荧光光谱

合集下载

荧光 光谱

荧光 光谱

2)荧光偏振
(1)荧光偏振现象及用途 一旦用偏振光照射,从许多样品出射的光也是偏 振的。当样品各个方向出射的偏振光是不相同的,可 以说样品显示出偏振的特性。 研究偏振可以提供分子及周围环境更多的信息: 偏振光照射到荧光分子上,分子对光的吸收和发 射过程与分子框架相对偏振光的偏振方向相关。 荧光偏振可以用来测量蛋白质的变形,蛋白质的 结合以及蛋白质的内部动力学。
3).荧光能量共振转移
4). 时间分辨光谱: 输入脉冲,然后进行对接收的信号进行相应分析。 时间分辨寿命;时间分辨各向异性。
荧光各向异性可以采用稳态测量,也可以用瞬态方 法进行测量。稳态测量是得到的是一个平均值,虽然 容易解释,但需要做很多假设。 瞬态测量是测量脉冲激发后的时间相关各向异性。 可以直接从实验数据中观察得到并进行解释。 各向异性与样品尺寸、形状以及标记分子的柔性 相关,需要从各种分子模型进行计算拟合。 各向异性衰减可以从TD或FD方法得到。 目前还是采用时间分辨进行测量。
2-3个数量级,比原子吸收分光光度法高103 ~104
倍,检测限可
分析成本低
设备简单,操作简单快速,计算机进行仪器控制和数据处理 提供激发光谱、发射光谱等许多信息
2).荧光光谱的特征 a.Stokes位移 激发光谱与发射光谱之间的波长差值。发射光谱的波
长比激发光谱的长,振动弛豫消耗了能量。
b.发射光谱的形状与激发波长无关 电子跃迁到不同激发态能级,吸收不同波长的能量 ( 如
荧光寿命
当某种物质被一束激光激发后,该物质的分子吸 收能量后从基态跃迁到某一激发态上,再以辐射跃迁 的形式发出荧光回到基态.当激发停止后,分子的荧光 强度降到激发时最大强度的1/e所需的时间称为荧光 寿命.
5). 荧光标记

荧光光谱分析

荧光光谱分析

百泰派克生物科技
荧光光谱分析
荧光光谱法(又称荧光分析法或分光荧光测定)是一种电磁光谱法,可以测量样品吸收光子后发出的光子强度。

实际上,大多数荧光分子是芳香族的,如蛋白质/肽中的色氨酸。

光学技术,如UV-Vis、圆二色谱(CD)、傅立叶变换红外(FTIR)和荧光光谱,都被用于获取被测化合物的结构、相互作用和动力学信息。

荧光光谱是研究溶液状态和显微镜下蛋白质/肽的实时结构和动力学的重要研究工具。

荧光光谱分析。

生物制药,特别是蛋白质和多肽类药物,在整个研发过程中都面临着独特的挑战。

在成功批准和上市之前,需要对治疗性蛋白质/肽的生物物理、生化特性和3D结构有透彻的了解,因为产品的活性、稳定性、毒性、功效和保质期会因结构-活性关系而受到影响。

与小分子不同,这些大分子需要多种分析方法结合进行分析。

荧光光谱法可应用于:1,通过改变荧光强度来探测结构变化或两个分子的结合;2,通过色氨酸荧光的波长定位色氨酸残基(在蛋白质表面或深埋在蛋白质内部);3,通过荧光偏振和各向异性研究荧光团迁移率。

