厂A 、B ,同时在铁路线上建一个车站Q ,用来运送成品油.先从车站出发铺设一段垂直于铁道方向的公共输油管线QP ,再从P 分叉,分别向两个炼油厂铺设管线PA 、PB .图中各小写字母表示的距离(单位:千米)分别为5a =,8b =,15l =.设所有管线的铺设费用均为每千米7.2万元,公共输油管线长为k km ,总的输油管道长度为s km .(Ⅰ)若0k =,请确定车站Q 的位置,使得总的输油管道长度为s 最小,此时输油管线铺设费用是多少?(Ⅱ)请问从降低输油管线铺设费用的角度出发,是否需要铺设公用管线.如果需要请给出能够降低费用管线铺设方案(精度为0.1千米). (参考数据22251319.85+=22251219.21+=22251118.60+=,22251018.03+=2225917.49+=2225817.00+=2225716.55+=,2225616.16+=2225515.81+=2225415.52+=2225315.30+=.)【试题答案】(Ⅰ) 5.77=CQ km ,输油管线铺设费用为142.92万元(Ⅱ)需要, 见详解. 【试题解答】(Ⅰ)当0k =时,Q 在CD 上,作A 关于CD 的对称点A ',连A B ',则它与CD 交于点Q ,连QA 、QB ,根据图形可得,此时输油管道的总长度为()22'==++s A B l a b =+CQ al a b推出=+a CQ l a b ,代入数据,即可得出结果; (Ⅱ)设公用的输油管线将沿垂直于铁道方向铺设k km .在CD 的A 一侧作一条与之平行、相距为k 的直线EF ,作A 关于EF 的对称点'A ,连'A B ,则它与EF 交于点P ,这点是分叉点.由它向两个炼油厂铺设的输油管道的总长度为()()22l a k b k +-+-⎡⎤⎣⎦,这是在确定k 的前提下最短的.以C 为原点,铁路线为x 轴建立直角坐标系.得到()()()222225132=++-+-=++-⎡⎤⎣⎦s k l a k b k k k ,分别取不同的k 值,计算s ,比较大小,进而可确定大致区间,从而可确定结果.(Ⅰ)当0k =时,Q 在CD 上,作A 关于CD 的对称点A ',连A B ',则它与CD 交于点Q ,连QA 、QB , 由它向两个炼油厂铺设的输油管道的总长度为()22'=+==++s QA QB A B l a b ,这是最短的,此时=+CQ al a b,所以=+a CQ l a b . 将数据代入,得22251319.85s km =+=,57515 5.771313=⨯==CQ km , 输油管线铺设费用是7.27.219.85142.92s =⨯=万元.(Ⅱ)设公用的输油管线将沿垂直于铁道方向铺设k km .在CD 的A 一侧作一条与之平行、相距为k 的直线EF ,作A 关于EF 的对称点'A ,连'A B , 则它与EF 交于点P ,这点是分叉点.()()22l a k b k +-+-⎡⎤⎣⎦这是在确定k 的前提下最短的.以C 为原点,铁路线为x 轴建立直角坐标系.则可以得到,在这种情况下最短的管道铺设的总长度应为()()22s k l a k b k =++-+-⎡⎤⎣⎦.三条管道交叉点的坐标为(),P x k ,()()a kx l a k b k -=-+-.0k =相当于不铺设公用管道的情形.将数据代入上式有()2225132s k k =++-,515132kx k-=⨯-.对于不同的k ,分别计算管道的铺设长度得k0 1 1.5 2 2.5 3 4 5 s19.85 19.60 19.53 19.49 19.50 19.55 19.81 20.30 x5.775.455.255.004.694.293.000.00由数据可知,最短铺设长度值在()19.53,19.50内,这个区间长度小于0.1千米的精度,于是,不妨取2k =,此时铺设管道的总长度为19.49,铺设费用为19.497.2140.328⨯=万元,比较不铺设公用管道所花的费用19.857.2142.92⨯=万元要节省2.592万元.这时三条管道交叉点位于()5,2处.本题主要考查函数模型的综合应用,以及直线的应用,根据对称的方法求动点到两定点的距离的和即可,属于常考题型.。

2019-2020学年云南师大附中高一(上)期中数学试卷 (含答案解析)

2019-2020学年云南师大附中高一(上)期中数学试卷 (含答案解析)

2019-2020学年云南师大附中高一(上)期中数学试卷一、选择题(本大题共12小题,共60.0分)1.设全集U={x∈N|−1<x<5},集合A={1,3},则集合C U A的子集的个数是()A. 16B. 8C. 7D. 42.若函数f(x)在区间[m,n]上为增函数,则f(x)在[m,n]上()A. 只有一个零点B. 至少有一个零点C. 至多有一个零点D. 没有零点3.若集合A={x|3−2x<1},B={x|4x−3x2≥0},则A∩B=()] C. [0,1) D. (1,+∞)A. (1,2]B. (1,434.函数f(x)=log2|2x−1|的图象大致是()A. B.C. D.5.函数的单调减区间为()A. (0,1]B. (0,2)C. (1,2)D. [0,2]6.函数f(x)=√2x−1的值域为()A. [−1,+∞)B. (−∞,−1]C. (−1,−∞)D. [0,+∞)7.若函数f(x)的定义域为(1,2),则f(x2)的定义域为()A. {x|1<x<4}B. {x|1<x<√2}C. {x|−√2<x<−1或1<x<√2}D. {x|1<x<2}8.若对,有g(m+n)=g(m)+g(n)−3,求f(x)=x√1−x2+g(x)的最大值与最小值之x2+1和是()A. 4B. 6C. 8D. 109.己知a=log0.22.1,b=0.22.1,c=2.10.2,则()A. c<b<aB. c<a<bC. a<b<cD. a<c<b10.若函数f(x)是偶函数,在[0,+∞)上是增函数,且f(−3)=0,则不等式f(x)<0的解集为()A. (−∞,−3)B. [0,3)C. (−3,3)D. (−3,0]11. 已知关于x 的方程|2x 3−8x|+mx =4有且仅有2个实数根,则实数m 的取值范围为( )。

2019-2020学年北京师大附中上高一(上)期中数学试卷 (含答案解析)

2019-2020学年北京师大附中上高一(上)期中数学试卷 (含答案解析)

