23.2 中心对称(第2课时)

合集下载

人教版九年级数学上册23.2.2:中心对称图形(教案)

人教版九年级数学上册23.2.2:中心对称图形(教案)
3.实践活动中的分组讨论和实验操作,学生们表现得积极主动,这让我很欣慰。但同时,我也注意到有些学生在讨论过程中过于依赖同伴,缺乏独立思考。在接下来的教学中,我会加强对学生的引导,鼓励他们提出自己的观点,培养他们的独立思考能力。
4.学生小组讨论环节,大家在分享成果时表现出很高的热情。但在讨论过程中,我发现有些小组在解决问题时过于依赖教师,缺乏自主解决问题的能力。针对这个问题,我将在后续的教学中,逐步减少对学生的干预,让他们在探讨中学会自主分析和解决问题。
(4)中心对称图形的创新能力:学生在创作中心对称图形时,往往局限于教材中的例子,缺乏创新意识。
突破方法:鼓励学生发挥想象,尝试将中心对称知识应用于不同的场景和领域,提高学生的创新能力和实践能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《中心对称图形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过一些美丽的图案,它们看起来是完全对称的?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索中心对称图形的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调中心对称的定义和性质这两个重点。对于难点部分,如对称中心的寻找,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与中心对称相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示中心对称的基本原理。
5.总结回顾环节,学生对中心对称图形的基本概念和性质有了较好的掌握,但在实际应用方面还显得有些吃力。为了提高学生的应用能力,我计划在课后布置一些具有实际背景的作业,让学生在完成作业的过程中,进一步巩固所学知识。

23.2 中心对称第2课时中心对称图形 人教版九年级数学上册课件

23.2 中心对称第2课时中心对称图形 人教版九年级数学上册课件

180°后能与原来的图形重合
问题3:线段、平行四边形的对称中心分别是什么?
A
D
A
O
O是 对称 中心
B
O
B
C
O是
对称
中心
正三角形是中心对称图形吗?正方形呢?正五边形 呢?正六边形呢?……你能发现什么规律?
×

×

结论:是中心对称图形的多边形很多,其中边数为偶数 的正多边形都是中心对称图形。
生活中的中心对称图形: 汉代铜镜——中心对称图形
23.2 中心对称
第2课时 中心对称图形
本节将完成下列几项学习活动:
01 活动(一):预习反馈 02 活动(二):合作交流 03 活动(三):新知运用 04 活动(四):课堂小结
01 活动(一):预习反馈
观察下列图形,哪几个是中心对称图形?
×
×
×

中心对称图形的相关概念:
把一个图形绕着某一个点旋转180°,如果旋 转后的图形能够与原来的图形互相重合,那么这 个图形叫做中心对称图形;这个点叫做它的对称 中心;互相重合的点叫做对称点.
02 活动(二):合作交流
问题1:如果将线段AB绕它的中点O旋转180°,会出现 什么情况?
A
O
B
线段AB绕它的中点O旋转180°后能与原来的图形重合
问题2:如果将平行四边形ABCD绕它的两条对角线的
交点O旋转180°,又会出现什么情况?
A
D
O
B
C
平行四边形ABCD绕它的两条对角线的交点O旋转
04 活动(四):课堂小结
中心对称图形的相关概念:
把一个图形绕着某一个点旋转180°,如果旋 转后的图形能够与原来的图形互相重合,那么这 个图形叫做中心对称图形;这个点叫做它的对称 中心;互相重合的点叫做对称点.

23.2中心对称与中心对称图形 (共13张PPT)

23.2中心对称与中心对称图形 (共13张PPT)