荧光发光光谱

荧光发光光谱

荧光发光光谱荧光光谱(也称为荧光测定法或荧光分光光度计)是一种分析样品荧光的电磁光谱学。

它涉及使用一束光,通常是紫外线,激发某些化合物分子中的电子并使它们发光;通常但不一定是可见光。

一种补充技术是吸收光谱。

在单分子荧光光谱的特殊情况下,发射光的强度波动是从单个荧光团或荧光团对测量的。

测量荧光的设备称为荧光计。

分子具有称为能级的各种状态。

荧光光谱主要关注电子和振动状态。

通常,被检查的物质具有感兴趣的基电子态(低能态)和较高能的激发电子态。

在这些电子状态中的每一个中,都有各种振动状态。

在荧光中,物质首先通过吸收光子从其基态电子状态激发到处于激发电子状态的各种振动状态之一。

与其他分子的碰撞导致激发分子失去振动能量,直到它从激发电子态达到最低振动状态。

然后分子再次下降到基电子态的各种振动水平之一,在此过程中发射光子。

由于分子可能会下降到基态的几个振动能级中的任何一个,因此发射的光子将具有不同的能量,从而具有不同的频率。

因此,通过分析荧光光谱中发出的不同频率的光,以及它们的相对强度,可以确定不同振动能级的结构。

对于原子种类,过程是相似的;然而,由于原子种类没有振动能级,因此发射的光子通常与入射辐射处于相同的波长。

这种重新发射吸收的光子的过程是共振荧光,虽然它是原子荧光的特征,但也可以在分子荧光中看到。

在典型的荧光(发射)测量中,激发波长是固定的,而检测波长是变化的,而在荧光激发测量中,检测波长是固定的,而激发波长在感兴趣的区域中是变化的。

发射图是通过记录一系列激发波长产生的发射光谱并将它们组合在一起来测量的。

这是一个三维表面数据集:作为激发和发射波长函数的发射强度,通常描绘为等高线图。

荧光光谱的原理与应用

荧光光谱的原理与应用

荧光光谱的原理与应用一、简介荧光光谱是一种非常重要的光谱技术,用于研究物质的光谱特性。

和吸收光谱相比,荧光光谱具有很多优点,包括高灵敏度、高选择性和动态特性等。

本文将介绍荧光光谱的原理和应用。

二、荧光光谱的基本原理荧光光谱是物质在受激发后发射荧光的光谱。

荧光的产生涉及两个过程:激发和发射。

具体来说,当物质受到足够能量的激发后,其内部的电子会升级到激发态,并在短时间内返回到基态,释放出荧光。

这个过程伴随着光的吸收和发射。

荧光光谱图通常由激发光和发射光组成。

激发光是用于激发物质的光,而发射光是物质在激发后发射的荧光。

通过测量激发光和发射光的强度和波长,可以得到荧光光谱。

三、荧光光谱的应用1. 荧光光谱在生物学中的应用荧光光谱在生物学中有广泛的应用。

例如,它可以用来研究生物分子的结构和函数。

荧光标记是研究生物分子的常用方法之一,该方法利用荧光染料或荧光蛋白标记生物分子,通过测量荧光光谱来研究它们的相互作用、分子结构以及代谢路径等。

2. 荧光光谱在材料科学中的应用荧光光谱在材料科学中也有很多应用。

例如,它可以用于研究材料的光电特性。

通过测量材料激发和发射的荧光光谱,可以了解材料的能带结构、载流子动力学等信息,对材料的性能进行评估和优化。

3. 荧光光谱在环境监测中的应用荧光光谱在环境监测中也起到重要作用。

例如,它可以用于水质监测。

通过测量水样中的荧光光谱,可以判断水质的污染程度和有机物的种类。

同时,荧光光谱还可以用于检测空气中的有害气体,如VOCs、NOx等。

4. 荧光光谱在食品安全中的应用荧光光谱在食品安全领域也有广泛应用。

例如,它可以用于检测食品中的有害物质和污染物。

通过测量食品样品的荧光光谱,可以判断食品是否受到了污染,确保食品的安全性。

5. 荧光光谱在医学诊断中的应用荧光光谱在医学诊断中也有很多应用。

例如,它可以用于癌症的早期诊断。

通过测量病变组织或体液中的荧光光谱,可以鉴别正常组织和癌变组织之间的差异,帮助早期发现癌症。

荧光光谱

荧光光谱

延迟荧光与普通荧光的区别主要在于 辐射寿命不同 。这种长寿命 的延迟荧光来源于从第一激发三重态(T1)重新生成的S1态的辐射跃 迁。即延迟荧光产生的过程为:
S1→T1→S1→S0+hνf
28
延迟荧光 E型延迟荧光:
当第一激发单重态S1与第一激发三重态T1能差较小时,T1态有时可从 环境获取一定的热能后又达到能量更高的S1态。即
跃迁过程中电子自旋发生了改变、跃迁前后电子的轨道在空间不
重叠或轨道的对映性未发生改变的跃迁是禁阻的。
9
失活的途径
电子处于激发态是不稳定状态,容易返回基态,在这个过程中通过
辐射跃迁(发光)和无辐射跃迁等方式失去能量,这个过程就称为失活。
失活途径 辐射跃迁 无辐射跃迁
荧光
磷光
系间窜越 内转换
外转换
振动弛豫
= s[Iεscs/(Isεc)]
s、 εs、cs和Is分别是参照物的荧光量子产率(已知)、摩尔消光系数、溶 液浓度和荧光强度; 、 ε 、c和I分别是被测物的荧光量子产率(未知)、摩 尔消光系数、溶液浓度和荧光强度。 参照物应是已知、无自吸收、无浓度猝灭、在被测物所用溶剂中可溶、易
纯化、稳定和对杂质不敏感的物质。常用的参照物如罗丹明B和喹啉硫酸氢盐
激发态停留时间短、返回速度快的途径,发生的几率大。
10
无辐射跃迁失活的途径 振动弛豫:同一电子能级内以热能量交换形式由高振 动能级至低相邻振动能级间的跃迁。发生振动弛豫的时 间一般为10-12 s。 内转换:多重度相同的电子能级中等能级间的无辐射 能级跃迁。
通过内转换和振动弛豫,高激发单重态的电子跃回第一 激发单重态的最低振动能级。
6
分子能级与跃迁 分子能级比原子能级复杂; 在每个电子能级上,都存在振动、转动能级; 激发: 基态(S0)→激发态(S1、S2激发态振动能级 ):吸收 特定频率的辐射;量子化;跃迁一次到位; 失活: 激发态 →基态:多种途径和方式 (见能级图);速 度最快、激发态寿命最短的途径占优势;

