第三章非均相物系的分离及固体流态化
化工原理 第三章 非均相物系的分离和固体流态化

标准旋风 分离器
气体在旋风 分离器里的运动
③ 不宜处理黏性粉尘、含湿量高的粉尘 及 腐蚀性粉尘。
离心沉降23ts6udr??????????????离心力23t6udr??????????????向心力22r24ud???????????????阻力222332ttrs06624uuudddrr?????????????????????????????????????????????2str43duur??????颗粒在离心力场中的运动离心沉降速度沉降分离离心沉降????sstrt24433ugrdduu?????????????形式上相似
沉降分离-重力沉降
④ 求解 ⑴ 试差法
假设颗粒沉降的流型 根据相应的沉降公式求ut 按ut检验Ret
⑵ 摩擦数群法
ut 4 gd s 3
Ret
dut
4d s g 3ut 2 d 2ut 2 2 2 Ret 2
4d 3 s g Ret = 3 2
2 3 ut 向心力= d 6 r
ur 2 2 阻力= d 2 4
2 2 2 π 3 ut π 3 ut ur π 2 s d d d 0 6 r 6 r 2 4
概念-颗粒
3. 颗粒群特性
① 粒径分布 粒径分布→不同粒径范围内所含粒子的个数或质量。 筛分分析: ⑴ 标准筛→泰勒标准筛、日本JIS标准筛和德国标准筛。 ⑵ 筛分过程→筛留物(筛余量)和筛过物(筛过量)。 ⑶ 筛分单位→目数(筛孔大小),指每英寸长度筛网 上的孔数。 比如,100目泰勒筛的筛孔宽度,网线直径为0.0042 in,
夏清主编的《化工原理》(第2版)上册-配套题库-名校考研真题-第3章 非均相物系的分离和固体流态化【

十万种考研考证电子书、题库视频学习平
台
第 3 章 非均相物系的分离和固体流态化
一、填空题 1.影响颗粒沉降速度的因素如下:颗粒的因素、介质的因素、环境因素、设备因素。 就颗粒的因素而言有以下几方面: 、 、 、 等。[四川大学 2008 研] 【答案】尺寸 形状 密度 是否变形 【解析】影响颗粒沉降速度的因素包括以下几个方面:①颗粒的因素:包括尺寸、形 状、密度、是否变形等;②介质的因素:包括流体的状态(气体还是液体)、密度、粘度等; ③环境因素:包括温度(影响 、 )、压力、颗粒的浓度(浓度达到一定程度使发生干扰 沉降等);④设备因素:包括体现为壁效用。
答:由公式: dV KA2 dQ 2(V V )
可知增大压力,K 值增大;提高温度,K 值增大,过滤速度增大。 dV 由压力温度滤 dQ
饼的比阻,过滤饼体积比及过滤面积有关。
2.设计一实验流程(画出其实验流程示意图),并写出简要实验步骤,完成如下实验 内容:
(1)进行恒压过滤常数的测定。 (2)进行滤饼的压缩性指数 s 和物料常数 k 的测定。[天津大学 2002 研] 答:简要实验步骤如下: (1)做好准备工作,启动系统。 (2)进行过滤滤液体积和过滤时间关系曲线的测定。 (3)改变过滤压差,再进行不同压差下过滤滤液体积和过滤时间关系曲线的测定, 至少测定 3 条曲线。 (4)关闭系统,复原装置并清扫卫生。 实验流程示意图如图 3-1 所示。
十万种考研考证电子书、题库视频学习平
台
4.从地下开采出来的原油由油、水、气组成,如图 3-2 所示为一原油连续计量装置
的示意图,其原理是将原油中的油、水、气分离后用各自的流量计分别测定其流量(计量),
然后再将油、水、气汇合一起流向下游。具体工艺如下;原油首先切向进入一旋风分离器,
天津大学化工原理课件第三章 非均相混合物分离及固体流态化

53
三、流体通过固体颗粒床层 (固定床)的压降
康采尼(Kozeny)方程
Reb 2
Pf L
5
(1 )2 a 2u
3
2 2
(3-55)
0.17 Reb 330
欧根(Ergun)方程
Pf