2019-2020学年北京师大附中上高一(上)期中数学试卷一、选择题(本大题共10小题,共40.0分)1. 已知集合A ={3,4,5,6},B ={6},则A ∩B =( )A. {3,4,5,6}B. {3,4,5}C. {5}D. {6}2. 若b <0<a ,d <c <0,则( )A. bd <acB. ac >bdC. a +c >b +dD. a −c >b −d3. 函数f(x)=13ax 3+12ax 2−2ax +2a +1的图像经过四个象限的一个充分但不必要条件是( )A. −43<a <−13B. −1<a <−12C. −65<a <−316 D. −2<a <04. 函数f(x)=ln(2x −1)−1x+2的零点所在的大致区间是( )A. (12,1)B. (1,2)C. (2,3)D. (3,4)5. 已知函数f (x )=(14)x−4x ,则f (x )( )A. 是奇函数,且在R 上是增函数B. 是偶函数,且在R 上是增函数C. 是奇函数,且在R 上是减函数D. 是偶函数,且在R 上是减函数6. 已知a =815,b =335,c =925,则( )A. a <b <cB. a <c <bC. c <a <bD. b <a <c7. 若函数f(x)={(3−a)x −3, x ≤7a x−6, x >7单调递增,则实数a 的取值范围是( )A. (94,3)B. [94,3)C. (1,3)D. (2,3)8. 函数f(x)=x+1|x+1|log a |x|(0<a <1)的图象的大致形状是( )A.B.C.D.9. 已知函数f(x)是定义在R 上的奇函数,当x <0时,f(x)=log 2(−x)+m ,f(12)=√2,则实数m =( )A. √22B. −√22C. √2+1D. −√2+110. 已知函数f(x)=log 2x ,g(x)=2x +a ,若存在x 1,x 2∈[12,2],使得f(x 1)=g(x 2),则a 的取值范围是( )A. [−5,0]B. (−∞,−5]∪[0,+∞)C. (−5,0)D. (−∞,−5)∪(0,+∞)二、填空题(本大题共6小题,共30.0分) 11. 函数的定义域是________.12. 函数f(x)=2x+2,(x ≥1)的值域为______;13. 已知函数f(x)=log 2(x 2+a),若f(2)=0,则a =______. 14. 设函数满足f(a)=−3,则f(6−a)=________.15. 设f(x)是定义在R 上的单调递减函数,能说明“一定存在x 0∈R ,使得f(x 0)<1”为假命题的一个函数是f(x)= .16. 已知函数f(x)满足f(x −1)=x 2−x +1,则f(2)=__________. 三、解答题(本大题共6小题,共72.0分) 17. 计算(1)(278) −23−(499)0.5+(0.008) −23×225;(2)lg25+23lg8+lg5⋅lg20+(lg2)2.18. 已知全集U =R,集合A ={x|x 2−4x ≤0},B ={x |x 2−(2m +2)x +m 2+2m ≤0}.(Ⅰ)若m =3,求∁U B ;(Ⅱ)若A ∪B =A ,则求实数m 的取值范围.19.已知函数f(x)(x∈R)是奇函数,且当x>0时,f(x)=2x−1,(1)求函数f(x)的表达式(2)求不等式f(x)>−1的解集220.已知函数f(x)=1.x2(1)判断函数f(x)的奇偶性,并说明理由;(2)用函数单调性的定义证明函数f(x)在(0,+∞)上是减函数.21.已知函数f(x)=−x2+2ex+m−1,g(x)=x+e2(x>0).x(1)证明函数g(x)在[e,+∞)上单调递增;(2)确定m的取值范围,使得关于x的方程g(x)−f(x)=0有两个相异实数根.22.已知函数f(x)对实数x∈R满足f(x)+f(−x)=0,f(x−1)=f(x+1),若当x∈[0,1)时,f(x)=)=1−√2.a x+b(a>0,a≠1),f(32(1)求x∈[−1,1]时,f(x)的解析式;(2)求方程f(x)−|log4x|=0的实数解的个数.-------- 答案与解析 --------1.答案:D解析:【分析】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.直接利用交集运算得答案.【解答】解:因为A={3,4,5,6},B={6},所以A∩B={6}.故选D.2.答案:C解析:bd>0>ac,ac <0<bd,a+c>c>d>b+d,a−c>0,b−d大小不确定,因此选C.3.答案:B解析:【分析】本题主要考查充分条件和必要条件的判断,结合函数的导数,研究函数的极值是解决本题的关键.据选择项只要判断当a<0时的函数的导数,研究函数的极值,结合函数的图象特点进行求解即可【解答】解:根据选择项只要判断当a<0时,即可,函数的导数f′(x)=ax2+ax−2a=a(x−1)(x+2).若a<0,当x<−2或x>1,f′(x)<0,当−2<x<1,f′(x)>0,即当x=−2时,函数取得极小值,当x=1时函数取得极大值,要使函数f(x)=13ax3+12ax2−2ax+2a+1的图象经过四个象限,则有f(−2)<0,且f(1)>0,∴−65<a<−316,即函数的图象经过四个象限的充要条件为−65<a<−316,则对应的充分但不必要条件为(−65,−316)的真子集, 则−1<a <−12满足条件,故选:B .4.答案:B解析: 【分析】本题考查函数零点的定义以及函数零点判定定理的应用,属于基础题.由题意可知函数在(12,+∞)单调递增且连续,f(1)⋅f(2)<0,由根的存在性定理可求. 【解答】解:函数f(x)=ln(2x −1)−1x+2在区间(12,+∞)上为增函数,且连续, 因为f (1)=ln1−13=−13<0,f (2)=ln3−14=ln3−ln √e 4>0, 即f(1)⋅f(2)<0,所以函数零点所在的大致区间是(1,2). 故选B .5.答案:C解析: 【分析】本题考查了函数的奇偶性,函数的单调性及指数函数的性质,属于基础题.由已知得f(−x)=−f(x),即函数f(x)为奇函数,由函数y =4x 为增函数,y =(14)x 为减函数,结合“减”−“增”=“减”可得答案. 【解答】解:∵f(x)=(14)x −4x =4−x −4x , ∴f(−x)=4x −4−x =−f(x), 即函数f(x)为奇函数,又由函数y =4x 为增函数,y =(14)x 为减函数, 故函数f (x )=(14)x−4x 为减函数.故选C .6.答案:A解析:【分析】本题考察对指数函数和幂函数单调性的理解,属于基础题∵a =815=235,b =335,c =925=345,又y =x 35和y =3x在第一象限内是增函数,所以a <b ,b <c ,即a <b <c .7.答案:B解析: 【分析】本题考查函数的单调性,分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题. 根据题意可得3−a >0且a >1,且两段函数在衔接点x =7处的函数值大小的比较,可得结果. 【解答】解:∵函数f(x)={(3−a)x −3, x ≤7a x−6, x >7单调递增,可得3−a >0且a >1.但应当注意两段函数在衔接点x =7处的函数值大小的比较, 即(3−a)×7−3≤a ,可以解得a ≥94, 综上,实数a 的取值范围是.故选B .8.答案:C解析: 【分析】本题主要考查函数图象的应用,涉及分段函数,以及函数的单调性,属于基础题. 函数f (x )去绝对值,写成分段函数的形式,判断函数的单调性,可得出答案. 【解答】解:因为f(x)=x+1|x+1|log a |x|={−log a (−x) ,x <−1 ,log a (−x) ,−1<x <0 ,log a x ,x >0.由于0<a <1,当x <−1时,y =−log a (−x )为减函数,当−1<x <0时,y =log a (−x )为增函数, 当x >0时,y =log a x 为减函数,当x =1时,y =0.所以只有C 正确. 故选C .9.答案:D解析: 【分析】本题主要考查函数的性质,利用函数的奇偶性求函数值,属于基础题.【解答】解:函数f(x)是定义在R上的奇函数,当x<0时,f(x)=log2(−x)+m,,解得m=−√2+1.故选D.10.答案:A解析:【分析】本题主要考查函数与方程的应用,属于基础题,根据条件求出两个函数的值域,结合集合元素关系进行求解是解决本题的关键.根据条件求出两个函数的值域,结合若存在x1,x2∈[12, 2],使得f(x1)=g(x2),等价为两个集合有公共元素,然后根据集合关系进行求解即可.【解答】解:当12≤x≤2时,log212≤f(x)≤log22,即−1≤f(x)≤1,则f(x)的值域为[−1,1],当12≤x≤2时,2×12+a≤g(x)≤4+a,即1+a≤g(x)≤4+a,则g(x)的值域为[1+a,4+a],若存在x1,x2∈[12, 2],使得f(x1)=g(x2),则[1+a,4+a]∩[−1,1]≠⌀,若[1+a,4+a]∩[−1,1]=⌀,则1+a>1或4+a<−1,得a>0或a<−5,则当或[1+a,4+a]∩[−1,1]≠⌀时,−5≤a≤0,即实数a的取值范围是[−5,0],故选A.11.答案:(−1,1)∪(1,+∞)解析:【分析】本题考查函数定义域的求法,函数定义域就是使解析式有意义的x的集合,属基础题.【解答】解:要使解析式有意义,需满足: {x +1>01−x ≠0, 解得:x >−1且x ≠1, 所以定义域为(−1,1)∪(1,+∞). 故答案为(−1,1)∪(1,+∞).12.答案:(0,23]解析:解:∵函数f(x)=2x+2,(x ≥1)是减函数, f(1)=21+2=23, ∴函数f(x)=2x+2,(x ≥1)的值域为(0,23]. 故答案为:(0,23].由函数f(x)=2x+2,(x ≥1)是减函数,能求出函数f(x)=2x+2,(x ≥1)的值域.本题考查函数的值域的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.13.答案:−3解析: 【分析】本题考查函数值的应用,以及对数的运算,属于基础题. 【解答】解:函数f(x)=log 2(x 2+a),f(2)=0,则,∴4+a =1, ∴a =−3. 故答案为−3.14.答案:−114解析:【分析】本题考查了利用分段函数的解析式求自变量值以及函数值的应用问题,是基础题目. 根据函数f(x)的解析式,求出a 的值,再求f(6−a)的值. 【解答】解:当a ≤2时,f(a)=2a−2−3=−3,无解; 当a >2时,f(a)=−log 2(a +2)=−3得:a =6, ∴f(6−a)=f(0)=2−2−3=−114,故答案为−114.15.答案:(12)x +1(答案不唯一)解析:【分析】本题考查存在量词和特称命题的定义以及应用,涉及函数的单调性,属于基础题. 根据题意,分析可得举出一个一个值域大于等于1的减函数即可,据此分析可得答案. 【解答】因为“一定存在x 0∈R ,使得f(x 0)<1”为假命题, 所以“∀x ∈R ,f(x)≥1”为真命题. 又f(x)是定义在R 上的单调递减函数, 故可设f(x)=(12)x +1(答案不唯一). 故答案为(12)x +1(答案不唯一).16.答案:7解析:∵f(x −1)=x 2−x +1,∴令x −1=2,解得x =3,∴f(2)=32−3+1=7.故答案为:7.17.答案:解:(1)原式=(32)3×(−23)−(73)2×0.5+(0.2)3×(−23)×225=49−73+25×225=19,(2)原式=2lg5+2lg2+lg5⋅(2lg2+lg5)+(lg2)2=2+(lg5)2+2lg2lg5+(lg2)2=2+1=3.解析:(1)根据指数幂的运算性质即可求出, (2)根据对数的运算性质即可求出.本题考查了指数幂的运算性质和对数的运算性质,属于基础题.18.答案:解:(Ⅰ)由题意,若m =3,则B ={x|x 2−(2m +2)x +m 2+2m ⩽0}={x|x 2−8x +15⩽0}, 可得,所以∁U B ={x|x <3或x >5}.(Ⅱ)可得,若A ∪B =A ,则B ⊆A ,则{m ≥0m +2≤4, 解得0≤m ≤2.解析:本题考查了集合的补集运算,集合关系中的参数取值问题,属于中档题.(Ⅰ)当m =3时,可解得,即可得B 的补集;(Ⅱ)由题意,可得{m ≥0m +2≤4,即可求解.19.答案:解:(1)根据题意,函数f(x)(x ∈R)是奇函数,则f(0)=0,当x <0时,−x >0,则f(−x)=2(−x)−1=−2x −1,又由函数f(x)为奇函数,则f(x)=−f(−x)=2x +1,则f(x)={2x −1,x >00,x =02x +1,x <0;(2)根据题意,f(x)={2x −1,x >00,x =02x +1,x <0,当x >0时,f(x)=2x −1,此时f(x)>−12即2x −1>−12,解可得x >14,此时不等式的解集为{x|x >14},当x =0时,f(0)=0,f(x)>−12成立;此时不等式的解集为{0},当x <0时,f(x)=2x +1,此时f(x)>−12即2x +1>−12,解可得x >−34,此时不等式的解集为{x|−34<x <0}, 综合可得:不等式f(x)>−12的解集{x|−34<x ≤0或x >14}.解析:本题考查函数的奇偶性的性质以及应用,关键是求出函数的解析式.(1)根据题意,由奇函数的性质分析可得f(0)=0,结合函数的奇偶性以及解析式可得当x <0时f(x)的解析式,综合即可得答案;(2)根据题意,由函数的解析式分3种情况讨论,当x >0时,f(x)=2x −1,此时f(x)>−12即2x −1>−12,当x =0时,f(0)=0,f(x)>−12成立;当x <0时,f(x)=2x +1,此时f(x)>−12即2x +1>−12,分别求出3种情况下不等式的解集,综合即可得答案.20.答案:解:(1)函数的定义域{x|x≠0},则f(−x)=1(−x)2=1x2=f(x),则函数f(x)是偶函数,(2)当x>0时,设0<x1<x2,则f(x1)−f(x2)=1x12−1x22=x22−x12x12x22=(x1+x2)(x2−x1)x12x22,∵0<x1<x2,∴0<x1+x2,x2−x1>0,则f(x1)−f(x2)=(x1+x2)(x2−x1)x12x22>0,则f(x1)>f(x2),即函数f(x)在(0,+∞)上是减函数.解析:本题主要考查函数奇偶性和单调性的判断,利用函数奇偶性和单调性的定义是解决本题的关键.(1)根据函数奇偶性的定义进行证明即可;(2)根据函数单调性的定义进行证明即可.21.答案:(1)证明:任取x1,x2∈[e,+∞),且x1<x2,则g(x2)−g(x1)=(x2+e2x2)−(x1+e2x1)=(e2x2−e2x1)+(x2−x1)=e2(x1−x2)x1x2−(x1−x2)=(x1−x2)(e2−x2x1)x1x2,∵x1,x2∈[e,+∞),且x1<x2,∴x1−x2<0,x1x2>e2,即e2−x1x2<0,∴g(x2)−g(x1)>0,即g(x2)>g(x1),∴函数g(x)在上单调递增;(2)解:∵f(x)=−x2+2ex+m−1=−(x−e)2+m−1+e2,∴函数f(x)的图象开口向下,对称轴为x=e,值域为(−∞,e2+m−1],当且仅当x=e时,f(x)取得最大值为e2+m−1,∵函数g(x)是对勾函数,在(0,e]上单调递减,在[e,+∞)上单调递增,∴g(x)的值域为[2e,+∞),当且仅当x=e时,g(x)取得最小值为2e,∵g(x)−f(x)=0有两个相异实数根,等价于函数y =g (x )和y =f (x )的图象有两个不同的交点,因为两个函数在同一点分别取到最大值和最小值,原问题等价于g (x )min <f (x )max ,即2e <e 2+m −1,解得m ∈(−e 2+2e +1,+∞),∴m 的取值范围为(−e 2+2e +1,+∞).解析:本题考查函数的单调性与单调区间、函数的最值、函数的零点与方程根的关系,属于较难题.(1)利用定义法直接证明即可;(2)求出函数y =g (x )和y =f (x )的最值,把问题转化为g (x )min <f (x )max ,即可求出结果.22.答案:(1)f(x)={1−2−x ,x ∈(−1,0],x =±12x −1,x ∈[0,1) (2)3解析:(1)∵f (x )+f (−x )=0∴f (0)=0,即b =−1,∵f (x −1)=f (x +1),f (32)=1−√2,∴f (32)=f (−12)=−f (12)=1−√a =1−√2,∴a =2,当x ∈[0,1)时,f (x )=2x −1.∴当x ∈(−1,0]时,−x ∈[0,1)∴f (−x )=2−x −1,∴f (x )=−f (−x )=1−2−x .∵f (x )+f (−x )=0,f (x −1)=f (x +1)∴f (1)=f (−1)=0,∴f(x)={1−2−x ,x ∈(−1,0],x =±12x −1,x ∈[0,1).(2)∵f (x )+f (−x )=0,f (x −1)=f (x +1)∴f (x +2)=f (x )∴f (x )是奇函数,且以2为周期.方程f(x)−|log 4x |=0的实数解的个数也就是函数y =f (x )和y =|log 4x |的交点的个数.在同一直角坐标系中作出这两个函数的图像,由图像得交点个数为3,所以方程f(x)−|log 4x |=0的实数解的个数为3.。

