X荧光光谱法(XRF)解析(课堂PPT)

合集下载

第3章 X射线荧光光谱(XRF)PPT课件

第3章 X射线荧光光谱(XRF)PPT课件
99.80
MC1-5 68.5 6.85 5.08 3.52
14.4
0.04 0.73 0.00 0.44
MC1-6 39.40 13.10 0.96 1.20
44.80
0.10 0.07 0.02 0.02
MC1-7 70.58 0.74 9.36 4.23
-
0.08 1.82 0.09 0.25
(5)制样简单,固体、粉末和液体样品都可测定,样品 在分析中不受破坏,属于无损分析法;
(6)多元素同时分析,分析自动化程度高,分析速度快, 几分钟内可同时给出一个样品种所含的几十种元素的定 性、定量分析;
(7)仪器分析计算机操作,计算机计算输出元素百分含 量结果。
尤其是合于地质样品的分析,因而,在地质科学研究中是 不可缺少的仪器设备
三、XRF分析的特点
X射线荧光光谱在元素的定性和定量分析中得到广泛应 用,它的突出特点是: (1)谱线简单,多元素间干扰比发射光谱小,除少数轻 元素外,它基本不受化学键和元素在化合物中状态影响; (2)分析灵敏度高,大多数元素检出限达到10-5-10-8g/g; 分析元素的范围宽,从硼到铀(5-92)元素都可以分析, 常用的元素分析范围是氟到铀(9-92) (3)定量分析响应范围宽,从常量到微量mg/kg (4)分析方法的精密度高,误差一般在5%以内;
1. TXRF分析仪工作原理:
TXRF利用全反射技术 会使样品荧光的杂散本底比 XRF降低约四个量级 从而大大提高了能量分辨率和灵 敏率 避免了XRF和WXRF测量中通常遇到的本底增强 效应 大大缩减了定量分析的工作量和工作时间 同时提 高了测量的精确度
2. TXRF元素分析仪主要性能指标
(1)最低绝对检出限:pg 级 (2)最低相对检出限:ng/ml级 (3)单次可用时分析元素数量:20多种 (4)测量元素范围:可以从11号元素到92号元素 (5)样品用量:μl,μg级; (6)可以进行无损分析 (7)测量时间:一般1000秒 (8)输入功率:小于2kw (9)从测量操作到分析出结果全部自动化 (10)主体尺寸:180×80×95(高)cm3

XRF课件

XRF课件

思考题
X射线的本质和特点
特征X射线荧光是如何产生的
简述Moseley定律和Bragg(布拉格)定律
X射线荧光光谱仪的结构与主要类型
简述X射线荧光光谱定性和定量分析的依据
X射线荧光光谱法的主要特点
Thank you for your attention
定量分析中的基本问题
基ቤተ መጻሕፍቲ ባይዱ效应
光谱重叠影响
背景影响
定量分析方法
基体效应: 样品中共存元素对分析元素光谱 强度的影响。 在光谱分析中基体对测量的分析线的强度影 响可分为两大类: (1) 吸收-增强效应:由基体的化学组成所致 (2) 物理状态影响:由样品的粒度、均匀性, 密度和表面结构等因素所致。
光谱重叠影响
X射线特点
与可见光一样,是电磁辐射的一种形式,具有波动
和粒子二重性
在某些现象(如直线传播、反射、折射等)中表现
为波,而在另外一些现象(如光电效应、吸收、散
射等)中表现为粒子 波长越短,粒子性越强;波长越长,波动性越强
* X射线波长范围:~ 0.01-10 nm(10-9 m)
X射线管示意图
真空条件下,阴极发射的电子在电场作用下 飞向阳极; 高速电子与阳极靶原子相遇突然减速,发生 能量转化,产生X射线光子; 高速电子99%的能量以热能释放,仅有1 % 的能量转变成X射线光子。
X射线管产生的X射线的特点:当高速电子束轰 击金属靶时会产生两种不同的X射线。一种连续 X射线,另一种是特征X射线。它们的性质不同、 产生的机理不同,用途也不同。 X射线衍射分析利用的是特征X射线;而X射线 荧光光谱分析利用的是特征X射线以及连续X射 线。
X射线的防护
长时间的X射线照射,会对人体产生危害!