Page 5
类 比 精 练
2. 下列描述中心对称的特征的语句中,其中正确的 是( D ) A.成中心对称的两个图形中,连接对称点的线段不一定 经过对称中心 B.成中心对称的两个图形中,对称中心不一定平分连接对 称点的线段 C.成中心对称的两个图形中,对称点的连线一定经过对称 中心,但不一定被对称中心平分 D.成中心对称的两个图形中,对称点的连线一定经过对 称中心,且被对称中心平分
Page 4
课 堂 精 讲
知识点2 中心对称的特征 【例2】关于中心对称的描述不正确的是( A ) A.把一个图形绕着某一点旋转,如果它能与另一个图形重 合,那么就说这两个图形对称 B.关于中心对称的两个图形是全等的 C.关于中心对称的两个图形,对称点的连线必过对称中心 D.如果两个图形关于点O对称,点A与A′11
能 力 提 升
Page 12
挑 战 中 考
11. (2016广东)下列所述图形中,是中心对称图形的是 ( B ) A、直角三角形 B、平行四边形 C、正五边形 D、正三角形 12、 (2016· 云南)下列交通标志中,是轴对称图形但不是 中心对称图形的是( A ) A、直角三角形 B、平行四边形 C、正五边形 D、正三角形
Page 9
课 后 作 业
9.如图所示,作出四边形ABCD关于点A中心对称的四边 形AEFG.
Page 10
能 力 提 升
10.下列3×3网格图都是由9个相同的小正方形组成,每 个网格图中有3个小正方形已涂上阴影,请在余下的6个 空白小正方形中,按下列要求涂上阴影: (1)选取1个涂上阴影,使4个阴影小正方形组成一个轴 对称图形,但不是中心对称图形. (2)选取1个涂上阴影,使4个阴影小正方形组成一个中 心对称图形,但不是轴对称图形. (3)选取2个涂上阴影,使5个阴影小正方形组成一个轴 对称图形. (请将三个小题依次作答在图1、图2、图3中,均只需画 出符合条件的一种情形)

23.2.2中心对称图形教学设计2024-2025学年人教版数学九年级上册

23.2.2中心对称图形教学设计2024-2025学年人教版数学九年级上册
2. 数学抽象:学生能够从具体的图形中抽象出中心对称图形的概念,理解中心对称图形的性质,并能够将这些性质抽象成数学语言进行表达。
3. 数学建模:学生能够将中心对称图形的性质应用到实际问题中,通过建立数学模型来解决问题,培养学生的数学应用能力和解决问题的能力。
教学难点与重点
1. 教学重点:
(1)中心对称图形的概念:本节课的核心是让学生理解并掌握中心对称图形的定义,即图形中心有一个点,称为对称中心,使得图形上的任意一点关于对称中心都有对应的一点,这两点距离对称中心相等,且连线垂直平分。
- 针对学生在自主学习和合作学习中的困难,提供更多的学习资源和指导,帮助学生提高自主学习能力和团队合作能力。
- 定期进行教学反思和评估,及时调整教学策略和方法,以提高教学效果。
教学评价与反馈
2. 小组讨论成果展示:通过小组讨论成果展示,评估学生在合作学习中的参与度和对中心对称图形概念、性质的理解程度。
6. 学生自我评价与反馈:鼓励学生进行自我评价和反馈,让他们认识到自己的优点和不足,并提出改进建议。
7. 家长反馈:通过与家长的沟通,了解学生在家庭中的学习情况,并根据家长反馈给予学生适当的指导和建议。
8. 定期进行教学评价与反馈,及时调整教学策略和方法,以提高教学效果。
课后作业
1. 请学生运用中心对称图形的性质,设计一个简单的几何作图,并说明作图步骤和原理。
4. 已知一个矩形ABCD,点E是CD边上的中点,点F是对称中心,求证:AE=BF。解答:通过中心对称性质,点F是对称中心,因此F是AE和BF的中点,所以AE=BF。
5. 已知一个正方形ABCD,点E是对角线AC的中点,点F是对称中心,求证:AE=BF。解答:通过中心对称性质,点F是对称中心,因此F是AE和BF的中点,所以AE=BF。

【金识源】2013年秋人教版九年级数学上23.2《中心对称》习题精选(2)

【金识源】2013年秋人教版九年级数学上23.2《中心对称》习题精选(2)