北京师大附中2019-2020学年高一数学上学期期末考试新人教A版

北京师大附中2019-2020学年高一数学上学期期末考试新人教A版

北京师大附中2019—2020学年度第一学期期末考试高一数学试卷第Ⅰ卷(模块卷)说明:1.本试卷分第I 卷(模块卷,100分)和第II 卷(综合卷,50分)两部分,共150分,考试时间120分钟.2.请将答案填写在答题纸上,考试结束后,监考人员只将答题纸收回.一、 选择题(4'×10=40分):在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填写在答题纸上.1.角α的终边上有一点)2,1(-,则αsin = ( )A.55-B.552-C.55D.552 2.已知1sin ,tan 03αα= <,则cos α的值是 ( )(A ) 13-(B )13(C ) 3-(D )33.已知向量a =(3,4),b =(sin α,cos α),且a //b ,则tan α= ( )(A )43 (B)-43 (C)34 (D) -344.如果奇函数)(x f 在区间[3,7]上是增函数且最大值为5,那么)(x f 在区间]3,7[--上是( )A. 增函数且最小值是5-B.增函数且最大值是5-C. 减函数且最大值是5-D.减函数且最小值是5- 5.已知函数)5sin(3π+=x y 的图像为C ,为了得到函数)5sin(3π-=x y 的图像,只需把C 上所有的点( )A .向左平行移动5π个单位; B .向右平行移动5π个单位 C .向左平行移动52π个单位 D .向右平行移动52π个单位6.已知扇形的周长是6cm ,面积是2cm 2,则扇形的中心角的弧度数是 ( )A.1B.1或4;C.4D.2或4 7.函数sin()(0)62y x x ππ=+≤≤的值域是 ( )A.[1,1]-B. 1[,1]2C. 1[2D. 8.如图,□ABCD 中,=,=,则下列结论中正确的是 ( )(A )AB +BD =a -b (B )BC +AC =b (C )BD =a +b(D )AD -BA =a +b9.下列说法:①若0,a b a c a b c ⋅=⋅≠=且则 ②若0,0,0a b a b ⋅===则或 ③△ABC 中,若AB BC 0⋅>,则△ABC 是锐角三角形 ④△ABC 中,若AB BC 0⋅=,则△ABC 是直角三角形其中正确的个数是 ( ) (A )0 (B ) 1 (C ) 2 (D ) 3 10.函数x x f sin )(2=对于R x ∈,都有)()()(21x f x f x f ≤≤,则21x x -的最小值为( ) A .4π B . 2πC . πD . π2 二、填空题(4'×5=20分):请将答案填在答题纸上.11.设向量a 与b的夹角为θ,且)3,3(=a ,)2,1(b ,则=θcos ______.12.函数⎩⎨⎧->-≤+=)1(,)1(,2)(2x x x x x f ,则((2))f f -= ;()3,f x =则x= ___. 13.已知向量a =(2,0), b =(1,)x ,且a 、b 的夹角为3π,则x =_______. 14.(1)计算:16cos()3π-=___________________; (2)已知1sin 2α=,]2,0[πα∈,则=α___________ 15.已知52cos()3sin()22tan 2,4sin(2)9cos()x x x x x ππππ--+= =-++则_________.北京师大附中2019——2020学年度第一学期期末考试高 一 数 学 试 卷(答题纸)班级_______ 姓名_______ 学号_______ 成绩_______二、填空题11.______________________________ 12.______________;________________ 13.______________________________ 14._______________;_______________ 15.______________________________三、解答题16. 已知向量b a ,满足:||1,||2||7a b a b = ==,-.(1)求|2|;a b -(2)若(2)a b ka b +⊥)(-,求实数k 的值.17. 已知函数m x x f ++=)42sin(2)(π的图象经过点,24π⎛⎫⎪⎝⎭. (Ⅰ)求实数的m 值;(Ⅱ)求函数()f x 的最大值及此时x 的值的集合; (III )求函数()f x 的单调区间.18. 已知函数()sin(3)(0,(,),0f x A x A x ϕϕπ=+>∈-∞+∞<<在12x π=时取得最大值4.(1) 求()f x 的最小正周期; (2) 求()f x 的解析式; (3) 若f (23α +12π)=125,求cos2α.北京师大附中2019——2020学年度第一学期期末考试高 一 数 学 试 卷第II 卷(综合卷)班级_______ 姓名_______ 学号_______一、填空题(5'×2=10分)1.函数]65,3[,3sin 2cos )(2ππ∈++=x x x x f 的最小值是_________.2.已知集合{}2log 2,(,)A x x B a =≤=-∞,若A B ⊆,则实数a 的取值范围是 .二、解答题(共40分)3.在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1)。

2019-2020学年北京市首师大附中高一(上)期中数学试卷(含答案解析)

2019-2020学年北京市首师大附中高一(上)期中数学试卷(含答案解析)