X荧光光谱法(XRF)课件PPT

X荧光光谱法(XRF)课件PPT
与其他分析方法相比,X荧光光谱法具 有较高的检测精度和稳定性,操作简 便,对环境和人员无害,尤其适用于 现场快速分析和在线检测等领域。
02 X荧光光谱法的基本原理
原子结构与能级跃迁
01
02
03
原子结构
原子由原子核和核外电子 组成,电子在不同能级上 运动。
能级跃迁
当原子受到外界能量(如 光子)的激发时,电子从 低能级跃迁到高能级,反 之亦然。
环境样品分析
总结词
X荧光光谱法在环境样品分析中具有独特的优势,能够同时测定多种元素,且对样品的 前处理要求较低。
详细描述
X荧光光谱法可用于水质检测,如测定水体中的重金属离子和溶解氧等;还可用于大气 颗粒物分析,了解空气污染物的来源和分布情况。
考古样品分析
ቤተ መጻሕፍቲ ባይዱ
总结词
详细描述
X荧光光谱法在考古样品分析中具有重要作 用,能够快速准确地测定文物中的元素组成, 为文物鉴定和保护提供依据。
现状
随着科技的不断进步,X荧光光谱仪器的性能不断提升,检测精度和稳定性不断 提高,同时新型的仪器和应用也不断涌现,如便携式X荧光光谱仪、在线X荧光 光谱仪等。
特点与优势
特点
X荧光光谱法具有非破坏性、快速、 多元素同时分析等特点,能够同时检 测物质中多种元素的含量,且对样品 形状和大小要求不高。
优势
化合物分析
总结词
X荧光光谱法不仅可以检测元素,还可以对化合物进行分析。
详细描述
通过测量不同元素荧光谱线的能量和强度,可以对化合物的类型和结构进行分析。该方法在化学、制药、生物等 领域有广泛应用,可用于药物成分分析、生物组织成分分析等。
样品制备与处理
总结词
为了获得准确的X荧光光谱分析结果,需要对样品进行适当的制备与处理。

X射线光谱法 ppt课件

X射线光谱法  ppt课件

PPT课件
1
5.1.基本原理
X射线是由高能电子的减速运动或原子内层 轨道电子跃迁产生的短波电磁辐射。X射线的波 长在10-6~10 nm,在X射线光谱法中,常用波长 在0.01~2.5 nm范围内。
5.1.1. X射线的发射
1.用高能电子束轰击金属靶;
2.将物质用初级X射线照射以产生二级射线——X射 线荧光;
应的半衰期为2.6a:
55Fe → 54Mn + hν
PPT课件
7
5.1.2. X射线的吸收
5.1.2.1.基本原理和概念
X射线照射固体物质时,一部分透过晶体,产生热 能;一部分用于产生散射、衍射和次级X射线(X荧光) 等;还有一部分将其能量转移给晶体中的电子。因此, 用X射线照射固体后其强度会发生衰减。
第5章 X射线光谱法
1895年,Rontgen W C发现了X射线,1913 年Moseley H G J在英国Manchester大学奠定了X 射线光谱分析的基础,在初步进行其用于定性 及定量分析的基础研究后,预言了该方法用于 痕量分析的可能性。目前,X射线光谱法发展 成熟,多用于元素的定性、定量及固体表面薄 层成分分析等。而X射线衍射法(X-ray diffraction analysis,XRD)则广泛用于晶体结 构测定。
3.利用放射性同位素源衰变过程产生的X射线发射;
4.从同步加速器辐射源获得。在分析测试中,常用的 光源为前3种,第4种光源虽然质量非常优越,但设 备庞大,国内外仅有少数实验室拥有这种设施。
PPT课件
2
5.1.1.1.电子束源产生的连续X射线
在轰击金属靶的过程中,有的电子在一次碰撞 中耗尽其全部能量,有的则在多次碰撞中才丧失全 部能量。因为电子数目很大、碰撞是随机的,所以 产生了连续的具有不同波长的X射线,这一段波长的 X光谱即为连续X射线谱。