23.2中心对称(第二课时)(附答案)◆随堂检测1、下列命题中的真命题是( )A 、全等的两个图形是中心对称图形.B 、关于中心对称的两个图形全等.C 、中心对称图形都是轴对称图形.D 、轴对称图形都是中心对称图形.2、下列图形中,既是轴对称图形又是中心对称图形的是( )A 、B 、C 、D 、3、下列图形中,是轴对称图形但不是中心对称图形的是( )4、如图,四边形ABCD 是正方形,△ADE 绕着点A 旋转90°后到达△ABF 的位置,连接EF ,则△AEF 的形状是( )A 、等腰三角形B 、锐角三角形C 、等腰直角三角形D 、等边三角形5、下面是两个圆,请按要求在各图中分别添加四个点,使之满足各自要求.(1)既是中心对称图形, (2)只是中心对称图形,又是轴对称图形. 不是轴对称图形.◆典例分析 F ED C B A认真观察前四个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________;特征2:_________________________________________________.(2)请在第五个图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.分析:本题具有一定的开放性,一般情况下只需写出最明显最简洁的两个共同特征即可.在第五个图上设计出的图案中,要特别注意使它也具备上述特征.解:(1)特征1:前四个图中阴影部分构成的图案都是中心对称图形;特征2:前四个图中阴影部分的面积都等于正方形面积的四分之一;(特征3:前四个图中阴影部分构成的图案都是轴对称图形.等等)(2)如图所示.(答案不唯一)◆课下作业●拓展提高1、下列图形中不是中心对称图形的是()A、①③B、②④C、②③D、①④2、在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有()E H I N AA、2个B、3个C、4个D、5个3、在线段、等腰梯形、平行四边形、矩形、正五角星、圆、正方形、等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A、3个B、4个C、5个D、6个4、请写出三个图形,它们既是轴对称图形,又是中心对称图形,它们是AC BD FE ____________________________.5、如图,四边形ABCD 中,∠BAD=∠C=90º,AB=AD ,AE⊥BC 于E ,若线段AE=5,求ABCD S 四边形. (提示:将△ABE 绕点A 旋转90º,使AB 与AD 重合.将四边形ABCD 割补为正方形)6、在△ABC 中,点D 是BC 的中点,E 、F 分别是AB 、AC 边上两点,且ED⊥FD,你能证明BE+CF EF 吗?(提示:作△BED 或△CFD 关于点D 的中心对称图形)●体验中考1、(2009年,内江)下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( )2、(2009年,台州市)在单词NAME 的四个字母中,是中心对称图形的是( )A 、NB 、AC 、MD 、E3、(2009年,内蒙古包头)下列图形中,既是轴对称图形又是中心对称图形的有( )A 、4个B 、3个C 、2个D 、1个E D B A参考答案:◆随堂检测1、B .2、D. 选项A 和B 只是轴对称图形,选项C 只是中心对称图形,只有选项D 既是轴对称图形又是中心对称图形.3、A. 选项B 是中心对称图形,选项C 和D 既是轴对称图形又是中心对称图形,只有选项A 是轴对称图形但不是中心对称图形.4、C .依据旋转的性质可得,∠EAF=90°,且AE=AE.∴△AEF 是等腰直角三角形.故选C .5、解:本题是开放性题目,答案不唯一.(1)既是中心对称图形, (2)只是中心对称图形,又是轴对称图形. 不是轴对称图形.◆课下作业●拓展提高1、D .2、B. 依据中心对称图形的定义可以判断H 、I 、N 共3个字母是中心对称图形.故选B.3、B . 既是轴对称图形,又是中心对称图形的图形有线段、矩形、圆和正方形,故选B .4、圆、平行四边形、矩形等.5、解:则ABCD S =四边形AECF S =正方形25.6、证明:如图,∵点D 是BC 的中点,且ED⊥FD .∴可作△BED关于E D C B A F点D 的中心对称图形△CGD ,连接FG.可证BE=CG ,EF=FG.在△CGF 中,CG+CF >FG.∴BE+CF >EF 成立.●体验中考 1、D. 依据中心对称图形的定义可以判断D 不是中心对称图形.2、A . 依据中心对称图形的定义可以判断字母N 是中心对称图形.故选A .3、B. 既是轴对称图形又是中心对称图形的是第1、3和第4个图形共3个,故选B.ACB D F E G。

九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)

九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)