2019-2020学年北京市首师大附中高一(上)期中数学试卷一、选择题(本大题共10小题,共30.0分) 1. 已知集合,,则A ∩B 为( )A. B.C.D.2. 设0<a <b ,则下列不等式中正确的是( )A. a <b <√ab <a+b 2B. a <√ab <a+b 2<bC. a <√ab <b <a+b 2D. √ab <a <a+b 2<b3. 下列函数中,为奇函数的是( )A. y =2x +12x B. y =x ,x ∈{0,1}C. y =x ⋅sinxD. y ={1,x <00,x =0−1,x >04. 已知条件p:(x −m)(x −m −3)>0;条件若p 是q 的必要不充分条件,则实数m 的取值范围是( )A. (−∞,−7)∪(1,+∞)B. (−∞,−7]∪[1,+∞)C. (−7,1)D. [−7,1]5. 把函数y =1x 的图象向右平移1个单位,再向上平移1个单位后,所得函数的图象是( )A.B.C.D.6. 关于x 的方程x 2+mx +1=0有两个不相等的正实根,则实数m 的取值范围是 ( )A. m <−2B. m <0C. m <1D. m >07. 把集合{x|x 2−4x −5=0}用列举法表示为( )A. {x =−1,x =5}B. {x|x =−1或x =5}C. {x 2−4x −5=0}D. {−1,5} 8. 设集合M ={x|x ≤2√3},a =√11+b ,其中b ∈(0,1),则下列关系中正确的是( )A. a ⫋MB. a ∉MC. {a}∈MD. {a}⫋M9. 下列不等式:①a 2+1>2a ;√ab ≤2;③x 2+1x +1≥1,其中正确的个数是( )A. 0B. 1C. 2D. 310. 已知不等式m −1<x <m +1成立的充分条件是13<x <12,则实数m 的取值范围是( )A. (−∞,−12)∪(43,+∞) B. (−∞,−12)∪[43,+∞) C. (−12,43)D. [−12,43]二、填空题(本大题共10小题,共30.0分)11. 若集合M ={x|x 2+x −6=0},N ={x|ax +1=0},且N ⊆M ,则由a 的可取值组成的集合为________.12. 已知函数f(x)={xlnx −2x,x >0,x 2+32x,x ≤0,函数g(x)=f(x)−kx +1有四个零点,则实数k 的取值范围是______.13. f(x)={cos π4x,x <0f(x −2),x ≥0,则f(2017)=______.14. 不等式ax 2+bx +c >0的解集是{x|−3<x <2},则ab+c = . 15. 给出下列四个结论:①函数f(x)=√2−x 2为奇函数;②函数y =2 √x 的值域是(1,+∞); ③函数y =1x 在定义域内是减函数;④若函数f(2x )的定义域为[1,2],则函数y =f (x2)的定义域为[4,8]. 其中正确结论的序号是________.(填上所有正确结论的序号)16. 有15人进家电超市,其中有8人买了电视,有7人买了电脑,两种均买了的有2人,则这两种都没买的有__________人17. 已知函数f(x)={(a +1)x −1,x ≥112ax 2−ax −1,x <1在(−∞,+∞)上单调递增,则a 的取值范围是________.18. 若P =√a +7−√a +6,Q =√a +10−√a +3(a ≥0),则P ,Q 的大小关系是________. 19. 已知集合U ={1,2,3,4,5},A ={1,3},B ={2,3},则A⋂(∁U B)= ________ . 20. 若正实数a ,b 满足2a +b =1,则1a +12b 的最小值为_________.三、解答题(本大题共12小题,共60.0分)21.已知全集U=R,集合A={x|−1≤x<2},B={x|(x−2)(x−k)≥0}.(1)若k=1,求A∩∁U B;(2)若A∩B=⌀,求实数k的取值范围.22.已知函数y=f(x)(x>0)满足:f(xy)=f(x)+f(y),当x<1时,f(x)>0,且f(12)=1;(1)证明:y=f(x)是定义域上的减函数;(2)解不等式f(x−3)>f(1x)−2.23.(1)已知x>0,y>0,1x +2y+1=2,求2x+y的最小值.(2)已知a>0,b>0,a+b=1,比较8−1a 与1b+1ab的大小,并说明理由.24.已知不等式ax2+bx+c>0的解集为{x|α0,β>0},求不等式cx2+bx+a<0的解集.25.(1)求函数y=x2+8x−1(x>1)的最小值.(2)求函数y=x2+2021x+4042x+2的值域.26.(1)已知,求4a+1+a的最小值;(2)已知,且2a+b=1,求1a +1b的最小值.27.(1)若x,y>0,且2x+8y−xy=0,求x+y的最小值;(2)若−4<x<1,求x2−2x+22x−2的最大值.28. (1)已知x >1,y =x +1x−1,求函数的最小值;(2)已知a >0,b >0,函数f(x)=alog 2x +b 的图象经过点(4,12),求1a +2b 的最小值.29. 求下列不等式的解集:(1)−x 2+4x +5<0; (2)2x−13x+1>0.30. (1)设x,y 是正实数,且1x +9y =1,求x +y 的最小值.(2)已知x <54,求函数y =4x −2+14x−5的最大值.31.已知关于x的不等式ax2−3x+2>0(a∈R).(1)若ax2−3x+2>0在区间[1 , 3]上恒成立,求a的取值范围;(2)求不等式ax2−3x+2>5−ax的解集.32.已知关于的一元二次方程x2−(m+1)x+(2m−1)=0.(1)若x=4是方程的一个实数根,求方程的另一个实数根;(2)若该方程有两个不相等的实数根x1,x2,且1x12+1x22=3,求实数m的值;(3)若m=0,求x3−1x3的值.-------- 答案与解析 --------1.答案:A解析:【分析】本题考查集合的交集运算,属于基础题.根据交集的定义即可求解.【解答】解:因为集合,,所以,故选A.2.答案:B解析:【分析】本题考查不等式性质的运用,属于基础题.因为0<a<b,作差得到a−√ab=√a(√a−√b)<0,得到a<√ab;b−a+b2=b−a2>0,得到b>a+b 2;由基本不等式得到a+b2>√ab,从而得到大小关系.【解答】解:因为0<a<b,所以a−√ab=√a(√a−√b)<0,故a<√ab;因为b−a+b2=b−a2>0,所以b>a+b2;由基本不等式知a+b2>√ab,综上所述,a<√ab<a+b2<b,故选B.3.答案:D解析:解:A.设f(x)=2x+12x=2x+2−x,则f(−x)=f(x)为偶函数.B.定义域关于原点不对称,∴函数为非奇非偶函数函数.C.y=xsinx为偶函数.D .满足f(0)=0,且f(−x)=−f(x),∴函数为奇函数. 故选:D .根据函数奇偶性的定义进行判断.本题主要考查函数奇偶性的判断,根据奇偶性的定义和常见函数的奇偶性的性质是解决本题的关键,比较基础.4.答案:B解析: 【分析】分别解出p ,q 的不等式,根据p 是q 的必要不充分条件,即可得出.本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题. 【解答】解:条件p :(x −m)(x −m −3)>0;解得:m +3<x ,或x <m . 条件q :x 2+3x −4<0.解得−4<x <1,∵p 是q 的必要不充分条件,∴1≤m ,或m +3≤−4,解得m ≥1或m ≤−7. 则实数m 的取值范围是(−∞,−7]∪[1,+∞). 故选:B .5.答案:A解析: 【分析】本题考查函数图象的平移规律和平移的方法,体现了数形结合的数学思想.把函数y =1x 的图象先经过左右平移得到y =1x−1的图象,再经过上下平移得到y =1x−1+1的图象. 【解答】解:将函数y =1x 的图象向右平移1个单位,得到y =1x−1的图象, 再把y =1x−1的图象向上平移一个单位,即得到y =1x−1+1的图象, 图象关于点(1,1)对称,当x =0时,y =0, 故选项A 的图象符合, 故选A .6.答案:A解析:【分析】本题考查一元二次方程解的问题,属于基础题.方程x2+mx+1=0有两个不相等的正实根,则解得m的取值范围即可.【解答】解:方程x2+mx+1=0有两个不相等的正实根,则解得m<−2.故选A.7.答案:D解析:解:根据题意,解x2−4x−5=0可得x=−1或5,用列举法表示可得{−1,5};故选:D.根据题意,解x2−4x−5=0可得x=−1或5,即可得{x|x2−4x−5=0}={−1,5},即可得答案.本题考查集合的表示法,注意正确求解一元二次方程.8.答案:D解析:【分析】本题考查元素与集合的关系,属基础题.由,所以a∉M.【解答】解:判断一个元素是否属于某个集合,关键是看这个元素是否具有这个集合中元素的特征,若具有就是,否则不是.,∴a∈M,故{a}⫋M.故选D.9.答案:B解析:【分析】本题考查基本不等式,属于基础题.利用基本不等式逐项分析判断即可.【解答】解:①a =1时,a 2+1>2a 不成立,①错误; ②a >0,b >0时,√ab≥√ab √ab =2,当且仅当a =b 时取等号,故②错误;③x 2+1x 2+1=(x 2+1)+1x 2+1−1≥2−1=1,当且仅当x =0时,等号成立,③正确;因此正确的个数是1. 故选B .10.答案:D解析:由题意可知m −1≤13且12≤m +1,解得m ∈[−12,43].11.答案:{0,−12,13}解析: 【分析】本题考查集合关系中参数取值问题,集合M ={x|x 2+x −6=0},分别解出集合M 最简单的形式,然后再根据N ⊆M ,求出k 的值,属基础题. 【解答】解:∵集合M ={x|x 2+x −6=0},∴集合M ={2,−3}, ∵N ⊆M ,N ={x|ax +1=0},∴有N =Φ或N ={2}或N ={−3}三种情况, 当N =Φ时,可得a =0,此时N =Φ;当N ={2}时,∵N ={x|ax +1=0},∴a =−12; 当N ={−3}时,a =13,∴a 的可能取值组成的集合为{0,−12,13}, 故答案为{0,−12,13}.12.答案:(−1,−12)解析: 【分析】本题考查了函数的性质的判断与应用,同时考查了学生的作图能力及数形结合的思想应用,属于难题.根据函数与方程的关系,利用参数分离法转化为两个函数的交点个数问题,利用数形结合进行求解即可.解:∵函数f(x)={xlnx −2x,x >0,x 2+32x,x ≤0,函数g(x)=f(x)−kx +1有四个零点,∴令g(x)=0,则f (x )−kx +1=0,即f (x )=kx −1, 对于f (x )=xlnx −2x (x >0),f ′(x )=lnx −1, 当0<x <e 时,f ′(x )<0,f (x )单调递减, 当x >e 时,f ′(x )>0,f (x )单调递增, 易知直线y =kx −1恒过点A(0,−1),如图,设直线AC 与y =xlnx −2x 相切于点C(x 0,x 0lnx 0−2x 0), 又y ′=lnx −1,所以直线AC 的方程为y −(x 0lnx 0−2x 0)=(lnx 0−1)(x −x 0), 直线AC 经过A(0,−1),所以x 0=1,此时k AC =ln1−1=−1,设直线AB 与y =x 2+32x (x ≤0)相切于点B(x,x 2+32x),y ′=2x +32, 故2x +32=x 2+32x+1x−0,解得,所以k AB =2×(−1)+32=−12, 所以若要f (x )=kx −1有四个零点,结合函数图象,可得实数k 的取值范围是(−1,−12), 故答案为(−1,−12).13.答案:√22解析: 【分析】本题考查的知识点是函数求值,分段函数的应用,函数的周期性的应用,难度不大,属于基础题. 由已知中f(x)={cos π4x,x <0f(x −2),x ≥0,得到函数的周期,将x =2017代入可得答案.解:∵f(x)={cosπ4x,x<0f(x−2),x≥0,x≥0时,函数是周期函数,周期为2,∴f(2017)=f(2015)=f(2013)=⋯=f(1)=f(−1)=cos(−π4)=√22,故答案为:√22.14.答案:−15解析:【分析】本题考查了一元二次不等式的解法、一元二次方程的根与系数的关系,属于基础题.关于x的不等式ax2+bx+c>0的解集为{x|−3<x<2},可得−3,2是一元二次方程ax2+bx+c=0的两个实数根,且a<0,再利用根与系数的关系即可得出.【解答】解:∵关于x的不等式ax2+bx+c>0的解集为{x|−3<x<2},∴−3,2是一元二次方程ax2+bx+c=0的两个实数根,且a<0,∴{−3+2=−ba −3×2=ca,即ba =1,ca=−6.则b+ca =ba+ca=1−6=−5,∴ab+c =−15.故答案为−15.15.答案:①④解析:【分析】本题考查函数的奇偶性、函数的定义域值域、函数的单调性,根据条件逐项判断真假即可,属中档题.【解答】解:①由2−x2>0,得−√2<x<√2,则函数f(x)的定义域为(−√2,√2),所以函数f(x)=√2−x2=√2−x2,则f(−x)=√2−x 2=−f(x),所以函数f(x)为奇函数,故①正确; ②y =2√x ≥20=1,即函数的值域是[1,+∞),故②错误; ③函数y =1x 在定义域内不是单调函数,故③错误;④若函数f(2x)的定义域为[1,2],则1≤x ≤2,则2≤2x ≤4,即函数f(x)的定义域为[2,4], 由2≤x2≤4,得4≤x ≤8,即函数y =f (x2)的定义域为[4,8],故④正确. 故答案为①④.16.答案:2解析:设两种都没买的有x 人,由题意知,只买电视的有6人,只买电脑的有5人,两种均买了的有2人,∵6+5+2+x =15,∴x =2.17.答案:[−23,0)解析: 【分析】本题考查分段函数的单调性,注意函数单调性的定义,属于中档题.根据题意,由函数单调性的定义分析可得{a +1>0a <0a2−a −1≤(a +1)−1,解可得a 的取值范围,即可得答案. 【解答】解:根据题意,函数f(x)={(a +1)x −1,x ≥112ax 2−ax −1,x <1在(−∞,+∞)上单调递增,则有{a +1>0a <0a2−a −1≤(a +1)−1, 解可得:−23≤a <0, 即a 的取值范围为[−23,0); 故答案为:[−23,0).18.答案:P <Q解析: 【分析】本题考查了平方作差比较两个数的大小,考查了计算能力,属于基础题.【解答】解:因为a≥0,所以P2−Q2=(√a+7−√a+6)2−(√a+10−√a+3)2=−2√a+7×√a+6+2√a+10×√a+3=2(√a2+13a+30−√a2+13a+42),因为a2+13a+30−(a2+13a+42)=−12<0,所以P<Q.故答案为P<Q.19.答案:{1}解析:【分析】本题主要考查了集合的分类,元素与集合的关系的应用,解题的关键是熟练掌握集合的分类,元素与集合的关系的计算,根据已知及集合的分类,元素与集合的关系的计算,求出C U B的值,求出的A∩(C U B)的值.【解答】解:∵集合U={1,2,3,4,5},A={1,3},B={2,3},∴C U B={1,4,5},∴A⋂(∁U B)={1}.故答案为{1}.20.答案:92解析:【分析】本题考查了利用基本不等式求最值,关键是对“1”的代换,利用基本不等式求最值要注意:“一正、二定、三相等”,是基础题.把1a +12b看作(1a+12b)⋅1,然后把1换为2a+b,展开后利用基本不等式求最值.【解答】解:1a +12b=(1+1)(2a+b)=2+12+ba+ab=52+ba+ab.∵a,b是正实数,∴52+ba+ab≥52+2√ba⋅ab=92.即1a +12b的最小值为92.当且仅当{ba=ab2a+b=1,即a=b=13时“=”成立.故答案为92.21.答案:解:(1)∵k=1时,全集U=R,集合A={x|−1≤x<2},B={x|(x−2)(x−1)≥0}={x|x≥2或x≤1}.∴C U B={x|1<x<2},∴A∩∁U B={x|1<x<2}.(2)当k≥2时,集合A={x|−1≤x<2},B={x|(x−2)(x−k)≥0}.A∩B=⌀,当k<2时,集合A={x|−1≤x<2},B={x|(x−2)(x−k)≥0}={x|x≤k,或x≥2},∵A∩B=⌀,∴k<−1.∴实数k的取值范围是(−∞,−1)∪[2,+∞).解析:(1)k=1时,求出B={x≥2或x≤1},C U B={x|1<x<2},由此能求出A∩∁U B={x|1< x<2}.(2)当k≥2时,A∩B=⌀,当k<2时,B={x|x≤k,或x≥2},由A∩B=⌀,得k<−1.由此能求出实数k的取值范围.本题考查补集、交集的求法,考查实数值的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.22.答案:解:(1)证明:设0<x1<x2,则0<x1x2<1,由题意当x<1时,f(x)>0,可得f(x 1)−f(x 2)=f(x 1x 2⋅x 2)−f(x 2)=f(x 1x 2)+f(x 2)−f(x 2)=f(x1x 2)>0,即f(x 1)>f(x 2),所以y =f(x)是(0,+∞)上的减函数;(2)由f(12)=1,则f(14)=f(12×12)=f(12)+f(12)=1+1=2, 由f(x −3)>f(1x )−2得f(x −3)+2>f(1x ), 即f(x −3)+f(14)>f(1x ),即有f(x−34)>f(1x),由y =f(x)是(0,+∞)上的减函数, 得0<x−34<1x,解得3<x <4. 则原不等式的解集为(3,4).解析:(1)应用单调性的定义证明,注意取值,作差,变形和运用已知条件,定符号,下结论; (2)由f(12)=1,可得f(14)=2,原不等式即为即f(x −3)+f(14)>f(1x ),即有f(x−34)>f(1x ),由y =f(x)是(0,+∞)上的减函数,可得0<x−34<1x ,解不等式即可得到所求解集.本题考查函数的单调性的证明和应用,考查赋值法和分式不等式的解法,属于中档题和易错题.23.答案:解:(1)由x ,y >0,可得2x +y +1=(2x +y +1)(12x +1y+1)=2+y+12x+2xy+1≥4(x =y =1等号成立),可得2x +y ≥3,即2x +y 的最小值为3; (2)8−1a ≤1b +1ab .理由:由a >0,b >0,a +b =1≥2√ab , 即有ab ≤14, 则1a +1b +1ab =a+b+1ab =2ab ≥8则8−1a ≤1b +1ab .解析:(1)由题意可得12x +1y+1=1(a,y >0),运用乘1法和基本不等式可得2x +y +1的最小值,进而得到2x +y 的最小值;(2)结论:8−1a ≤1b +1ab .运用基本不等式可得ab 的范围,再由作差法,得到1a +1b +1ab ≥8,即可得到结论.本题考查基本不等式的运用:求最值和比较大小,注意乘1法和满足的条件:一正二定三等,考查化简整理的运算能力,属于中档题.24.答案:解:∵ax 2+bx +c >0的解集为{x|α<x <β},∴a <0,且α,β是方程ax 2+bx +c =0的两根,∴αβ=c a ,α+β=−ba ,∴c =a ·αβ,b =−a(α+β),代入cx 2+bx +a <0,得a ·αβx 2−a(α+β)x +a <0, 即αβx 2−(α+β)x +1>0,∵αβ>0,∴x 2−(1α+1β)x +1αβ>0, ∵方程x 2−(1α+1β)x +1αβ=0的两根为1α,1β, 且1α>1β,∴不等式cx 2+bx +a <0的解集为 {x|x >1α或x <1β}.解析:本题考查一元二次不等式的解法,由于不等式ax 2+bx +c >0的解集为{x|α<x <β,α>0,β>0},通过韦达定理,将b c ,ac 用α,β表示,得出 1α,1β为方程x 2−(1α+1β)x +1αβ=0的两根,可解不等式.25.答案:解:(1)y =x 2+8x−1=x 2−1+9x−1=(x +1)+9x−1=(x −1)+9x−1+2.∵x >1,∴x −1>0.∴(x −1)+9x−1+2≥2√(x −1)·9x−1+2=8. 当且仅当x −1=9x−1,即x =4时等号成立,所以函数y =x 2+8x−1(x >1)的最小值为8.(2)y =x 2+2021x+4042x+2=(x+2)2+2017(x+2)+4x+2=x +2+4x+2+2017.当x >−2时,y ≥2√(x +2)·4x+2+2017=2021,当x <−2时,y =−[−(x +2)+4−(x+2)]+2017≤2013, 故y =x 2+2021x+4042x+2的值域为:y ≤2013或y ≥2021.解析:本题考查基本不等式在最值中的应用,注意基本不等式成立的条件,属于中档题.26.答案:解(1)∵a > −1,∴a +1>0.由基本不等式,得4a+1+a =4a+1+a +1−1≥ 2√4a+1·(a +1)−1=2√4−1=3.当且仅当4a+1=a +1,即a =1时,等号成立. ∴4a+1+a 的最小值为3.(2)∵a、,且2a+b=1,∴1a +1b=2a+ba+2a+bb=3+(ba+2ab)≥3+2√2.当且仅当ba =2ab,即a=1−√22,b=√2−1时等号成立.∴1a +1b的最小值为3+2√2.解析:本题主要考查了基本不等式的应用,注意等号成立的条件,属于基础题.(1)由题意得4a+1+a=4a+1+a+1−1,再利用基本不等式的性质求出最小值即可;(2)灵活利用2a+b=1,1a +1b=2a+ba+2a+bb,再利用基本不等式的性质求出最小值即可.27.答案:解:(1)∵2x+8y−xy=0,∴2y +8x=1.∴x+y=(x+y)(2y +8x)=10+8yx+2xy≥10+2√8yx×2xy=18,当且仅当x=2y=12时取等号,∴x+y的最小值是18.(2)∵−4<x<1,∴x2−2x+22x−2=−12[(1−x)+11−x]≤−12×2√(1−x)×11−x=−1,当且仅当x=0时取等号,∴x2−2x+22x−2的最大值是−1.解析:本题考查基本不等式求最值,熟练掌握基本不等式的性质及其应用是解题的关键.(1)由题意得,2y +8x=1,则x+y=(x+y)(2y+8x)=10+8yx+2xy,利用基本不等式即可求解;(2)由题意,x2−2x+22x−2=−12[(1−x)+11−x],利用基本不等式即可求解.28.答案:解:(1)因为x>1,所以x−1>0,从而y=x+1x−1=x−1+1x−1+1≥2√(x−1)⋅1x−1+1=3,当且仅当x=2时取的最小值3;(2)∵a>0,b>0,函数的图象经过点(4,12),∴2a+b=12,则1a+2b=2(1a+2b)(2a +b)=8+2(b a+4a b)≥8+4√b a⋅4a b=16,当且仅当b =2a =14时取最小值为16.解析:本题主要考查了利用基本不等式求解最值,解题的关键是应用条件的配凑. (1)由已知可得,y =x +1x−1=x −+1x−1+1,利用基本不等式即可求解;(2)由已知可得,2a +b =12,从而可得1a +2b =2(1a +2b )(2a +b),利用基本不等式即可求解.29.答案:解:(1)−x 2+4x +5<0,即x 2−4x −5>0,即(x −5)(x +1)>0, 解得x <−1或x >5,故不等式的解集为(−∞,−1)∪(5,+∞), (2)由2x−13x+1>0可得(2x −1)(3x +1)>0, 即(x −12)(x +13)>0, 解得x <−13或x >12,故不等式的解集为(−∞,−13)∪(12,+∞)解析:分别用因式分解法即可求出不等式的解集.本题考查了利用因式分解法解一元二次不等式,属于基础题.30.答案:解:(1)x +y =(x +y)(1x +9y )=10+9x y+y x ≥10+2√9x y ×yx =16,当9xy =yx 时即x =4,y =12等号成立, 所以x +y 的最小值为16. (2)因为x <54,所以5−4x >0,y =4x −2+14x−5=4x −5+14x−5+3=−[(5−4x)+15−4x ]+3≤−2√(5−4x)×15−4x +3=1, 当5−4x =15−4x 时即x =1时等号成立, 所以函数y =4x −2+14x−5的最大值为1.解析:本题考查利用基本不等式求函数的最值,关键要注意条件“一正二定三等”. (1)x +y =(x +y)(1x +9y )=10+9x y+yx 再利用基本不等式即可.(2)注意函数解析式的分母为4x −5,所以前面要配成4x −5,得到y =4x −5+14x−5+3,但4x −5<0,所以填上负号得y =−[(5−4x)+15−4x ]+3再用基本不等式求解即可.31.答案:解:(1)由化简得,令,则原问题等价于在上恒成立,则,设,当时,取得最大值,故的取值范围是.(2)不等式为,即,当时,原不等式解集为; 当时,方程的根为,.①当时,,原不等式解集为;②时,,原不等式解集为;③当时,,原不等式解集为;④当时,,原不等式解集为.解析:本题考查一元二次不等式的解与分类讨论思想,属于中档题.(1)分离变量,转化为求函数y =−2t 2+3t 的最大值,求出最大值,即可得到答案; (2)对a 分类讨论,解不等式即可.32.答案:解:(1)设另一个根为x 0,由{4+x 0=m +14x 0=2m −1,得x 0=52 (2)由Δ>0得m <1或m >5, 因为{x 1+x 2=m +1x 1x 2=2m −1, 所以1x 12+1x 22=(x 1+x 2)2−2x 1x 2x 12x 22=(m+1)2−2(2m−1)(2m−1)2=3,解得m =0或m =1011,(3)当m =0时,x 2−x −1=0,且x ≠0, 所以x −1x =1,则x 3−1x 3=(x −1x )(x 2+1+1x 2) =(x −1x )[(x −1x )2+3]=4.解析:本题考查一元二次方程,考查推理能力和计算能力,属于中档题.(1)利用韦达定理求解即可;(2)根据一元二次方程根与系数的关系求解即可;(3)利用立方差公式求解即可得结果.第21页,共21页。