荧光光谱的原理和应用

荧光光谱的原理和应用

荧光光谱的原理和应用1. 荧光光谱的基本概念•荧光:荧光是指物质受到激发后,在短时间内吸收能量并发出较长波长的光。

•荧光光谱:荧光光谱是指在特定激发光源照射下,物质发出的荧光光在不同波长下的强度分布。

•荧光发射:当物质受到激发并返回基态时,通过辐射发出光的过程称为荧光发射。

2. 荧光光谱的原理2.1 荧光激发和发射•荧光激发:物质受到外界能量的激发,电子从基态上升到激发态。

•荧光发射:激发态电子回到基态的过程中,通过辐射发出光。

2.2 荧光激发与发射能级•电子能级:物质中的电子具有不同能量的电子能级。

•激发态:电子从基态跃迁到更高能级的状态称为激发态。

•发射态:电子从激发态回到基态的状态称为发射态。

2.3 荧光与分子结构•分子结构:不同分子结构对荧光发射的波长和强度有影响。

•良好的激发能量传递:分子结构中共轭体系的存在有助于良好的激发能量传递。

3. 荧光光谱的应用3.1 荧光光谱分析•分析特性:荧光光谱可以提供物质的结构信息、浓度、纯度和环境条件等分析特性。

•应用领域:荧光光谱分析广泛应用于环境监测、生物医学、食品安全等领域。

3.2 荧光探针和标记物•荧光探针:利用荧光探针可以对生物分子进行检测和定量分析。

•标记物应用:荧光标记物在生物学领域中的应用非常广泛,例如细胞成像、蛋白质定位研究等。

3.3 荧光荧光显微镜•荧光显微镜:利用荧光显微镜可以观察和研究生物样本中的荧光信号,无需对样本进行染色处理。

•应用领域:荧光显微镜被广泛应用于生物学、医学和材料科学领域。

3.4 荧光染料•荧光染料:具有良好荧光性能的化合物,可以用于荧光显微镜观察、荧光分析和药物研究等方面。

•应用领域:荧光染料广泛应用于细胞成像、分子探针、生物传感器等领域。

4. 总结荧光光谱是一种重要的光谱学技术,在科学研究和应用中具有广泛的应用前景。

通过荧光光谱可以获得物质的结构信息、浓度、纯度和环境条件等分析特性。

荧光光谱在环境监测、生物医学、食品安全等领域发挥着重要作用。

荧光光谱

荧光光谱

OH H2C O HO O H2C OH HO OH O HO C H2 O OH OH OH O HO O HO CH2 O HO O CH2 HO OH O O OH HO O HO O HO H2C OH
OH
O
CH3CH2CH2CH2CH2CH2CH2CH2
HO
OCH2CH2(OCH2CH2)n OH
β-CD∶OP 加合物的组成
用摩尔比法测定了βCD∶OP 二元体系的组 成. 由图4 可以看出, β - CD 与OP 的摩尔比为1∶1 , 说明在溶液中形成了 1∶1 的二元加合物,
加合物形成的机理及其结构
OP 疏水性烷基链的长 度、径度和体积分别为 1.036 nm、0.400 nm和 0.216 nm3 。 β- CD 空腔的深度 (0.780 nm) 、空腔口直 径(0.780 nm) 和体积 (0.346nm3 ) 相比, OP 的 疏水性烷基链中至多有 6 个碳被包络在空腔内, 其余未被包络部分和极 性头基位于空腔外
H2C