(2)中心对称图形的对称点
O
连线被_对__称__中__心__平__分__
C
B
性质:中心对称图形上的每一对对称点的连线都经过对称
中心且被对称中心平分.
知识归纳
中心对称图形的性质
知识点二
中心对称与中心对称图形的区别与联系:
中心对称
中心对称图形
1.针对两个图形而言的
1.针对一个图形而言的
区 2.是指两个图形的(位置)关系2.是指具有某种性质的一个图形
探究新知
中心对称图形的概念
【问题】将下面的图形绕O点旋转,你有什么发现?
知识点一
AO B
O
O
O
共同点:(1)都绕一点旋转了180度; (2)都与原图形完全重合.
中心对称图形的定义 注意 中心对称图形是指一个图形.
把一个图形绕某个点旋转180º,如果旋转后的图形能与原来的图 形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
2.在线段、角、等腰三角形、等边三角形、等腰梯形、平行四 边形、矩形、菱形、正方形、正六边形、圆中,既是轴对称图形, 又是中心对称图形的图形有( D ) A.3个 B.4个 C.5个 D.6个
针对训练
中心对称图形的概念
知识点一
3.下列图形中,既是轴对称图形,又是中心对称图形的是( B )
分别交AD和BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为_3__.
A
ED
O
BF
C
针对训练
中心对称图形的性质
知识点二
1.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他

人教版九年级数学上册第二十三章旋转《23.2中心对称》第2课时说课稿

人教版九年级数学上册第二十三章旋转《23.2中心对称》第2课时说课稿

人教版九年级数学上册第二十三章旋转《23.2中心对称》第2课时说课稿一. 教材分析人教版九年级数学上册第二十三章旋转《23.2中心对称》第2课时说课稿,主要讲述了中心对称图形的性质和判定。

本节课的内容是在学生已经掌握了中心对称的概念和基本性质的基础上进行进一步的拓展和应用。

教材通过具体的例题和练习题,使学生能够深入理解中心对称图形的性质,并能够运用这些性质解决实际问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于中心对称的概念和基本性质已经有了一定的了解。

但是,学生在应用中心对称性质解决实际问题时,往往会存在一些困惑和困难。

因此,在教学过程中,我需要引导学生通过观察、思考和操作,深入理解中心对称图形的性质,并能够灵活运用这些性质解决实际问题。

三. 说教学目标1.知识与技能:使学生熟练掌握中心对称图形的性质,能够运用性质判定一个图形是否为中心对称图形。

2.过程与方法:通过观察、思考和操作,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和创新精神。

四. 说教学重难点1.教学重点:中心对称图形的性质和判定。

2.教学难点:如何灵活运用中心对称性质解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。

2.教学手段:利用多媒体课件和实物模型进行教学。

六. 说教学过程1.导入新课:通过展示一些生活中的中心对称图形,引导学生回顾中心对称的概念和基本性质。

2.讲解与示范:讲解中心对称图形的性质,并通过示例演示如何运用性质判定一个图形是否为中心对称图形。

3.学生练习:学生独立完成教材中的练习题,巩固对中心对称性质的理解和运用。

4.小组讨论:学生分组讨论,分享各自的解题方法和思路,互相学习和交流。

5.总结与拓展:总结中心对称图形的性质和判定方法,并给出一些拓展问题,引导学生进一步深入思考。

七. 说板书设计板书设计如下:中心对称图形的性质:1.对称中心:每个点关于对称中心对称。

23.2.中心对称与23.3讲学稿,新授课(共5课时)

23.2.中心对称与23.3讲学稿,新授课(共5课时)