【解析】福建省福州市福建师大附中2019-2020学年高一上学期期中考试数学试题

【解析】福建省福州市福建师大附中2019-2020学年高一上学期期中考试数学试题

福建师大附中2019-2020学年上学期期中考试卷高一数学·必修1一、选择题(每小题5分,共60分;在给出的A,B,C,D 四个选项中,只有一项符合题目要求) 1.能正确表示集合{}02M x x =∈≤≤R 和集合{}20N x x x =∈-=R 的关系的韦恩图的是( )A. B.C. D.【答案】B 【分析】根据题意,{0N =,1},而{|02}M x R x =∈剟,易得N 是M 的子集,分析选项可得答案.【详解】{}{}{}200,102N x x x M x x =∈-==⊆=∈≤≤R R ,故选B.【点睛】本题考查集合间关系的判断以及用venn 图表示集合的关系,判断出M 、N 的关系,是解题的关键.2.设偶函数定义域为R ,当()0,x ∈+∞时,()f x 为增函数,则()()()1,,3f f f π--的大小关系为() A. ()()()31f f f π-<-< B. ()()()13f f f π->-> C. ()()()31f f f π->->D. ()()()13f f fπ-<-<【答案】D 【分析】由于()f x 为偶函数且当()0,x ∈+∞时,()f x 为增函数,故将()()()1,,3f ff π--全部利用偶函数性质转换到()0,x ∈+∞上再用单调性进行求解。