H2C
CH3 N
NpMA
PyMA
DMAA AMPS NpMA PyMA
AIBN DMF
乙醚
乙醇多次洗涤干燥
萘和芘标记聚电解质在水溶液中的紫外光谱和荧光光谱
在水溶液中的紫外吸收 光谱与小分子萘和芘的 光谱基本相同, 说明萘 和芘标记到聚电解质上 并没有对它们的光谱结 构产生明显影响, 而且 混合溶液表现出两者光 谱的迭加. 290 nm 处萘有一吸收带, 而芘的吸收很弱, 所以 在混合溶液中可用290 nm 激发萘; 343 nm 处仅 有芘的吸收, 因此可用 343 nm 选择性地激发芘.
330 nm 为中心的发射带 是萘的荧光, 360~ 440 nm 是单体态芘的发射光 谱, 480 nm 是芘激基缔 合物的发射光谱.

荧光光谱原理

荧光光谱原理

荧光光谱原理荧光光谱是一种分析化学技术,它利用物质在受到激发后发出的荧光来进行分析。

荧光光谱原理是基于分子或原子在吸收光能后发生跃迁,从而产生荧光的现象。

在荧光光谱中,我们可以通过测量样品在不同波长的激发光下发出的荧光强度来获取样品的信息,包括结构、浓度、纯度等。

荧光光谱原理的基本过程是,首先,样品受到激发光的照射,激发光的能量会被部分吸收并转化为激发态能量;接着,激发态的分子或原子会在极短的时间内发生非辐射跃迁,从而回到基态并释放出荧光光;最后,荧光光会被检测器接收并转化为电信号,然后进行信号放大、处理和分析。

荧光光谱原理的关键参数包括激发光源、激发波长、荧光检测器和荧光强度。

激发光源的选择应该考虑样品的特性和所需的激发波长,常见的激发光源包括氙灯、汞灯、激光等。

激发波长的选择应该根据样品的特性和所需的分析信息来确定,通常情况下,我们会选择使样品吸收最大的波长作为激发波长。

荧光检测器的选择应该考虑荧光强度的测量范围和灵敏度,常见的荧光检测器包括光电倍增管、光电二极管等。

荧光强度的测量可以通过调节荧光检测器的增益来实现,以确保信号在合适的范围内。

荧光光谱原理在分析化学中有着广泛的应用,例如荧光光谱可以用于药物分析、环境监测、生物标记、食品安全等领域。

在药物分析中,荧光光谱可以用于检测药物的含量和纯度,以及药物在体内的代谢过程。

在环境监测中,荧光光谱可以用于检测水体、大气和土壤中的污染物,如重金属离子、有机污染物等。

在生物标记中,荧光光谱可以用于追踪生物分子在细胞或组织中的分布和转运过程。

在食品安全中,荧光光谱可以用于检测食品中的添加剂、农药残留和食品质量等。

总之,荧光光谱原理是一种重要的分析化学技术,它通过测量物质在受到激发光后发出的荧光来获取样品的信息。

荧光光谱在药物分析、环境监测、生物标记、食品安全等领域有着广泛的应用前景。

随着科学技术的不断发展,相信荧光光谱原理将会在更多领域展现出其重要价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.46
0.60
λexmax(nm) 205 286
365
390
λ max em
(nm)
278
321
400
480
3. 刚性平面结构 荧光物质的刚性和平面
性增加,有利于荧光发射。