(1 ) u (1 ) u 150 3 1.75 3 2 L (s de ) (s de )
u
u ut u ut
阻力
加速度=0 加速度=0
加速度
匀速段
11
二、 球形颗粒的自由沉降
沉降速度
ut
匀速阶段中颗粒相对于流体的运动速度称为 沉降速度,由于该速度是加速段终了时颗粒相对 于流体的运动速度,故又称为“终端速度”,也 可称为自由沉降速度。
4 gd ( s ) ut 3
de Sp s 6 a s d e
2
8
二、 球形颗粒的自由沉降
图3-1 沉降颗粒的受力情况
9
二、 球形颗粒的自由沉降
颗粒受到三个力 重力 浮力 阻力
Fg
Fb
6
6
d 3 S g
d g
3
Fd A
u
2
2
阻力系数或 曳力系数
10
二、 球形颗粒的自由沉降
根据牛顿第二运动定律 3 2 u 2 3 du d ( S ) g d ( ) d S 6 4 2 6 d 分析颗粒运动情况: u0 加速度最大 加速段
床层的比表面积也可用颗粒的堆积密度估算,即
6b 6 1 ab s d d
颗粒的 真实密 度 颗粒的堆 积密度
49
第三章 非均相物系的分离和固体流态化 下

8
2.过滤介质
织物介质,如棉、麻、丝、毛、合成纤维、金属丝等编织成的滤布, 5-65m,工业应用广泛; 堆积介质,细纱、木炭、石棉、硅藻土等细小坚硬的颗粒状物质堆积 而成,多用于深床过滤。 多孔性固体介质,如多孔陶瓷,多孔塑料及多孔金属制成的板式管。 1-3m。
多孔膜:有机膜、无机膜。1 m以下
对乱堆床层,各向同性,床层自由截面积与床层截面积之比等于空 隙率ε; 受壁效应影响,壁面附近床层空隙率大于床层内部。改善壁效应的 方法通常是限制床层直径与颗粒直径之比不得小于某极限值。若床层 的直径比颗粒的直径大得多,则壁效应可忽略。
A自由 A
13
5.流体通过床层流动的压降(数学模型法)
比沉降分离更迅速更彻底,在某些场合下,过滤是沉降的后继操作 属于机械分离操作 外力可以是重力、压强差或惯性离心力
滤浆(料浆)
滤饼
过滤介质
滤液
5
3.4.1 过滤操作的基本概念
1.过滤方式
饼层过滤 >1%(v/v) 过滤方式深床过滤 <0.1%(v/v) 膜过滤
滤浆
滤饼
过滤介质为很厚的颗粒层 不形成滤饼层
22
解:(1)催化剂的当量直径de、球形度ɸs、床层孔隙率ε及比表面积ab
V
3
d 3
6
de
3
6V p
与非球形颗粒体积相等的 球形颗粒的直径。
6 2 de ( d d) 4
1.145d 1.145 3 3.435mm
S d e2 3.4352 s 0.874 2 S p 2 d 2 d 2 1.5 3 4 床层体积-颗粒体积 1-980 1760 0.4432 床层体积 1 6 ab (1 ) ab a(1 ) s d e
(完整版)新版化工原理习题答案(03)第三章非均相混合物分离及固体流态化-题解

第三章 非均相混合物分离及固体流态化1.颗粒在流体中做自由沉降,试计算(1)密度为2 650 kg/m 3,直径为0.04 mm 的球形石英颗粒在20 ℃空气中自由沉降,沉降速度是多少?(2)密度为2 650 kg/m 3,球形度6.0=φ的非球形颗粒在20 ℃清水中的沉降速度为0.1 m/ s ,颗粒的等体积当量直径是多少?(3)密度为7 900 kg/m 3,直径为6.35 mm 的钢球在密度为1 600 kg/m 3的液体中沉降150 mm 所需的时间为7.32 s ,液体的黏度是多少?解:(1)假设为滞流沉降,则:2s t ()18d u ρρμ-= 查附录20 ℃空气31.205kg/m ρ=,s Pa 1081.15⋅⨯=-μ,所以,()()()m 1276.0s m 1081.11881.9205.126501004.018523s 2t =⨯⨯⨯-⨯⨯=-=--μρρg d u 核算流型:3t 51.2050.12760.04100.3411.8110du Re ρμ--⨯⨯⨯===<⨯ 所以,原假设正确,沉降速度为0.1276 m/s 。