X射线荧光光谱(XRF)分析

X射线荧光光谱(XRF)分析

消除基体效应
基体效应会影响XRF的测 量结果,因此需要采取措 施消除基体效应,如稀释 样品或添加标准物质。
固体样品的制备
研磨
将固体样品研磨成细粉,以便进行XRF分析。
分选
将研磨后的样品进行分选,去除其中的杂质和粗 颗粒。
压片
将分选后的样品压制成型,以便进行XRF测量。
液体样品的制备
1 2
稀释
将液体样品进行稀释,以便进行XRF分析。
定性分析的方法
标样法
01
通过与已知标准样品的荧光光谱进行比较,确定样品中元素的
种类。
参考法
02
利用已知元素的标准光谱,通过匹配样品中释放的X射线荧光光
谱来识别元素。
特征谱线法
03
通过测量样品中特定元素的特征谱线,与标准谱线进行对比,
确定元素的存在。
定性分析的步骤
X射线照射
使用X射线源照射样品,激发 原子中的电子跃迁并释放出X 射线荧光光谱。
XRF和ICP-AES都是常用的元素分析方法,ICP-AES具有更高的灵敏度和更低 的检测限,适用于痕量元素分析,而XRF具有更广泛的应用范围和更简便的操 作。
XRF与EDS的比较
XRF和EDS都是用于表面元素分析的方法,EDS具有更高的空间分辨率,适用于 微区分析,而XRF具有更广泛的元素覆盖范围和更简便的操作。
XRF分析的局限性
01
元素检测限较高
对于某些低浓度元素,XRF的检 测限相对较高,可能无法满足某 些应用领域的精度要求。
02
定量分析准确性有 限
由于XRF分析基于相对强度测量, 因此对于不同样品基质中相同元 素的定量分析可能存在偏差。
03
对非金属元素分析 能力有限

X荧光光谱法(XRF)解析(课堂PPT)

X荧光光谱法(XRF)解析(课堂PPT)
15
检出限
对于固体和粉末样品,轻元素的检出 限为50µg/g,重元素为5µg/g.轻元素的灵 敏度低是因为它们的荧光产生率(变成X射 线的比率)小.
16
17

荧反


光 分
射 线
X
Total—Reflection X—Ray Fluorescence Analysis
X射线 荧光基础
光谱机理
用化学联(IUPAC)的
定义,TXRF是一种
微量分析
(Microanalysis)
方法,而且总是需要
将样品进行一定的预
处理制备成溶液、悬
浊液、细粉或 薄片,
而一般原样很少能直
接分析。
27
参考文献: «X射线荧光光谱分析 作者:吉昂 陶光仪 卓尚军 罗立 强 科学出版社
全反射X射线荧光分析 作者:(德)赖因霍尔德·克洛肯凯 帕 原子能出版社
21
但应该指出,与现代的其他多元素分析技术,如电 感耦合等离子体光谱(ICP-AEC)、电感耦合等离子 体质谱(ICP-MS)和仪器中子活化分析(INAA)相比,
XRF最明显的缺点就是灵敏度低、取样量大。
22
由于常规XRF的入
射束一般采用大于 40度的入射角,不
仅样品会产生二次 X射线,载体材料 也会受到激发从而 在记录谱上产生峰, 对测量形成干扰。
3)若存在 K或L谱线,则需进行强度比的计算以 确定该元素的存在.
4)微量元素,有时只存在 K 线.
12
定量分析
因为X射线荧光分析得到的是相对分 析值,所以进行定量分析时需要标样.选 定分光晶体和检测器,统计测量样品发出 的X射线荧光的强度,将已知含量的标准 样品和未知样品在同一条件下测定,确定 未知样品的含量.

X射线荧光光谱分析技术精讲PPT课件

X射线荧光光谱分析技术精讲PPT课件

300>
第39页/共99页
脉冲高度分布
高计数率带来的问题 :堆积、脉冲高度漂移
escape
I[kcps]
Intensity: < 100 kcps
LiF(200) Fe KA1 FC
Intensity: 200 - 300 kcps
Pulshight shift
Pile-up effect
Pulshight-shift
Mo
B [0,18 keV] 6 e-I+
B
X-rays
ra
rc
r
第30页/共99页
流气计数器或封闭计数器
Ar + 10% CH4 e- e- e- e- e- e- eI+ I+ I+ I+ I+ I+ I+
CH4: quench gas (electropositive!) Toxic for the FC: elektonegative gasses, e.g.
S Cl
第18页/共99页
X射线的发生: 改变电压和电流对原级谱线 的影响(如何选择电压、电流参数)
Change in kV:
Optimum settings are predefined in SPECTRAplus !!!
第19页/共99页
Changing of mA will change only the intensity
l = 11.3 - 0.02 nm
or
元素范围从铍 (Be)到铀 (U)
第2页/共99页
单位
Name 波长 能量 Quatum 强度
符号 单位 t]
description