F=1
戊省 0.52 580 640
联苯
F=0.2
-O
O
O
荧光黄
C
COO产生荧光
F=0.92
-O
O
酚酞
ቤተ መጻሕፍቲ ባይዱC COO不产生荧光
到S1电子态的最低振动、转动能级,然后以辐射形式释放能量回到基态。
C. 激发光谱与发射 IF4800 固定em=620nm(MAX) 固定ex=290nm (MAX)
光谱的镜像关系
4400 4000
1→ 4
1→1
4 3
3600
S1
3200
1→ 3
1→2
2 1
2800
1→ 2
2400
1→4
2000
1600
1200 800
1→4
400
1→1
0
200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
4 3 2 1
S0 ex =290nm (MAX)
em= 620nm(MAX)
D.磷光光谱
与发射光谱相同条件下的磷光光谱
IF4800
4400 4000
488
τ p(s)
2.6
2.5
1.4
0.23 0.014 0.0023
含有重原子的溶剂,由于重原子效应荧光减弱、磷光增强。
6.溶剂效应 在极性溶剂中:
红移: 蓝移:
无溶剂化作用 △ Eπ→π* >
△ E n →π* <
有溶剂化作用 △ Eπ→π* △ E n →π*
三. 金属螯合物的荧光
1. 螯合物中配位体的发光
荧光熄灭剂:这些溶剂分子或其它溶质分子称为荧光熄灭剂。
1. 碰撞熄灭
相对速率
与分子的直径、激发 M hv M*
1
粘度、温度等因素 有关。
2. 能量转移熄灭
发射 熄灭
M* k1 M hv ,
K1 [M*]
M* Q k2 M Q ΔH K2 [M*] [Q]
再吸收过程:
共振能量转移:
D* D hv , A hv A*
kP
n
kP ki
i1
kF、 kp主要取决与荧光物质的分子结构; st系间窜跃效率。
ki主要取决化学环境,同时也与荧光物质的分子结构有关。
大多数的荧光物质的量子产率在0.1~1之间;
例如:0.05mol/L的硫酸喹啉,F=0.55; 荧光素 F=1
化合物
F 0.11 0.29
0.46
0.60
0.52
N OH
8-羟基喹啉 弱荧光
N O Zn
8-羟基喹啉-Zn螯合物 黄绿色强荧光
2. 螯合物中金属离子的发光
S1
系间窜跃
T1
d *、f*
S0
NN
OH
HO
2,2`-二羟基偶氮苯 无荧光
NN
O Al
O
2,2`-二羟基偶氮苯-Al螯合物 强荧光
分子内能量转移
d *→ d f*→ f 荧光
四. 荧光的熄灭
荧 光 熄 灭:荧光分子与溶剂分子或其它溶质分子相互作用引起 荧光强度降低或消失的现象。
3 M* 3M* 3 (M*M) 2M kT
4. 自熄灭与自吸收 当荧光物质的浓度大于1g/L时,常发生荧光的自熄灭(浓度熄灭)
310~405
280~390
285~345
相对荧光强度
10
18
20
20
20
2)得电子取代基减弱荧光、加强磷光 —C=0, — COOH , —NO2
不产生 p →π共轭
O
NO2
硝基苯:不产生荧光、弱磷光
二苯甲酮:弱荧光、强磷光 S1 →T1的系间窜跃产率接近1
3)取代基的位置 空间位阻对荧光发射的影响
激发光谱
3600 3200
发射光谱
2800
2400
2000
1600
1200
800
400
0 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
2. 三维荧光光谱
I F ∝f (λex 、λem)
固定发射波长、扫描激发波长
蒽的激发光谱
IF----荧光强度
F-----荧光量子产率
b--吸收光程
--摩尔吸光系数
C--荧光物质浓度
IP 2.30kP I0ε b C
IP----磷光强度
P-----磷光量子产率
k--与仪器灵敏度有关的参数 I0--入射光强度。
IF K C
IP KC
2. 荧光(磷光)的平均寿命
分子在激发态的平均时间或者说处于激发