【详解】因为()f x 为偶函数,故()()()()1=1,3=3f f f f --,又因为当()0,x ∈+∞时,()f x 为增函数,故()()()13f f fπ<<,故()()()13f f f π-<-<,故选D 。

【点睛】根据奇偶性与单调性求解函数大小关系时,可以将自变量的值转换到同一单调区间上进行分析。

3.设全集为R ,集合{}2log 1A x x =<,{B x y ==,则()R A B =I ð( )A. {}02x x <<B. {}01x x <<C. {}11x x -<<D.{}12x x -<<【答案】B 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()R A B I ð. 【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<ð, 因此,(){}01A B x x ⋂=<<R ð,故选:B.【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.4.下列四组中,()f x 与()g x 表示同一函数的是( )A. ()f x x =,()g x =B. ()f x x =,()2g x =C. ()2f x x =,()3xg x x=D. ()f x x =,()()(),0,0x x g x x x ⎧≥⎪=⎨-<⎪⎩【答案】D 【分析】A 项对应关系不同;B 项定义域不同;C 项定义域不同,初步判定选D【详解】对A ,()2=g x x x =,与()f x x =对应关系不同,故A 错对B ,()()2g x x =中,定义域[)0,x ∈+∞,与()f x x =定义域不同,故B 错对C ,()3x g x x=中,定义域0x ≠,与()f x x =定义域不同,故C 错对D ,()f x x =,当0x ≥时,()f x x =,当0x <时,()f x x =-,故()()(),0,0x x f x x x ⎧≥⎪=⎨-<⎪⎩,D 正确故选:D【点睛】本题考查同一函数的判断,应把握两个基本原则:定义域相同;对应关系相同(化简后的函数表达式一样) 5.函数()211xf x x e ⎛⎫=-⎪+⎝⎭图象的大致形状是( ) A. B.C D.【答案】C 【分析】先由函数奇偶性,排除BD ;再由函数值的大致范围,即可确定结果.【详解】因为()211xf x x e ⎛⎫=- ⎪+⎝⎭,x ∈R 所以()222111111-⎛⎫--⎛⎫-=--=--=-⋅ ⎪ ⎪+++⎝⎭⎝⎭x x x x x xe e ef x x x x e e e 1122211()1111-+-⎛⎫⎛⎫=-⋅=-⋅=--=-= ⎪ ⎪++++⎝⎭⎝⎭x x x x xx e e x x x x f x e e ee ,所以()211xf x x e ⎛⎫=-⎪+⎝⎭是偶函数,排除BD ; 又当0x >时,22110111-<-=++xe ,所以2()101⎛⎫=-< ⎪+⎝⎭x f x x e , 当0x <时,22110111->-=++xe ,所以2()101⎛⎫=-< ⎪+⎝⎭x f x x e , 故排除D ,选C. 故答案为C【点睛】本题主要考查函数图像的识别,熟记函数的奇偶性即可,属于常考题型. 6.函数()521y x x x =+≥+取得最小值时的x 值为()1 B. 21【答案】B 【分析】将函数边形为()51121y x x x =++-≥+利用双勾函数得到答案. 【详解】()5511211y x x x x x =+=++-≥++ 设1(3)x t t +=≥5()1f t t t =+- 根据双勾函数性质在)+∞上单调递增.min ()(3)f t f =当3t =即2x =时取最小值. 故答案选B【点睛】本题考查了双勾函数性质,属于常考题型.7.已知幂函数()y f x =的图象过点⎛ ⎝⎭,则21log 2f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( )A.2C.D.12【答案】B【分析】设()af x x =,将点3,3⎛ ⎝⎭的坐标代入函数()y f x =的解+析式,求出a 的值,然后再计算出21log 2f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的值. 【详解】设()af x x =,由题意可的()333a f ==,即1233a -=,12a ∴=-,则()12f x x -=,所以,112211222f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,因此,11122222111log log 22222f f f f -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故选:B.【点睛】本题考查指数幂的计算,同时也考查了对数运算,解题的关键就是求出幂函数的解+析式,同时利用指数幂的运算性质进行计算,考查计算能力,属于中等题.8.对于一个声强为I 为(单位:2/W m )的声波,其声强级L (单位:dB )可由如下公式计算:010lgIL I =(其中0I 是能引起听觉的最弱声强),设声强为1I 时的声强级为70dB ,声强为2I 时的声强级为60dB ,则1I 是2I 的( )倍 A. 10 B. 100C. 1010D. 10000【答案】A 【分析】根据声强级与声强之间的关系式,将两个声强级作差,结合对数的运算律可得出12I I 的值,可得出答案。

福建省师大附中高一数学上学期期中考试试题新人教A版

高一数学试题(满分:150分,时间:120分钟)说明:请将答案填写在答卷纸上,考试结束后只交答案卷.一、选择题:(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求) 1、设集合{22|4},{|4,},M x y x N y y x x R ==-==-∈则集合M 与N 的关系是( *** ) A .M N =B .N M ∈C . M ≠⊂ND .N ≠⊂M2、已知集合},2,1{m A =与集合}13,7,4{=B ,若13:+=→x y x f 是从A 到B 的映射,则m 的值为( *** ) A .10 B .7 C .4 D .33、若幂函数()f x 的图象过点1(3,)3,则()f x 的解析式( *** )A .1()f x x -= B .23)(-=x x f C .9)(xx f = D .27)(2x x f =4、若(2),2()2,2x f x x f x x -+<⎧=⎨≥⎩,则(1)f 的值为( *** )A .8B .18 C .2 D .125、下列函数中不能..用二分法求零点的是( *** ) A .13)(-=x x fB .3)(x x f =C .||)(x x f =D .x x f ln )(=6、设0.3777,0.3,log 0.3a b c ===,则c b a ,,的大小关系是 (*** )A .c b a <<B .a b c <<C .b a c <<D .a c b << 7、根据表格中的数据,可以断定方程20xe x --=的一个根所在的区间是(*** ).A . (-1,0)B . (0,1)C . (1,2)D . (2,3)8、函数()y f x =在0∞(-,)上为减函数,又()f x 为偶函数,则(3)f -与(2.5)f 的大小关系是( *** )A .(3)f -> (2.5)fB .(3)f - < (2.5)fC .(3)f - =(2.5)fD .无法确定 9、下表显示出函数值y 随自变量x 变化的一组数据,由此判断它最可能的函数模型是(***).x4 5 6 7 8 910 y15171921232527A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型10、已知()()()f x x a x b =--(其中b a <),若()f x 的图象如图(1)所示,则函数()x g x a b =+的图象是( *** )11、已知函数22()(1)(2)f x x a x a =+-+-的一个零点比1大,一个零点比1小, 则有( *** )A.-1<a <1B.a <-1或a >1C. a <-1或a >2D.-2<a <1 12、方程2log 6x x +=的根为α,方程3log 6x x +=的根为β,则( *** )。

北京市师范大学附中2019_2020学年高一数学上学期期中试题(含解析)

北京师范大学附属实验中学2019-2020学年高一上学期期中考试数学试题一、选择题(本大题共8小题) 1.若集合A={}0,1,2,4,B={}1,2,3,则A B =( )A. {}0,1,2,3,4B. {}0,4C. {}1,2D. {}3【答案】C 【解析】 【详解】因为{}1,2AB =,所以选C.考点:本小题主要考查集合的基本运算,属容易题,熟练集合的基础知识是解答好集合题目的关键.2.已知ln 2a =,ln3b =,那么3log 2用含a ,b 的代数式表示为( ). A. -a b B.abC. abD. +a b【答案】B 【解析】由换底公式可得:32log 23ln aln b==. 故选B.3.下列函数中,既是偶函数又在区间(0,)+∞上单调递增的是 ( ) A. ()ln ||f x x = B. ()2-=xf x C. 3()f x x = D. 2()f x x =-【答案】A 【解析】对于A,()()ln f x x f x -==,() ln f x x =是偶函数,且在区间()0,+∞上单调递增,符合题意;对于B, 对于()2xf x -=既不是奇函数,又不是偶函数,不合题意;对于C,()3f x x =是奇函数,不合题意;对于D,()2 f x x =-在区间()0,+∞上单调递减,不合题意,只有()ln f x x =合题意,故选A.4.设函数()1,0,x QD x x Q∈⎧=⎨∉⎩,则(f f ⎡⎤⎣⎦的值为( ).A. 0B. 1C. 1-D. 不存在【答案】B 【解析】 【分析】推导出f ()=0,从而(f f ⎡⎤⎣⎦=f (0),由此能求出结果.【详解】∵函数()1,0,x QD x x Q ∈⎧=⎨∉⎩,∴f ()=0,∴(f f ⎡⎤⎣⎦=f (0)=1.故选:B .【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题. 5.已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为( ) A. a c b << B. a b c << C. b c a << D. c a b <<【答案】A 【解析】 【分析】利用10,,12等中间值区分各个数值的大小。

北京师大附中2019-2020学年高一数学上学期期中考试试题

师大附中2019-2012学年上学期高一年级期中考试数学试卷(满分150分,考试时间120分钟)第Ⅰ卷(模块卷)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设全集,集合,,则等于()A. B. C. D.2. 给定映射:,在映射下(3,1)的原象为()A. (1,3)B. (1,1)C. (3,1)D. ()3. 下列函数中是偶函数且在(0,1)上单调递减的是()A. B. C. D.4. 已知,,,则三者的大小关系是()A. B. C. D.5. 设函数与的图象的交点为,则所在的区间是()A. (0,1)B. (1,2)C. (2,3)D. (3,4)6. 若函数是函数(,且)的反函数,其图象经过点,则()A. B. C. D.7. 函数()A. 是奇函数但不是偶函数B. 是偶函数但不是奇函数C. 既是奇函数又是偶函数D. 既不是奇函数又不是偶函数8. 已知实数且,则的取值范围为()A. B. C. D.二、填空题:本大题共5小题,每小题5分,共25分。

9.10. 函数的定义域是11. 已知幂函数的图象过点,则12. 设是定义在R上的奇函数,且满足,则13. 有下列命题:①函数与的图象关于轴对称;②若函数,则函数的最小值为-2;③若函数在上单调递增,则;④若是上的减函数,则的取值范围是。

其中正确命题的序号是。

三、解答题:本大题共3小题,共35分。

要求写出必要演算或推理过程。

14. 已知集合,集合,求。

15. 某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元。

(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?16. 已知:且,(1)求的取值范围;(2)求函数的最大值和最小值。