23.2.中心对称与23.3(共5课时)第一课时:中心对称教学内容:两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.教学目标了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题.难点与关键:从一般旋转中导入中心对称.教学过程一、探究新知探究一(1) 观察实例(教科书图23.2-1,23.2-2),回答问题:①把其中一个图案绕点O旋转180°,你有什么发现?②线段AC与BD相交于点O,OA=OC,OB=OD,把△OCD绕点O旋转180º,你有什么发现?探究二如教科书图23.2-3,旋转三角板,画关于点O对称的两个三角形:(1) 画出△ABC;(2) 以三角板的一个顶点O为中心,把三角板旋转180º,画出△A′B′C′.让学生在作图的基础上思考:(1)分别连接对应点AA′、 BB′、CC′.点O在线段AA′上吗?如果在,在什么位置?(2) △ABC与△A′B′C′全等吗?为什么?(3) △ABC与△A′B′C′有什么关系?(4)你能从中得到什么结论?探究三比较中心对称与轴对称有哪些区别?又有什么联系?师生合作,归纳出中心对称的性质:(1) 关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2) 关于中心对称的两个图形是全等图形.1.应用(1) 如教科书图23.2-4,选择点O为对称中心,画出点A关于点O的对称点A′;(2) 如教科书图23.2-5,选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.思考:①一个点绕对称中心旋转180º,得到的是一个平角,这表示什么?②确定一个三角形需要几个点?作一个三角形关于某点成中心对称的三角形,需要作几个点的对称点呢?③你是如何理解“对称点所连线段都经过对称中心,而且被对称中心所平分”的?课堂练习课本64页练习课堂小结说说你在本节课的收获.第二课时:中心对称图形内容:掌握中心对称图形的定义,准确判断某图形是否为中心对称图形.教学目标1.通过学习中心对称图形,进一步认识几何图形的本质特征.2.通过学习中心对称图形与中心对称的区别联系,中心对称图形与轴对称图形的区别,进一步发展学生抽象概括的能力. 重点中心对称图形的定义及了解一些简单的几何图形的对称性. 难点中心对称图形与中心对称的关系,准确判断图形的对称性. 教学过程 探究新知探究一,将下列图形绕O 点旋转180º,你有什么发现?归纳出中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心. 探究二思考:中心对称图形与中心对称有哪些区别与联系.区别:中心对称指两个全等图形的相互位置关系;中心对称图形指一个图形本身成中心对称.联系:如果将中心对称图形的两个图形看成一个整体,则它们是中心对称图形;如果将中心对称图形对称的部分看成两个图形, 则它们成中心对称.活动三我们平时见过的几何图形中,有哪些是中心对称图形?并指出对称中心. 活动四O1.说一说:在生活中你还见过哪些中心对称图形吗?2.想一想:你学过的几何图形具有怎样的对称性?3.巩固练习课堂小结本节课你有什么收获.课堂练习如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,•对称中心就是旋转中心.(3)旋转后的对应点,便是中心的对称点.解:作法:(1)延长AD,并且使得DA′=AD(2)同样可得:BD=B′D,CD=C′D(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示.答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点.(2)A、B、C、D关于中心D的对称点是A′、B′、C′、D′,这里的D′与D2、如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD•成中心对称的三角形.分析:因为D是对称中心且AD是△ABC的中线,所以C、B为一对的对应点,因此,只要再画出A关于D的对应点即可.解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),B•点关于中心D的对称点为C(B′)(2)连结A′B′、A′C′.则△A′B′C′为所求作的三角形,如图所示.C(B ')B(C ')AA 'D课后作业.(1) 教科书67页练习(2) 本节课我们发现中心对称图形的图案对称、简洁、美丽,容易让人牢记在心,请为你喜爱的产品或公司,设计一个中心对称图形的徽标.第三课时23.2.3 关于原点对称的点的坐标内容:两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y ),关于原点的对称点为P ′(-x ,-y )及其运用. 教学目标1、理解P 与点P ′点关于原点对称时,它们的横纵坐标的关系,掌握P (x ,y )关于原点的对称点为P ′(-x ,-y )的运用.2、复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用.重点:两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )•关于原点的对称点P ′(-x ,-y )及其运用.难点与关键:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题. 教学过程一、复习引入活动1请同学们完成下面三题.1.已知点A 和直线L ,如图,请画出点A 关于L 对称的点A ′. lA2.如图,△ABC 是正三角形,以点A 为中心,把△ADC 顺时针旋转60°,画出旋转后的图形.3.如图△ABO ,绕点O 旋转180°,画出旋转后的图形.BAC老师点评:老师通过巡查,根据学生解答情况进行点评.(略) 二、探索新知活动2如图23-74,在直角坐标系中,已知A (-3,1)、B (-4,0)、C (0,3)、•D (2,2)、E (3,-3)、F (-2,-2),作出A 、B 、C 、D 、E 、F 点关于原点O 的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?(课本上的探究,幻灯片33) 活动3分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,•①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?提问几个同学口述上面的问题.老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即设P (x ,y )关于原点O 的对称点P ′(-x ,-y ).活动4例2.已知△ABC ,A (1,2),B (-1,3),C (-2,4)利用关于原点对称的点的坐标的特点,作出△ABC 关于原点对称的图形. 老师点评分析:先在直角坐标系中画出A 、B 、C 三点并连结组成△ABC ,要作出△ABC 关于原点O 的对称三角形,只需作出△ABC 中的A 、B 、C 三点关于原点的对称点,•依次连结,便可得到所求作的△A ′B ′C ′.活动5练一练,想一想(幻灯片35,幻灯片36) 三、归纳小结1、两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y ),•关于原点的对称点P ′(-x ,-y ),及其利用这些特点解决一些实际问题.2、要求学生务必掌握格点图形的旋转、对称等的作图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形、梯形、正五边形都不是中心对称图形.
1.了解中心对称图形的概念
例 判断下列图形是否为中心对称图形.