X荧光光谱法(XRF)

X荧光光谱法(XRF)
X荧光光谱法(XRF)
利用能量足够高的X射线 (或电子)照射试样,激发出来的 光叫X射线荧光.利用分光计分析 X射线荧光光谱,鉴定样品的化学 成分称为X射线荧光分析.
X射线荧光分析原理
当样品中元素的原子受到高能X射线照 射时,即发射出具有一定特征的X射线谱, 特征谱线的波长只与元素的原子序数(Z) 有关,而与激发X射线的能量无关.谱线的 强度和元素含量的多少有关,所以测定谱 线的波长,就可知道试样中包含什么元素, 测定谱线的强度,就可知道该元素的含量.
定性分析的步骤
谱图解析: 1)除掉靶发射的所有X射线 2)查找

K( 49In以下元素)或L( 50 Sn以上元素)与标样相应谱线的2 对比,进行初步判定
3)若存在 K 或L 谱线 ,则需进行强度比的计算以 确定该元素的存在. 4)微量元素,有时只存在 K 线.
定量分析
因为X射线荧光分析得到的是相对分 析值,所以进行定量分析时需要标样.选 定分光晶体和检测器,统计测量样品发出 的X射线荧光的强度,将已知含量的标准 样品和未知样品在同一条件下测定,确定 未知样品的含量.

受能 每 激量 一 原的 次 子释 的 的放 跃 二, 迁 次从 都 而伴 射形 随 线成 有 。

X
X

在当今众多的元素分析技术中,X射线荧光技术是 一种应用较早,且至今仍广泛应用的多元素分析 技术。

曾经成功的解决了:矿石中Nb和Ta,Zr和Hf及单个稀土 元素(REE)的测定问题;地质与无机材料分析中工作 量最大,最繁重,最耗时的主次量组分快速全分析的难 题;以及高精度,海量地球化学数据的获取问题等等。
定性分析
基本原理:试样发出的X荧光射线波长 与元素的原子序数存在一定关系,即 元素的原子序数增加,X射线荧光的波 长变短,关系式为 1 1 ( ) 2 K (Z S )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11 ( )2 K(Z S)
式中K ,S:随不同谱线系列而定的常 数;Z:原子序数.
9
定性分析
从试样发出的X射线荧光具有所含元素 的固有波长,该波长可用Bragg公式表示:
2dsin
X射线荧光分析是已知分光晶体的晶面间 距d,测定分光晶体对样品发射出的X射线
荧光的衍射角 ,然后求出X射线荧光的波
2
X射线荧光的种类
入射的X射线具有相对大的能量,该能量 可以轰击出元素原子内层中的电子. K层空缺时,电子由L层跃迁入K层,辐射出的 特征X射线称为 K 线;从M层跃迁入K层,辐 射出的特征X射线称为 K 线.同理L系X射线 也具有 L , L 等特征X射线.X射线荧光光谱 法多采用K系L系荧光,其他线系较少采用.
分光晶体:一般地,F~Mg用TPA晶体, Al~Si用PET晶体,P~Ar用Ge晶体,K~U用 LiF晶体.
扫描速度:一般为 2~8/min
11
定性分析的步骤
谱图解析: 1)除掉靶发射的所有X射线
2)查找
K ( 4 9 I n 以 下 元 素 ) 或 L ( 5 0 S n 以 上 元 素 ) 与 标 样 相 应 谱 线 的 2 对 比 , 进 行 初 步 判 定
3)若存在 K或L谱线,则需进行强度比的计算以 确定该元素的存在.
4)微量元素,有时只存在 K 线.
12
定量分析
因为X射线荧光分析得到的是相对分 析值,所以进行定量分析时需要标样.选 定分光晶体和检测器,统计测量样品发出 的X射线荧光的强度,将已知含量的标准 样品和未知样品在同一条件下测定,确定 未知样品的含量.
长 .由此确定元素的种类,进行元素分 析.通常被检测X射线荧光的位置不用波长 表示,而是用 2 表示.
10
定性分析的步骤
选择测定条件:
测定的X射线: 4 9 I n 以 下 元 素 K ,5 0 S n 以 上 元 素 L
管电压-管电流:Rh靶
3kW
40kV,70mA,4kW40kV,95mA
少);分析元素为 5B92U
灵敏度低. 能量色散型:半导体检测器;分辨率差,定
性较难(谱线重叠多),分析元素为 11Na92U 灵敏度高.需液氮冷却.
5