2019-2020学年湖南师大附中高一上学期期中考试 数学

2019—2020学年度湖南师大附中高一第一学期期中考试数学试题湖南师大附中2019—2020学年度高一第一学期期中考试数 学时量:120分钟 满分:150分得分:____________一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={}x |x -2≤1,x ∈N *,则集合A 的真子集个数是A .3B .6C .7D .82.图中阴影部分所表示的集合是A .B ∩∁U ()A ∪C B.()A ∪B ∪()B ∪C C.()A ∪C ∩()∁U BD .∁U ()A ∩C ∪B3.函数f ()x =2x -2x-a 的一个零点在区间()1,2内,则实数a 的取值范围是A.()1,3B.()1,2C.()0,3D.()0,24.函数f ()x =1ln ()x +1+9-x 2的定义域为A.[)-3,0∪(]0,3B.()-1,0∪(]0,3C.[]-3,3D.(]-1,35.下列幂函数中,既是奇函数,又在区间()-∞,0上为减函数的是A .y =x 12B .y =x 13C .y =x 23D .y =x -136.已知f ()x =⎩⎪⎨⎪⎧()a -2x ,x ≥2,⎝⎛⎭⎫12x -1,x <2是R 上的增函数,则实数a 的取值范围是A.()-∞,2B.⎝⎛⎦⎤-∞,138 C.()2,+∞ D.⎣⎡⎭⎫138,27.函数f (x )=e x -e -xx 2的图象大致为8.下列命题中错误的个数为①f ()x =12+12x -1的图像关于(0,0)对称;②f ()x =x 3+x +1的图像关于(0,1)对称;③f ()x =1x 2-1的图像关于直线x =0对称.A .1B .2C .3D .09.已知函数f ()x =⎝⎛⎭⎫12x ,则函数f ()x +1的反函数的图象可能是10.函数f ()x 是定义在R 上的奇函数,且f ()-1=0,若对于任意x 1,x 2∈()-∞,0,且x 1≠x 2时,都有x 1f ()x 1-x 2f ()x 2x 1-x 2<0成立,则不等式f ()x <0的解集为A.()-∞,1∪()1,+∞B.()-1,0∪()0,1C.()-∞,-1∪()0,1D.()-1,0∪()1,+∞11.已知函数f (x )=||1-||1-x ,若关于x 的方程f 2(x )+af (x )=0有n 个不同的实根,则n 的值不可能为A .3B .4C .5D .612.已知定义域为D 的函数f (x ),若对任意x ∈D ,存在正数M ,都有|f (x )|≤M 成立,则称函数f (x )是定义域D 上的有界函数.已知下列几个函数:①f (x )=52x 2-4x +3;②f (x )=1-x 2;③f (x )=3+x 4-x;④f (x )=1-3x .其中有界函数的个数是A .1B .2C .3D .413.化简0.064-13+⎝⎛⎭⎫-180+21+log 25的结果为________.14.已知函数f ()x =a ||x +1+||x -2a ()a>0,a ≠1为偶函数,则a =________.15.设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则用“<”连接a ,b ,c 为________. 16.设a ,b ,c 为实数,f(x)=(x +a)(x 2+bx +c),g(x)=(ax +1)(cx 2+bx +1),记集合S={x|f(x)=0,x ∈R },T ={x |g (x )=0,x ∈R },若|S |,|T |分别为集合S ,T 的元素个数,则下列结论可能成立的是________.①|S |=1,|T |=0;②|S |=1,|T |=1;③|S |=2,|T |=2;④|S |=2,|T |=3.三、解答题:本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪y =1x -1,B ={}y |y =3x -1. (Ⅰ)求A ∩B ;(Ⅱ)若M ={}x |mx +4<0且(A ∩B)⊆M ,求实数m 的取值范围.设f ()x 是定义在R 上的奇函数,且当x >0时,f ()x =x 2. (Ⅰ)求函数f (x )的解析式;(Ⅱ)若对任意的x ∈[]a ,a +2,不等式f ()x +a ≥2f ()x 恒成立,求实数a 的取值范围.设f (x )=log 121-axx -1为奇函数,a 为常数.(Ⅰ)求a 的值;(Ⅱ)证明:确定f (x )在区间(1,+∞)内的单调性;(Ⅲ)设A =[3,4],B =⎩⎨⎧⎭⎬⎫x |f (x )>⎝⎛⎭⎫12x+m ,且A ⊆B ,求实数m 的取值范围.设二次函数f ()x =ax 2+bx +c ()a ,b ,c ∈R 满足下列条件:①当x ∈R 时,f (x )的最小值为0,且图像关于直线x =-1对称;②当x ∈()0,5时,x ≤f ()x ≤2||x -1+1恒成立.(Ⅰ)求f ()x 的解析式;(Ⅱ)若f ()x 在区间[]m -1,m 上恒有⎪⎪⎪⎪f ()x -x 24≤1,求实数m 的取值范围.对于在区间[]p ,q 上有意义的两个函数f ()x 和g ()x ,如果对于任意的x ∈[]p ,q ,都有|f ()x -g ()x |≤1,则称f ()x 与g ()x 在区间[]p ,q 上是“接近”的两个函数,否则称它们在[]p , q 上是“非接近”的两个函数.现有两个函数f ()x =log a ()x -3a ,g ()x =log a 1x -a()a >0,且a ≠1,给定一个区间[]a +2,a +3.(Ⅰ)若f ()x 与g ()x 在区间[]a +2,a +3都有意义,求实数a 的取值范围; (Ⅱ)讨论f ()x 与g ()x 在区间[]a +2,a +3上是否是“接近”的两个函数.如图,某油田计划在铁路线CD 一侧建造两家炼油厂A 、B ,同时在铁路线上建一个车站Q ,用来运送成品油.先从车站出发铺设一段垂直于铁道方向的公共输油管线QP ,再从P 分叉,分别向两个炼油厂铺设管线P A 、PB .图中各小写字母表示的距离(单位:千米)分别为a =5,b =8,l =15.设所有管线的铺设费用均为每千米7.2万元,公共输油管线长为k km ,总的输油管道长度为s km.(Ⅰ)若k =0,请确定车站Q 的位置,使得总的输油管道长度为s 最小,此时输油管线铺设费用是多少?(Ⅱ)请问从降低输油管线铺设费用的角度出发,是否需要铺设公用管线.如果需要请给出能够降低费用管线铺设方案(精度为0.1千米).(参考数据:225+132=19.85,225+122=19.21,225+112=18.60,225+102=18.03,225+92=17.49,225+82=17.00,225+72=16.55,225+62=16.16,225+52=15.81,225+42=15.52,225+32=15.30.)湖南师大附中2019—2020学年度高一第一学期期中考试数学参考答案-湖南师大附中2019—2020学年度高一第一学期期中考试数学参考答案一、选择题:本大题共12小题,每小题5分,共60分.3.C 【解析】根据指数函数和反比例函数的性质可知,函数f ()x =2x -2x-a 在区间()1,2内是增函数,又有一个零点在区间()1,2内,所以⎩⎪⎨⎪⎧f ()1<0f ()2>0⇒0<a<3,故选C .4.B 【解析】由⎩⎨⎧x +1>0ln ()x +1≠09-x 2≥0得⎩⎪⎨⎪⎧x>-1x ≠0-3≤x ≤3⇒-1<x ≤3且x ≠0.5.D 【解析】考查幂函数的性质.6.C 【解析】⎩⎪⎨⎪⎧a -2>02()a -2≥⎝⎛⎭⎫122-1⇒⎩⎪⎨⎪⎧a>2a ≥138⇒a>2,故选C . 7.B 【解析】函数f ()-x =e -x -e x ()-x 2=-e x -e -x x 2=-f ()x ,函数f ()x 为奇函数,图象关于原点对称,排除A ,当x =1时,f ()1=e -1e >0,排除D ,当x →+∞时,f ()x →+∞,排除C .8.D 【解析】①f ()x +f ()-x =0,②f ()x +f ()-x =2,③f ()-x =f ()x ,所有命题都正确.9.D 【解析】考查反函数和图像的平移.10.C 【解析】令F ()x =xf ()x ,因为函数f ()x 是定义在R 上的奇函数,所以f ()x =-f ()-x ,则F ()-x =-xf ()-x =xf ()x =F ()x ,所以F ()x 是偶函数,因为任意x 1,x 2∈()-∞,0,且x 1≠x 2时,都有x 1f ()x 1-x 2f ()x 2x 1-x 2<0成立,所以F ()x 在()-∞,0上是单调递减,在()0,+∞上是单调递增,又因为f ()-1=0,所以F ()-1=-f ()-1=0=F ()1.当x <-1时,F (x )>F (-1)=0,因为x <0,∴f (x )<0;因为当-1<x <0时,F ()x <F ()-1=0,因为x <0,所以f ()x >0; 当0<x <1时,F ()x <F ()1=0,因为x >0,所以f ()x <0; 当x >1时,F ()x >F ()1=0,因为x >0,所以f ()x >0. 所以不等式f ()x <0的解集为()-∞,-1∪()0,1.故选C. 11.A 【解析】因为函数⎩⎪⎨⎪⎧x -2,x ≥22-x ,1≤x <2x ,0≤x <1-x ,x <0,作出f (x )的图像如下:由[f (x )]2+af (x )=0得:f (x )=0或f (x )=-a ,所以方程[f (x )]2+af (x )=0的解的个数,即为函数f (x )与x 轴以及直线y =-a 交点个数, 由图像可得:f (x )与x 轴有2个交点,①当-a <0,即a >0时,函数f (x )与直线y =-a 无交点,故原方程共2个解; ②当-a =0,即a =0时,原方程可化为f (x )=0,故原方程共2个解;③当0<-a <1,即-1<a <0时,函数f (x )与直线y =-a 有4个交点,故原方程共6个解; ④当-a =1,即a =-1时,函数f (x )与直线y =-a 有3个交点,故原方程共5个解; ⑤当-a >1,即a <-1时,函数f (x )与直线y =-a 有2个交点,故原方程共4个解; 综上,原方程解的个数可能为2,4,5,6.故选A.12.B 【解析】①②共2个.二、填空题:本大题共4个小题,每小题5分,共20分. 13.272(或13.5) 14.1215.a>c>b 【解析】解法一,先比较b ,c ,构造函数f ()x =⎝⎛⎭⎫25x,∵0<25<1,∴f ()x =⎝⎛⎭⎫25x为减函数,且25<35,c>b ,再比较a ,c ,a c=⎝⎛⎭⎫3225>⎝⎛⎭⎫320=1,a>c ,综上,可得a>c>b ; 解法二,先比较a ,c ,构造函数f ()x =x 25,0<25<1,f ()x =x 25为增函数,∵35>25,∴a>c ,同理可得c>b ,综上,可得a>c>b.16.①②③ 【解析】|T|=3时,必有a ≠0,c ≠0,b 2-4c>0,设x 0为g(x)=0的一根,则x 0≠0,且f ⎝⎛⎭⎫1x 0=⎝⎛⎭⎫1x 0+a ⎝⎛⎭⎫1x 20+b 1x 0+c =1x 30g(x 0)=0,故1x 0为方程f(x)=0的根.此时f(x)=0有三个根,即|T|=3时,必有|S|=3,故不可能是|S|=2,|T|=3.三、解答题:本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.【解析】(Ⅰ)由A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪y =1x -1,B ={}y |y =3x -1, 得A =()1,+∞,(2分) B =()0,+∞,(4分) A ∩B =()1,+∞;(6分)(Ⅱ)由(A ∩B)⊆M ,得()1,+∞⊆M ⇒⎩⎪⎨⎪⎧m<0-4m ≤1⇒m ≤-4.(10分)18.【解析】(Ⅰ)由题意知,f(0)=0.设x<0,则-x>0,故f(-x)=(-x)2=x 2, 又因为f(x)是奇函数,故f(x)=-f(-x)=-x 2,所以f ()x =⎩⎨⎧x 2,x ≥0,-x 2,x<0.(4分)(Ⅱ)由2x 2=()2x 2,等价于f ()x +a ≥f ()2x ,因为f ()x 在R 上是增函数,(6分)∴x +a ≥2x ,即a ≥()2-1x ,(8分)∵x ∈[]a ,a +2,∴当x =a +2时,[()2-1x ]max =()a +2()2-1,(10分) 得a ≥2,故实数a 的取值范围是[)2,+∞.(12分)19.【解析】(Ⅰ)∵f (-x )=-f (x ),∴log 121+ax -1-x =-log 121-ax x -1=log 12x -11-ax .(2分) ∴1+ax -x -1=x -11-ax,即(1+ax )(1-ax )=-(x +1)(x -1)恒成立,∴a =-1.(4分) (Ⅱ)由(Ⅰ)可知f (x )=log 12x +1x -1=log 12⎝⎛⎭⎫1+2x -1(x >1或x <-1).(5分)记u (x )=1+2x -1,由定义可以证明u (x )在(1,+∞)上为减函数,(7分)∴f (x )=log 12x +1x -1在(1,+∞)上为增函数.(8分) (Ⅲ)设g (x )=log 12x +1x -1-⎝⎛⎭⎫12x.(9分)由于f (x )=log 12x +1x -1在(1,+∞)上为增函数且y =⎝⎛⎭⎫12x是R 上的减函数,所以g (x )在[3,4]上为增函数.(10分)∵g (x )>m 对x ∈[3,4]恒成立,∴m <g (x )min =g (3)=-98.(11分)故m 的取值范围是⎝⎛⎭⎫-∞,-98.(12分) 20.【解析】(Ⅰ)在②中令x =1,有1≤f ()1≤1,故f ()1=1.(2分)当x ∈R 时,f (x )的最小值为0且二次函数关于直线x =-1对称, 故设此二次函数为f ()x =a ()x +12()a >0.(3分) ∵f ()1=1,∴a =14.(5分)∴f ()x =14()x +12.(6分)(Ⅱ)f ()x -x 24=14()x +12-x 24=12x +14,(7分)由⎪⎪⎪⎪f ()x -x 24≤1即|12x +14|≤1,得-52≤x ≤32.(9分) ∵f ()x 在区间[]m -1,m 上恒有⎪⎪⎪⎪f ()x -x24≤1, ∴只须⎩⎨⎧m -1≥-52m ≤32,解得-32≤m ≤32,(11分)∴实数m 的取值范围为⎣⎡⎦⎤-32,32.(12分) 21.【解析】(Ⅰ)要使f ()x 与g ()x 有意义,则有⎩⎪⎨⎪⎧x -3a >0x -a >0a >0且a ≠1⇒x >3a (2分)要使f ()x 与g ()x 在[]a +2,a +3上有意义,则x >3a 对x ∈[a +2,a +3]恒成立,所以a +2>3a ,(4分)又因为a >0,故0<a <1.(6分)(Ⅱ)|f ()x -g ()x |=|log a []()x -3a ()x -a |, 令|f ()x -g ()x |≤1,得-1≤log a []()x -3a ()x -a ≤1.(*)(7分)因为0<a <1,所以[]a +2,a +3在直线x =2a 的右侧. 所以h ()x =log a []()x -3a ()x -a 在[]a +2,a +3上为减函数. 所以h ()x min=h ()a +3=log a ()9-6a ,h ()x max=h ()a +2=log a ()4-4a .(9分)于是⎩⎨⎧log a ()4-4a ≤1log a()9-6a ≥-10<a <1,∴0<a ≤9-5712.所以当a ∈⎝⎛⎦⎥⎤0,9-5712时,f ()x 与g ()x 是接近的;(11分)当a ∈⎝⎛⎭⎪⎫9-5712,1时是非接近的.(12分)22.【解析】(Ⅰ)作A 关于CD 的对称点A ′,连A ′B ,则它与CD 交于点Q ,连QA 、QB ,由它向两个炼油厂铺设的输油管道的总长度为l 2+(a +b )2,这是最短的,此时CQ =a a +b l .将数据代入,得s =225+132=19.85 km ,x =513×15=7513=5.77 km ,输油管线铺设费用是7.2s =7.2×19.85=142.92万元.(4分)(Ⅱ)设公用的输油管线将沿垂直于铁道方向铺设k km.在CD 的A 一侧作一条与之平行、相距为k 的直线EF ,作A 关于EF 的对称点A ′,连A ′B ,则它与EF 交于点P ,这点是分叉点.由它向两个炼油厂铺设的输油管道的总长度为l 2+[(a -k )+(b -k )]2,这是在确定k 的前提下最短的.(6分)以C 为原点,铁路线为x 轴建立直角坐标系.则可以得到,在这种情况下最短的管道铺设的总长度应为s =k +l 2+[(a -k )+(b -k )]2(7分) 三条管道交叉点的坐标为(x ,k ),x =a -k(a -k )+(b -k )l .k =0相当于不铺设公用管道的情形.(8分)将数据代入上式有s =k +225+(13-2k )2,x =15×5-k13-2k (10分)对于不同的k ,分别计算管道的铺设长度得,于是,不妨取k=2,此时铺设管道的总长度为19.49,铺设费用为19.49×7.2=140.328万元,比较不铺设公用管道所花的费用19.85×7.2=142.92万元要节省2.592万元.这时三条管道交叉点位于(5,2)处.(12分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教A 版师大附中2019-2020学年上学期高一年级期中考试数学试卷 说明:本试卷共150分,考试时间120分钟。