—Cl, — Br , —I
S1 →T1的系间窜跃由于重原子的存在增强
化合物 萘 1-甲基萘 1-氟萘 1-氯萘 1-溴萘 1-碘萘
P/F
0.093 0.053 0.068
5.2
6.4 >1000
λ Fmax(nm) 315
318
316
319
320
~
λ
P max
(nm)
470
476
473
483
484
D* (S1 ) A( S0 ) D( S0 ) A* (S1 ) D* (T1 ) A( S0 ) D( S0 ) A* (S1 )
分子内能量转移:
CH3 hv
N CH3
_ CH3 +N
CH3
3. 氧的熄灭作用 氧分子是荧光、磷光的熄灭剂,
1 M* 3O2 k13 M* 3O2
没有除氧,溶液中 难以观察到磷光
态的分子数目衰减到原来的1/2所经历的时间。 对于处于S1(T1)电子态的荧光体来说,其
平均寿命()可以左式表示:
F(P)
1
n
kF(P) ki
i1
3. 荧光(磷光)的量子产率
荧光量子产率的定义:
发射荧光的分子数
F 激发分子总数
发射磷光的分子数
P 激发分子总数
F
kF
n
kF ki
i1
P st
按激发的模式分类:分子发光
按分子激发态的类型分类:
按光子能量分类:
分子发光
光致发光 化学发光/生物发光 热致发光 场致发光 摩擦发光
荧光 瞬时荧光 迟滞荧光
磷光
荧光
斯托克斯荧光(Stokes):
λex < λem
反斯托克斯荧光 (Antistokes):λex > λem
共振荧光(Resonance):
第二章 荧光光谱在材料研究中的应用
分子荧光:Fluorescence 分子磷光:Phosphorescence
几个基本概念
❖荧光(Fluorescence):从激发态的最低振动能级返回到基态, 不通过内部转换而是光辐射失活,则称为荧光。由于一部分 能量通过振动能级变化以热能形式放出,所以发射光的波长 比吸收光的波长长。
§2.2 分子荧光与磷光强度的影响因素
一.荧光的量子产率
二. 荧光与有机化合物的结构
1. 跃迁的类型
π * →π π* → n
对于有机荧光物质: n →π* εmax< 100 平均寿命10-5~10-7sec
π→π* εmax≥104 平均寿命10-7~10-9sec kS → T小 π*→π 是有机化合物产生荧光的主要跃迁类型。
• NO+O3→NO2* →NO2+hν
§2.1 分子发光的基本原理
❖ 第一次记录荧光现象的是16世纪西班牙的内科医生和植物学家 N.Monardes,1575年他提到在含有一种称为“Lignum Nephriticum”的木头切片的水溶液中,呈现了极为可爱的天 蓝色。
❖ 直到1852年,Stokes在考察奎宁和叶绿素的荧光时,用分光光 度计观察到其荧光的波长比入射光的波长稍微长些,才判断这 种现象是这些物质在吸收光能后重新发射不同波长的光,而不 是由光的漫射作用所引起的,从而导入了荧光是光发射的概念, 他还由发荧光的矿石“萤石”推演而提出“荧光”这一术语。
2. 无辐射跃迁的类型
振动弛豫: Vr 10-12sec T1 外 转 移:无辐射跃迁

回到基态
滞 荧
磷 内 转 移:S2~S1能级


之间有重叠
系间窜跃: S2~T1能级 之间有重叠
反系间窜跃:由外部获 取能量后
T1 ~ S2
二. 分子荧光(磷光)光谱
1. 荧光(磷光)激发光谱与发射光谱
荧光(磷光)均为光致发光,在光辐射的作用下,荧光物质发射出不
同波长的荧光。 n
MX hvi MX*
n
MX* MX hv j
i1
j1
A. 激发光谱
IF4800 固定em=620nm(MAX)
4400
4000
固定发射波长
3600
扫描激发波长
3200
2800
ex =290nm (MAX)
荧光激发光谱与
2400 2000
紫外-可见吸收光 1600
谱类似
1200
I F ∝f (λex 、λem)
固定激发波长、扫描发射波长
蒽的发射光谱
相关文档
最新文档