7
X射线荧光光谱仪器组成
X射线发生系统:产生初级高强X射线,用于激发样品; 冷却系统:用于冷却产生大量热的X射线管; 样品传输系统:将放置在样品盘中的样品传输到测定位置 分光检测系统:把样品产生的X射线荧光用分光元件和检
测器进行分光,检测; 计数系统:统计,测量由检测器测出的信号,同时也可以除
去过强的信号和干扰线; 真空系统:将样品传输系统和分析检测系统抽成真空,使
检测在真空中进行(避免强度的吸收损失); 控制和数据处理系统:对各部分进行控制,并处理统计测
量的数据,进行定性,定量分析,打印结果.
8
定性分析
基本原理:试样发出的X荧光射线波长 与元素的原子序数存在一定关系,即 元素的原子序数增加,X射线荧光的波 长变短,关系式为
15
检出限
对于固体和粉末样品,轻元素的检出 限为50µg/g,重元素为5µg/g.轻元素的灵 敏度低是因为它们的荧光产生率(变成X射 线的比率)小.
16
17

荧反


光 分
射 线
X
Total—Reflection X—Ray Fluorescence Analysis
X射线 荧光基础
光谱机理
21
但应该指出,与现代的其他多元素分析技术,如电 感耦合等离子体光谱(ICP-AEC)、电感耦合等离子 体质谱(ICP-MS)和仪器中子活化分析(INAA)相比,
XRF最明显的缺点就是灵敏度低、取样量大。
22
由于常规XRF的入
射束一般采用大于 40度的入射角,不
仅样品会产生二次 X射线,载体材料 也会受到激发从而 在记录谱上产生峰, 对测量形成干扰。
18
在光电吸收过程中,原 子内某些电子吸收了特 定能量后被逐出,在轨 道中形成空穴。
此时,其外层轨道电子 会发生跃迁来填补这些 空穴。
跃迁电子产生的空穴再 由外一层电子通过跃迁 填补。。。
如此继续,直至自由电 子进入轨道为止
19
X X
。 有的其以 该 受能每
相特中谱 激量一
应征的的 射 原的次
3
XRF之特点
谱线简单 分析灵敏度高:大多数元素检出限达105 ~108g/g 分析元素范围宽:B~U(5~92) 定量分析线性范围宽:从常量至微量 分析方法的精密度高:误差一般在5%以内 制样简单:固体,粉末,液体,无损分析 分析速度快
4
X射线荧光光谱仪器种类
波长色散型:分光元件(分光晶体+狭缝); 特点:分辨率好,定性分析容易(谱线重叠
X荧光光谱法(XRF)
利用能量足够高的X射线 (或电子)照射试样,激发出来的 光叫X射线荧光.利用分光计分析 X射线荧光光谱,鉴定样品的化学 成分称为X射线荧光分析.
1
X射线荧光分析原理
当样品中元素的原子受到高能X射线照 射时,即发射出具有一定特征的X射线谱, 特征谱线的波长只与元素的原子序数(Z) 有关,而与激发X射线的能量无关.谱线的 强度和元素含量的多少有关,所以测定谱 线的波长,就可知道试样中包含什么元素, 测定谱线的强度,就可知道该元素的含量.
的,峰形 线 子释的
元表,式 可 的放跃
素明即记 被 二,迁
样谱录 探 次从都
品线下测 而伴
中原来 , 射形随
含子。

线 。


20
在当今众多的元素分析技术中,X射线荧光技术是 一种应用较早,且至今仍广泛应用的多元素分析 技术。
曾经成功的解决了:矿石中Nb和Ta,Zr和Hf及单个稀土 元素(REE)的测定问题;地质与无机材料分析中工作 量最大,最繁重,最耗时的主次量组分快速全分析的难 题;以及高精度,海量地球化学数据的获取问题等等。
13
定量分析的方法
标准工作曲线法 内标法 基本参数法
14
基体效应
试样内部产生的X荧光射线,在到达试 样表面前,周围的共存元素会产生吸收(吸 收效应).同时还会产生X荧光射线并对共存 元素二次激发(二次激发效应).因此即使含 量一样,由于共存元素的不同,X荧光射线强 度也会有所差别,这就是基体效应.在定量 分析时,尤其要注意基体效应的影响.
相关文档
最新文档