一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设集合S ={1,3,5},T ={3,6},则S T 等于
A. φ
B. {3}
C.{1,3,5,6}
D. R
2. 函数f (x )=x -12
的定义域是
A. (-∞,1)
B. (]1,∞-
C. R
D. (-∞,1) ()∞+,1
3. 下列函数中在其定义域上是偶函数的是
A. y =2x
B. y =x 3
C. y =x 21
D. y =x 2-
4. 下列函数中,在区间(0,+∞)上是增函数的是
A. y =-x 2
B. y = x 2-2
C. y =2
21⎪⎭⎫ ⎝⎛ D. y =log 2x 1 5. 已知函数f (x )=x +1,x ∈R,则下列各式成立的是
A. f (x )+f (-x )=2
B. f (x )f (-x )=2
C. f (x )=f (-x )
D. –f (x )=f (-x )
6. 设函数f (x )=a x -(a>0),且f (2)=4,则
A. f (-1)>f (-2)
B. f (1)>f (2)
C. f (2)<f (-2)
D.f (-3)>f (-2)
7. 已知a =log 20.3,b =23.0,c =0.32.0,则a ,b ,c 三者的大小关系是
A. a>b>c
B. b>a>c
C. b>c>a
D. c>b>a
8. 函数f (x )=log a (x -2)+3,a>0,a ≠1的图像过点(4,2
7),则a 的值为 A. 2
2 B. 2 C. 4 D. 21 9. 当0<a<1时,下列不等式成立的是 A. a 1.0<a 2.0
B. log a 0.1> log a 0.2
C. a 2<a 3
D. log a 2< log a 3
10. A semipro baseball league has teams with 21 players each. League rules state that a
player must be paid at least $15,000,and that the total of all players’ salaries for each team cannot exceed $700,000. What is the maximum possible salary ,in dollars ,for a single player ?
A. 270,000
B. 385,000
C. 400,000
D. 430,000
E.700,000
二、填空题:本大题共8小题,每小题4分,共32分。

11. 273
2+lg4+2lg5=__________
12. 函数y =x 3log 2-的定义域是________ 13. 已知幂函数y =f (x )的图象过点⎪⎪⎭
⎫ ⎝⎛2221,,则f (2)=_______
14. 一种专门侵占内存的计算机病毒,开机时占据内存2KB ,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过______分钟,该病毒占据64MB 内存。

15. For real numbers a and b , define a $b =(a -b )2. What is (x -y )2$(y -x )2?______
16. 已知f (x )=x 2+(a -1)x +a 在区间[)∞+,2上是增函数,则a 的取值范围是______
17. 若a>0,a ≠1,F (x )为偶函数,则G (x )=F (x )·log a (x +12+x )是_______函数(填“奇”或“偶”),它的图像关于______对称。

18. A class collects $50 to buy flowers for a classmate who is in the hospital. Roses cost $3 each , and carnations cost $2 each. No other flowers are to be used. How many different bouquets could be purchased for exactly $50?_______
三、解答题:本大题共4小题,共28分
19. 已知集合A ={}{}81log 24303≥=≤-<x x B ,x x 集合,求A B ⋂。

20. 某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆。

租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元。

(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
21. 已知f (x )是定义在(0,+∞)上的增函数,且满足f (x y )=f (x )+f (y ),f (2)=1。

(1)求f (8)
(2)求不等式f (x )-f (x -2)>3的解集
22. 已知:2256≤x 且log 22
1≥
x , (1)求x 的取值范围;
(2)求函数f (x )= log 2(2x )⎪⎪⎭
⎫ ⎝⎛⋅2log 2x 的最大值和最小值。

【试题答案】
一、选择题
1. C
2. A
3. D
4. B
5. A
6. D
7. C
8. C
9. B 10. C
二、填空题
11. 11
12. (]90,
13. 2
14. 45
15. 0
16. a 3-≥
17. 原点
18. 9
三、解答题
19. 解:由0<3-x 314<≤-⇒≤x ∴ A =[)31,
- 由2281log 3≥⇒≥x x ∴ B =[)∞+,2 ∴ A ⋂B =[)32,
20. 解:(1)当每辆车月租金为3600元时,未租出的车辆数为
125030003600=-,所以这时租出了88辆。

(2)设每辆车的月租金定为x 元,则公司月收益为
f (x )=()5050
3000150503000100⨯---⎪⎭⎫ ⎝⎛
--x x x 整理得:f (x )=-()307050405050
121001625022+--=-+x x x ∴ 当x =4050时,f (x )最大,最大值为f (4050)=307050元
21. 解:(1)由题意得f (8)=f ()24⨯=f (4)+f (2)=f ()22⨯+f (2)=f (2)+f (2)+f (2)=3f (2)
又1)2(=f ∴3)8(=f
(2)不等式化为f (x )>f (x -2)+3
∵ f (8)=3
∴ f (x )>f (x -2)+f (8)=f (8x -16)
∵ f (x )是(0,+∞)上的增函数 ∴ 7162)
2(80)2(8<<⎩⎨⎧->>-x x x x 解得 22. 解:(1)由2256≤x 得x ≤8,由log 221≥
x 得2≥x ∴ 82≤≤x (2)由(1)82≤≤x 得3log 2
12≤≤x f (x )=log 2(2x )·log 2(2x )=(log 2x -log 22)(log 2x -log 22)
∴ f (x )=(log 2x -1)·(log 2x -2)=(log 2x -23)2-41. 当log 2x =
23,f (x )m in =-41,当log 2x =3,f (x )m ax =2。

相关文档
最新文档