×

×


×
×

2.练习、巩固中心对称图形概念
(1)下面哪个图形是中心对称图形?

不是

3.区分中心对称和中心对称图形的概念
名称 中心对称
1.针对2个图形而言 2.指两个图形的位置关系 3.成中心对称的图形的对称点一般分别 在两个图形上
1.了解中心对称图形的概念
复习:轴对称图形的概念
指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形。
(1)如图,将线段 AB 绕它的中点旋转 180°,你 有什么发现? A B
可以发现:线段 AB 绕它的中点旋转 180°后与它 本身重合.
1.了解中心对称图形的概念
(2)如图,将 ABCD 绕它的两条对角线的交点 O 旋转 180°,你有什么发现?
中心对称图形
1.针对一个图形而言 2.指该图形所具有的特性 3.中心对称图形的对称点在一 个图形上
区别
联系
若把中心对称图形的两部分分别看作两个图形,则它们成中心对称,若把中 心对称的两个图形看作一个整体,则成为中心对称图形
5.小结
(1)本节课学了哪些主要内容? (2)中心对称图形和两个图形成中心对称的联系 与区别?
3.巩固练习
问题 在平面直角坐标系下,作一个图形的中心 对称图形的步骤是什么?
(1)图形的对称转化为点的对称.标出点的中心 对称点. (2)连接线段.
4.归纳小结
(1)两个点关于原点对称时,它们的坐标间有什 么关系, 即点 P(x,y)关于原点 O 的对称点 P 的坐 标是什么? (2)在平面直角坐标系下,作一个图形的中心对 称个点关于原点对称时,它们的坐标 符号相反,即点 P(x,y)关于原点 O 的对称点为 P′ (-x,-y).
3.巩固练习
(1)填空: 点 A(3,4)关于原点的对称点的坐标为 ; 点 A(a,2)与点 B(8,b)关于原点对称, a= ,b = ; 点(2,1)与点(2,-1)关于 对称; 点(2,1)与点(-2,-1)关于 对称; 点(2,1)与点(-2,1)关于 对称.
点 P(x,y)关于X轴 的对称点为 P′ 点 P(x,y)关于Y轴 的对称点为 P′ (x,-y) (-x,y)
2.探究新知
问题4 在直角坐标系中,作出下列已知点关于原 点 O 的对称点,并写出它们的坐标.这些坐标与已知点 的坐标有什么关系? A(4,0), B(0,-3), C(2,1),
y
C O A x
A
D O
B
C
可以发现: ABCD 绕它的两条对角线的交点 O 旋 转180°后与它本身重合.
1.了解中心对称图形的概念
A
D O B C
A
O
B
如果一个图形绕一个点旋转 180°后能与自身重合, 那么这个图形叫做中心对称图形,这个点叫做它的对称 中心.
线段、平行四边形 是中心对称图形.
1.了解中心对称图形的概念
九年级
上册
23.2 中心对称(第2课时)
课件说明
• 学习目标: (1)了解中心对称图形的概念,会判断一个图形是 否为中心对称图形. (2)知道中心对称图形和两个图形成中心对称、轴 对称图形和中心对称图形的联系与区别.感悟 类比方法在研究数学问题中的作用. 学习重点: 中心对称图形的概念及其应用.


6.作业
教科书第 67 页
练习 1,2 题.
九年级
上册
23.2 中心对称(第3课时)
课件说明
• 学习目标: 1.理解点 P 与点 P′关于原点对称时,它们的横纵 坐标的关系; 2.会用关于原点对称的点的坐标的关系解决有关问 题. 学习重点: 点 P(x,y)关于原点的对称点 P (-x,-y)及其应用.


1.复习引入
问题(1)点 P(-1,2)关于 x 轴对称点的坐标 2 ( -1 , -2 ) 为 ,点 P 到 x 轴的距离为 ,点 P 到 y 轴 的距离为 1 (2)点 P(-3,-4)关于 y 轴对称的点的坐标为 (3,-4) 。
相关文档
最新文档