(2)采用摩擦数群法()()s 123t 523434 1.81102650 1.2059.81431.93 1.2050.1g Re u μρρξρ---=⨯⨯-⨯==⨯⨯ 依6.0=φ,9.431Re 1=-ξ,查出:t e t 0.3u d Re ρμ==,所以: 55e 0.3 1.8110 4.50610m 45μm 1.2050.1d --⨯⨯==⨯=⨯ (3)假设为滞流沉降,得:2s t()18d g u ρρμ-= 其中 s m 02049.0s m 32.715.0t ===θh u将已知数据代入上式得:()s Pa 757.6s Pa 02049.01881.91600790000635.02⋅=⋅⨯⨯-=μ 核算流型t 0.006350.020*******.0308116.757du Re ρμ⨯⨯===< 2.用降尘室除去气体中的固体杂质,降尘室长5 m ,宽5 m ,高4.2 m ,固体杂质为球形颗粒,密度为3000 kg/m 3。
2019年-化工原理第三章非均相物系的分离及固体流态化-PPT课件-PPT精选文档

A
r1 O
r2
r
B ur C
uT u
颗粒在旋转流场中的运动
比较:沉降速度的大小、方向
化工原理
材料与化学工程学院
非均相物系的分离和固体流态化 化学工程与工艺教研室
16
§3-2 沉降分离
Rep=dput/ 1 或 2
层流区
D
24 Re t
d 2 ad 2 2 Rd 2 u 2
化工原理
材料与化学工程学院
非均相物系的分离和固体流态化 化学工程与工艺教研室
23
§3-3 过滤
三 、滤饼的压缩性和助滤剂
◆可压缩滤饼
◆不可压缩滤饼
◆助滤剂:
要求:刚性颗粒;化学稳定性;不可压缩性
常用:不可压缩的粉状或纤维状固体如硅藻土、纤维粉末、 活性炭、石棉。
使用:可预涂,也可以混入待滤的滤浆中一起过滤。
影响因素:设备类型及尺寸、操作温度及流速、颗粒密度
化工原理
材料与化学工程学院
非均相物系的分离和固体流态化 化学工程与工艺教研室
18
§3-2 沉降分离
◆分离效率 总效率
0
c1 c2 c1
分效率(粒级效率)
i
ci1 ci2 c i1
0 xii
分割直径 d50 对标准旋风分离器
非均相物系的分离和固体流态化 化学工程与工艺教研室
13
§3-2 沉降分离
气体
气体 思考 1:要想使某一粒度的颗粒在
进口
出口 降尘室中被 100%除去,必须满足什
集灰斗 降尘室
么条件?
t
H ut
思考 2:能够被 100%除去的最小
第三章非均相物系的分离

2020年4月9日
1
3.1 概述
3.1.1 均相物系和非均相物系
均相物系:物系内部各处物料性质均匀而不存在相界面的混合物系。
非均相物系:物系内部有明显的相界面存在而界面两侧物料的性质不同的 混合物系。
3.1.2 非均相物系的分类
1.按状态分
液态非均相物系:固、液、气分散在液相中。分:
2.非球形颗粒:常用颗粒的当量直径和球形度表示其特性。 (1)体积当量直径de:与实际颗粒体积Vp相等的球形颗粒的直径 定义为非球形颗粒的当量直径。即:
de 3
6Vp
(2)表面积当量直径ds:表面积等于实际颗粒表面积Sp的球形颗 粒的直径定义为非球形颗粒的表面积当量直径。即:
ds
Sp
(3)比表面积当量直径da:比表面积等于实际颗料比表面积ap的球 形颗粒的直径定义为非球形颗粒的比表面积当量直径。即:
4.电子除尘:使含有悬浮尘粒或雾滴的气体通过金属电极间 的高压直流静电场,气体电离产生离子附着于悬浮尘粒或雾滴 上而使之荷电。荷电的尘粒、雾滴在电场力的作用下至电极后 发生中和而恢复中性从而达到分离。
3.2 颗粒及颗粒床层的特性
3.2.1 颗粒的特性(单颗粒的几何特性参数)
固体颗粒由于其形成的方法和条件不同,致使它们具有不同 的几何形状和尺寸,在工程计算中,常需要知道颗粒的几何特 性参数:即大小(尺寸)、形状和表面积(或比表面积)等。
de和s来表征。
3.颗粒群的特性
工业中碰到的颗粒大多是由大小和形状不同的若干颗粒组成 的集合体,称为颗粒群。但通常认为它们的形状一致,而只考 虑其大小分布,这样就提出了其粒度分布及其平均直径的问题。
(1) 按颗粒尺寸对颗粒群进行排列划分的结果称为粒度分布。根
第三章 非均相物系的分离1(09.11)

球
S V
6 d
d――球形颗粒的直径,m;
S――球形颗粒的表面积,m2;
V――球形颗粒的体积,m3;
a球――颗粒的比表面积,m2/m3
5
盐城师范学院
(二)非球形颗粒
----化工原理----
非球形颗粒
非球形颗粒必须有两个参数才能确定其特性,即球形度和当 量直径。
1.球形度φS (Degree of sphericity) 颗粒的球形度又称形状系数,它表示颗粒形状与球形的差异,
体积当量直径:与颗粒体积相等的球形颗粒的直径。
即:Vp
6
de3
de 3
6Vp
de――颗粒的等体积当量直径,m; VP――非球形颗粒的实际体积,m3。
8
盐城师范学院
颗粒的比表面积 a
----化工原理----
a
颗粒表面积 (m2 颗粒体积 (m3)
)
S V
说明:V相同时,a ↓,则颗粒越接近球形。
b
s
――颗粒的堆积密度,kg/m3; ――颗粒的真实密度,kg/m3。
b (1 )s
17
盐城师范学院
----化工原理----
3.2.3流体通过固定床流动的压力降
1.床层的简化模型
细小而密集的固体颗粒床层具有很大的比表面积,流体 通过床层的流动多为爬流,流动阻力基本上为粘性摩擦阻 力,同时使整个床层截面速度的分布均匀化。为解决流体 通过床层的压力降计算问题,在保证单位床层体积表面积 相等的前提下,将颗粒床层内实际流动过程大幅度加以简 化,以便可以用数学方程式加以描述。
根据连续相状态的不同,非均相混合物又可分为两种类型:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)床层的比表面积 指单位体积床层中具有的b颗粒表面积(即颗粒与流体接触面 积),如果忽略颗粒间相互重叠的接触面积则 b (1 )
2010-9-1
b可用堆积密度估算: b
6b Sd
6(ቤተ መጻሕፍቲ ባይዱ d
)
,
b
(1 ) S
(4)床层的当量直径
床层简化模型:即将固定床中不规则的流道简化成一组与床 层高度相等的平行细管。细管的当量直径可用床层的空隙率 可颗粒的比表面积计算 deb 4rH 4 流通截面积 润湿周边
deb (流通截面积 流道长度)(润湿周边 流道长度), deb 流通容积 流道表面积
考虑1平方米高度1米的固定床,床层体积=1×1=1m3
假设细管的全部流动空间等于床层的空隙体积,故
流道容积=1×ε=εm³
2010-9-1
2010-9-1
若忽略床层中因颗粒相互接触而彼此覆盖的表面积。则
流道表面积=颗粒体积×颗粒比表面积=1(1-ε)а m³
所以床层的当量直径为:d eb
b)堆积密度
:粒子体积包含颗粒之间的空隙。
b
3.2.2颗粒床层的特性
(1)床层的空隙率
床层体积-颗粒体积 床层体积
m3 / m3
2010-9-1
ε的大小与颗粒形状、粒度分布、颗粒直径与床层直径的 比值、床层的填充方式等因素有关。
床层的空隙率可通过实验测定:在体积V的颗粒床层中 加水直至水面达到床层表面,测定加入水的体积V水,则 床层空隙率为ε= V水/V。也可用称量法测定,称量体积V的 颗粒床层的质量G,若固体颗粒的密度为 , S则空隙率为 。 (V G / S ) /V
(4)电除尘:利用高压电场的作用,使悬浮在气相中的微粒 带电并被板状或管状电极吸引而除尘。适于更细小的悬浮物 系的分离。
2010-9-1
3.2颗粒与颗粒床层的特性
流体流过颗粒或颗粒床层时,其流动特性与流体流经管 道的情况有相同之处,即都是流体相对于固体界面的流动, 但床层中颗粒任意堆积形成的流道形状多变,很不规则, 边界条件复杂,对于这种复杂流道内的流动规律的研究, 需要从组成流道的颗粒入手。
2010-9-1
②离心分离:利用微粒所受惯性离心力的作用,使其与介质 分离,适于细小微粒悬浮物系的处理。
(2)过滤
利用某种多孔物质作过滤介质,流体通过介质而固体颗粒 被截留在介质上,从而得到分离。适于较细小悬浮物系的处 理。
(3)湿法除尘:利用液体(通常是水)洗涤含尘气体,除去 其中的尘粒,适于细小颗粒。
非均相混合物 物系内部有隔开两相的界面存在且 界面两侧的物料性质截然不同的混 合物。
固体颗粒和气体构成的含尘气体 固体颗粒和液体构成的悬浮液 例如 不互溶液体构成的乳浊液
液体颗粒和气体构成的含雾气体
非均相物系
分散相 分散物质
处于分散状态的物质 如:分散于流体中的固体颗粒、 液滴或气泡
连续相 包围着分散相物质且处于连续 分散相介质 状态的流体
一般,乱堆床层ε=0.4~0.7;均匀球体:松排列ε= 0.4,紧密排列ε=0.26。
(2)床层的自由截面积
床层截面上未被颗粒占据的流体可以自由通过的面积, 称为床层的自由截面积。
2010-9-1
☆床层的各向同性:小颗粒乱堆床层可以认为是各向同性的 。各向同性床层的重要特性之一是其自由截面积与床层截面 积之比在数值上与床层的空隙率相等。同床层空隙率一样, 由于壁面效应的影响,壁面附近的自由截面积大。
如:气态非均相物系中的气体 液态非均相物系中的连续液体
连续相与分散相 分离
不同的物理性质
机械 分离
分散相和连续相 发生相对运动的方式
2010-9-1
沉降 过滤
3.1.2非均相物系分离的目的 (1)收集分散物质 例如从气流干燥器或喷雾干燥器排出的气体中回收固体产品。 (2)净化分散介质 例如:生产硫酸,二氧化硫炉气含杂质,净化。 (3)环境保护 空气中的粉尘、废水、废气治理。 3.1.3非均相物系分离常用方法 (1)沉降分离(颗粒相对流体的运动过程) ①重力沉降:微粒借助本身重力在介质中沉降而分离,适于处 理粗粒悬浮物系。
②颗粒的当量直径
颗粒的当量直径表示非球形颗粒的大小,通常有两种表示
方法: a)等体积当量直径
2010-9-1
de
3
6
VP
V
-颗粒体积m3
P
b)等比表面积当量直径
即与非球形颗粒比表面积相等的球形颗粒的直径为该颗粒的
等比表面积当量直径。即: d
6
③比表面积 S P 6 VP S de
(3)颗粒群 ①颗粒粒度分布 筛分分析:泰勒标准筛(表3-2) ②颗粒群的平均粒径
3.2.1颗粒的特性
(1)球形颗粒
球形颗粒的尺寸由直径d确定,其它参数均可为直径的函数。
如:体积
V d3
6
表面积
S d 2
比表面积 S 6
Vd
2010-9-1
不同颗粒的 形状
(2)非球形颗粒
①球形度(形状系数)
定义为:与该颗粒体积相等的球体的表面积除以颗粒的表面
积的,球即体:的表面S 积S。SP 由于SP同-体颗积粒不表同面形积状,的S-颗与粒颗中粒,体球积形相颗等粒 的表面积最小,因此对非球形颗粒,总有S 1 ,颗粒的形 状越接近球形, S越接近1,对于球形颗粒 S 1。
2010-9-1
停留在第i层筛网上的颗粒的平均直径dpi可按di-1和di的算术平
均值计算。即:d pi
di
di1 2
颗粒的平均粒径
d P
1 xi
d Pi
式中xi-粒径段内颗粒的质量分率。
di-1
di di+
1
di+
③颗粒密度(单位体积内粒子的质量)
2
a)真密度 S :粒子体积不包含颗粒之间的空隙。
第三章 非均相物系的分离及固体流态化
3.1概述 3.2颗粒及颗粒床层的特性 3.3重力沉降 3.4离心沉降 3.5过滤 3.6固体流态化
2010-9-1
3.1概述
3.1.1混合物的分类
混合物
均相混合物 物系内部各处物料性质均匀而且不 存在相界面的混合物。
例如:互溶溶液及混合气体
2010-9-1